
Carnegie Mellon

!"#$%"$#&

'($%&)%*+%,-&

!"#$%&'()*+

,--*)-%&.*+

/.*0%*1)*+

&.*/$&!"#$%0%$#$%&

&12%$134& 567&

2)*3)*+4.*+5#)*+%'')##+

6%&)0%7+8.1)+

9:1+8.1)+

567(&

8&

;.<$"=)*+

>)')"3)*+

!"#$"%&&'($))
*(+'"#(&,(-)

.(-,$"%/#()
0%1,")

23(/&,)
0%1,")

NanoCF:	
 	

A	
 Coordina*on	
 Framework	
 for	
 Mul*ple	

Applica*ons	
 on	
 Sensor	
 Networks	

Vikram	
 Gupta,	
 Eduardo	
 Tovar,	
 Luis	
 Miguel	
 Pinho	

Junsung	
 Kim,	
 Karthik	
 Lakshmanan,	
 Raj	
 Rajkumar	

Carnegie Mellon

Macro-­‐programming	
 support	
 	

 In-­‐network	
 programming	
 	

 Why?	

  Usability	

  Lack	
 of	
 Technical	
 ExperCse	
 with	
 non	
 CS	
 people	

  Cost	
 of	
 re-­‐program-­‐ability	

  Faster	
 deployment	

  Heterogeneous	
 Hardware/SoKware	

 Consider	
 a	
 network	
 with	
 hundreds	
 of	
 nodes	

  Few	
 minutes	
 per	
 node	
 can	
 mean	
 hours	

 More	
 “QualitaCve”	
 advantages	

2	

Carnegie Mellon

Sensor	
 Network	
 as	
 Infrastructure	

3	

Carnegie Mellon

Occupancy	
 Checking	
 and	
 Room	
 Climate	

Control	

 Several	
 applicaCons	
 on	
 same	
 sensor	
 network	

 Geographically	
 distributed	
 sensor	
 network	

 Limited	
 flexibility	
 and	
 usability	

4	

Carnegie Mellon

Challenges	
 for	
 Concurrent	
 applicaCons	

 User	
 Interface	

  Database	
 queries,	
 virtual	
 machine	
 etc..	

 OperaCng	
 System	
 Support	

 Packets	
 through	
 mulCple	
 applicaCons	
 over	
 mulC-­‐hop	

network	

 Data	
 AggregaCon	

 Minimizing	
 the	
 overhead	

  Frequency	
 of	
 Processor	
 and	
 Radio	
 On/Off	

  Network	
 flooding	

  Seamless	
 backend	
 handling	

 Tradeoff	
 between	
 Control	
 and	
 AbstracCon	

5	

Carnegie Mellon

Macro	
 Programming	
 System	

6	

Source Code

Lexical
Analyzer

Parser
(Grammar
Analyzer)

Readable
Instructions

ByteCode
Stream

Data
handler

Code
Interpreter

Code
Interpreter

Code
Interpreter

 nanoCL:	
 Small	

Composible	
 Language	

for	
 Sensor	
 Networks	

 Abstracts	
 away	
 from	

lower-­‐level	
 details	

 Supports	
 various	
 data-­‐
types	
 and	
 library	

funcCons	

 Independent	
 of	
 the	
 type	

of	
 sensor	
 nodes	

Carnegie Mellon

System	
 Architecture	

7	

Internet	

API:	
 User	
 code	

Dispatcher	

Job	
 Handler	

Aggregator	

Data	
 Handler	

Forwarder	

	
 Code	
 Interpreter	

	
 FireFly	
 WSN	

PC	

Gateway	
 Node	

End	
 Node	

WSNs	

…	

Parser:	
 nclC	

Receiver	

Data	
 Handler	

Carnegie Mellon

Control	
 and	
 Data	
 Flow	

8	

Code	
 Interpreter	

Sensor	
 OperaCng	
 System	

RUNTIME	

Forwarder	

Receiver	

Aggregator	
 INTEGRATION	

LAYER	

Programming	
 AbstracCon	

Compiler	
 Aggregator	

PROGRAMMING	
 	

ENVIRONMENT	

CONTROL DATA

Two-­‐Fold	

Carnegie Mellon

System	
 Architecture	
 Outline	

9	

Internet	

API:	
 User	
 Code	

Dispatcher	

Job	
 Handler	

Aggregator	

Data	
 Handler	

Forwarder	

	
 Code	
 Interpreter	

	
 FireFly	
 WSN	

PC	

Gateway	
 Node	

End	
 Node	

WSNs	

…	

Parser:	
 nclC	

Receiver	

Data	
 Handler	

Carnegie Mellon

sMapReduce	
 Programming	
 AbstracCon	

 Natural-­‐fit	
 to	
 sensor	
 network	
 operaCon	

  Map	
 the	
 “funcConality”	
 to	
 sensor	
 node	

  Gather	
 the	
 data	
 through	
 the	
 network	
 tree	
 (Reduce)	
 	

