Scalable Data Acquisition for Densely Instrumented Cyber-Physical Systems

Aida Ehyaei, Eduardo Tovar, Nuno Pereira and Björn Andersson

Research Centre in Real-Time Computing Systems FCT Research Unit 608

- Introduction
- Background
 - Dominance-based MAC protocols
 - Quantity aggregation
 - Interpolation
- Using a physical model in interpolation
- New interpolation algorithm
 - Evaluation Result
- Conclusion

- As a result of advance in electronics technology, sensor design, wireless communication
 - The cost of a sensor node drops toward zero

Economically feasible to densely deploy networks with sensor nodes

- Very dense networks :
 - Better resolution of the physical world
 - Better capability of detecting an event

Application of Dense Networks

- Structural health monitoring (SHM)
 - Visual inspections impose high costs and inconvenience
 - Convertes a structure into a 'smart' one with state-of-theart sensing technology
 - Early detection of damage can save money and lives
 - Reduced Maintenance
 - Increased Longevity (Health)
 - Improved Safety

- Active flow control
 - Aircraft industry

• Be constructed entirely of distributed systems

350-800AIRBUS

- - Interconnectivity
 - Data gathering
 - Data processing
- Problem:Design an algorithm for acquiring data in a dense network considering

(i) Sensor readings originate from different sensor nodes

- (ii) Very large number of sensor nodes
- (iii) Dense network
- (iv) In a single broadcast domain

- An approximate representation of sensor readings
- An Interpolation of the physical system
 - Based on *all* sensor readings
 - Scalable

Contradicting?

Using quantity aggregation and Interpolation technique based on dominance protocol

- Dominance-based Medium Access Control (MAC) protocols
 - Simultaneous "non-destructive" transmission of information in the same broadcast domain
 - Each node sends its unique contention field bit by bit starting from MSB
 - The bus behaves as a logical wired-and
 - Recessive bit (a logical '1')
 - Dominant bit (a logical '0')
- Implementation:
 - Wired Controller Area Network (CAN) bus
 - Wireless: WiDom

Quantity Aggregation

- Based on *dominance protocols*
 - Possible to gather certain aggregate quantities (MIN, MAX or COUNT)
 - Time complexity of the method is independent of the number of nodes
 - Possible to produce an approximate representation of all sensor readings
 - Due to spatially and temporally correlation of sensor readings

• Interpolation function:

$$f(x, y) = \begin{cases} 0 & \text{if } S = \emptyset \\ s_k & \text{if } \exists q_k \in S : x_k = x \land y_k = y \\ \frac{\sum_{k \in S} s_k \cdot w_k(x, y)}{\sum_{k \in S} w_k(x, y)} & \text{otherwise} \end{cases}$$

$$w_k(x, y) = \frac{1}{(x_k - x)^2 + (y_k - y)^2}$$

• Error of the interpolation at sensor node Ni

 $e_i = |s_i - f(x_i, y_i)|$

• Maximum overall error

 $e = \max_{i=1..m} e_i$

The Basic Interpolation Algorithm

- 1: $S \leftarrow \emptyset$
- 2: for $j \leftarrow 1$ to k do
- 3: calculate the interpolation function $f(x_i, y_i)$ based on S
- 4: calculate e_j .
- 5: select a sensor node N_k with the maximum e_k , that is $e_k = e$. This can be achieved using the previous MAX computation.
- 6: the location and the sensor reading of N_k forms a control points; add this control point to S
- 7: end for

Basic interpolationalgorithm

Signal with slow changes
(slower than the time
execution of the algorithm)

- Fast changing signal?
 - Algorithm can not follow the changes in signal...

Embedding a model of the dynamics of the physical world in the algorithm

- The better the model, the lower the interpolation error
- What do we need?
 - A simple framework
 - (i) Sufficiently expressive
 - (ii) Execute efficiently

Performing a linear transformation on each element in *S*

- Allows different operations to the signals
 - Increasing/ Decreasing
 - Scaling
 - Translation
 - Rotation

1: $S \leftarrow \emptyset$

- 2: for $j \leftarrow 1$ to k do
- 3: calculate the interpolation function $f(x_i, y_i)$ based on S
- 4: calculate e_j .
- 5: select a sensor node N_k with the maximum e_k , that is $e_k = e$. This can be achieved using the MAX computation mentioned in Section II.
- 6: the location and the sensor reading of N_k forms a control point; add this control point to *S*.

```
7: for each element (x_i, y_i, s_i) in S do
```

```
8: xnew_i \leftarrow A_{1,1} * x_i + A_{1,2} * y_i + A_{1,3} * s_i + A_{1,4}
```

- 9: $ynew_i \leftarrow A_{2,1} * x_i + A_{2,2} * y_i + A_{2,3} * s_i + A_{2,4}$
- 10: $snew_i \leftarrow A_{3,1} * x_i + A_{3,2} * y_i + A_{3,3} * s_i + A_{3,4}$
- 11: replace the element (x_i, y_i, s_i) in S by $(xnew_i, ynew_i, snew_i)$
- 12: end for
- 13: end for

- Type of change in signal: Increment/Decrement
 - Updating control points with their differentials
 - : $xnew_i \leftarrow 1^*x_i + 0^*y_i + 0^*s_i + 0$: $ynew_i \leftarrow 0^*x_i + 1^*y_i + 0^*s_i + 0$: $snew_i \leftarrow 0^*x_i + 0^*y_i + 1^*s_i + g_i$
- Different algorithms
 - Having more information from the physical system simpler algorithm
 - Constant differential at each point $(O(k^2))$
 - Equal, constant differential for all the points (O(k))

- Execution time:
 - In a MicaZ sensor network platform
 - Using one of the microcontroller's real-time clocks

- Average error
 - Dynamic signal with constant 4% change per interpolation round

 Dynamic signal with random up to 4% change per interpolation round

• K= 10

	Type of change in signal per Interpolation round			
Algorithm	Different Increase (up to 4%)	4% Increase	1% Scaling	
Basic Algorithm	9.23	15.82	7.10	
Algorithm 1A	9.75	10.96	7.91	
Algorithm 2	8.49	10.36	7.94	

• K=20

	Type of change in signal per Interpolation round			
Algorithm	Different Increase (up to 4%)	4% Increase	1% Scaling	
Basic Algorithm	18.23	38.78	4.75	
Algorithm 1A	6.19	8.99	4.96	
Algorithm 2	5.70	9.01	4.74	

- A data aquisition algorithm is proposed for a dense network of sensor nodes in a dynamic environment which is:
 - Distributed
 - Simple
 - Fast
 - Able to track the changes in the signal
 - Average error is non increasing with respect to time

Questions?