 Inspired	
 from	
 Google’s	
 MapReduce	

 Key	
 Features	

  Balanced	
 abstracCon	
 and	
 control	

  Easy	
 debugging	

  Two-­‐fold	
 operaCon	

10	

Source Code

Lexical
Analyzer

Parser
(Grammar
Analyzer)

Readable
Instructions

ByteCode
Stream

Data
handler

Code
Interpreter

Code
Interpreter

Code
Interpreter

Carnegie Mellon

Simple	
 Temperature	
 CollecCon	
 Example	

Table 1: List of programming constructs

Construct Details

list_of_nodes data structure containing the

list of nodes and their properties

smap_emit() Data to be returned

by each node

Function to read sensor

get() values into integers,

takes sensor name as argument

set() Function to set a GPIO Pin

clear() Clear a GPIO Pin

toggle() Toggle a GPIO Pin

Table 2: List of operators for selecting participating nodes

from among the list_of_nodes

Operators Details

LEAF. Nodes on the periphery of the network

INNER. All nodes except the leaf nodes

HOP(k). All nodes at kth
hop from the gateway

HAS(t). All nodes that have a t type sensor

BATT(c). All nodes having remaining

battery capacity of atleast c
CONN(n). Nodes having at least n neighbors

network. Code for this application consists of a for loop to

iterate through the list of nodes, an instruction using get()
to read the temperature reading and then an smap_emit()
to send the temperature reading along with the node id to-

wards the gateway.

The Reduce section of the program is used to specify the

aggregation scheme. A separate dedicated section in the

program to perform aggregation provides more freedom and

flexibility to implement data collection algorithms. The user

can assign aggregation responsibilities to different nodes in

the network tree. It makes it easier to overlay complex ag-

gregation algorithms over the tree through higher-level ab-

stractions for node addressing. This two-fold advantage is

made possible by separating the sensing operation from the

data-aggregation in sMap and Reduce sections. Figure 1b

shows an example of a reduce function for calculating the

sum of temperature readings obtained in the sMap section

in Figure 1a. In this example, INNER operator is used to

select non-leaf nodes and the sum of the input temperature

data is calculated over all nodes. Sum of these temperature

readings can be used to calculate a more useful parameter

such as average temperature at the gateway node. It is triv-

ial to compute commutative operations like sum, maximum,

minimum and count. Moreover, as a user can access the

nodes according to their physical location or logical location

in the network tree, more complex aggregations schemes can

be implemented as well.

3.1 A Target Tracking Example
Target tracking is a common application in sensor net-

works and requires considerable coordination between nodes.

We provide an implementation of target tracking using sig-

nal strength of beacons from a target node in order to demon-

strate the advantage of using sMapReduce. The application

logic is split into sMap and Reduce functions as shown in

1 smap(service name , l i s t o f n o d e s , per iod) {
2 for each node in l i s t o f n o d e s

3 temp value = ge t s (TEMP) ;

4 smap emit (temp value , node id) ;

5 end

(a) sMap Function

1 reduce (data , l i s t o f n o d e s) {
2 for each node in INNER. l i s t o f n o d e s

3 sum += data . temp value ; //AGGREGATION

4 end

5 return sum ;

6 }

(b) Reduce Function

Figure 1: A simple example for collecting maximum tem-

perature from a wireless sensor network

Figure 3. sMap function reads the Received Signal Strength

Indicator (RSSI) values from received packets as shown in

line 3 in Figure 3a. The reduce function in Figure 3b tri-

angulates the location of the target when an intermediate

node receives information packets from at least three chil-

dren nodes.

In the sMap function each node generates four values:

RSSI, corresponding time stamp, location of target and its

own ID, as shown in line 5 in Figure 3a. The Reduce function

receives these values from sMap, and evaluates an aggrega-

tion at all intermediate nodes. As shown in the example

topology in Figure 2, only node 6 is able to collect three val-

ues required for triangulation of the target node T tracked by

nodes 1, 2 and 3. The Reduce function in the example im-

plements the majority of the application logic because only

an intermediate node can process the RSSI information to

estimate the location of the target. The reduce function also

ascertains temporal correlation of RSSI values from different

nodes by checking whether the all time stamps are lie than

a window of size win (line 6, Figure 3b). It is evident from

this example that sMapReduce performs aggregation close to

the leaf nodes, reducing the communication and computa-

tion overhead near the gateway node. The triangulate()
function in line 8 calculates location of target node based

on RSSI values and coordinates of infrastructure nodes. Its

implementation is omitted for brevity purposes, as it does

not influence the goal or design of our proposed pattern.

Approaches like TinyDB do not capture sensing or topo-

logical modalities, as the aggregation is handled by an auto-

mated query planner. The design of application logic might

be simpler in TinyDB in many cases but sMapReduce allows

a programmer more control with an implicit understanding

of physical and logical location of nodes. More complex

schemes like Regiment do not isolate the functionality from

aggregation explicitly, which can complicate the application

logic with sensing job being undesirably coupled to various

points in the program.

3.2 Mapping Applications for Mobile Nodes
The sociometric badge [17] is an example sensor network

application that targets assisted-living scenarios. The in-

frastructure for such an application is expensive to main-

tain once the nodes have been distributed and deployed.

Adding additional features is likely to be impossible, and

11	

Two-­‐Fold	

Carnegie Mellon

OperaCon	
 to	
 UI	
 CorrelaCon	

12	

Programming	
 AbstracCon	

Code	
 Interpreter	

Sensor	
 OS	

Parser	

Dispatcher	

Forwarder	

Receiver	

Aggregator	

Aggregator	

sMap
Plane
Behavior
Mapping Reduce

Plane
Aggregation

Carnegie Mellon

sMap	
 and	
 Reduce	
 planes	

!"#$"%&&'($)*+,-"%./#()

0#12)3(-2"4"2-2")

52(,#")65)

!"#$%#&

'($)"*+,%#&

-.#/"#0%#&

1%+%(2%#&

344#%4"*.#&

344#%4"*.#&

,7%4)
!8%(2)

5%,"2(.#&
6"))(74& 921:.2)

!8%(2)

344#%4"8.7&

 LeK	
 plane	
 handles	
 mapping	

the	
 behavior	

 Right	
 plane	
 handles	
 the	

aggregaCon	
 of	
 data	
 through	

the	
 network	
 	

13	

Carnegie Mellon

Target	
 tracking	
 applicaCon	

14	

!" #"

$"

%" &"

'"

("

)"

*"

+

!"#$%"&'
()*$'

+),-.$'
/"01$#'

Figure 2: An example topology to demonstrate location
tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of

1 smap(ta rg e t t r a ck , l i s t o f n o d e s , per iod) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get (RSSI) ;
4 t s = get (time) ;
5 smap emit (r s s i v , ts , node id , l o c) ;
6 end

(a) sMap Function

1 reduce (data , l i s t o f n o d e s) {
2 for each node in INNER. l i s t o f n o d e s
3 i f (data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max(t s)−min(t s)<=win
7 && s ize (data . r s s i v) >= 3)
8 t r i a n gu l a t e (r s s i v , l o c) ;
9 else

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.

!" #"

$"

%" &"

'"

("

)"

*"

+

!"#$%"&'
()*$'

+),-.$'
/"01$#'

!" #"

$"

%" &"

'"

("

)"

*"

+

!"#$%"&'
()*$'

+),-.$'
/"01$#'

Figure 2: An example topology to demonstrate location
tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of

1 smap(ta rg e t t r a ck , l i s t o f n o d e s , per iod) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get (RSSI) ;
4 t s = get (time) ;
5 smap emit (r s s i v , ts , node id , l o c) ;
6 end

(a) sMap Function

1 reduce (data , l i s t o f n o d e s) {
2 for each node in INNER. l i s t o f n o d e s
3 i f (data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max(t s)−min(t s)<=win
7 && s ize (data . r s s i v) >= 3)
8 t r i a n gu l a t e (r s s i v , l o c) ;
9 else

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.

Carnegie Mellon

Write-­‐ability	

 Simple	
 C	
 like	
 syntax	

 Library	
 funcCons	

  gets()	
 for	
 accessing	
 sensor	
 data	

  ArithmeCc	
 operaCons	

  int/uint	
 data	
 types	

  set(), get(), toggle()	
 for	
 GPIO	
 pins	

  for	
 and	
 while	
 loops	

  if/else	
 constructs	

  return	
 values	
 to	
 collect	
 data	
 	

Carnegie Mellon

Source	
 Lines	
 of	
 Code	
 Comparison	

Application NanoCF Operating System
Temperature Collection 5 80

Occupancy Monitoring 20 205

Target Tracking 20 ~ 300 - 400

16	

Carnegie Mellon

17	

!""#$%&'()*(

+,-".#("/01/,-(

$,$023(20%#(20//#4"0$%&$1(!44#-5.6(768#20%#4(9#$#/,8#%(56(
$,$023(20-"&.#/(

JOB:
 dummyservice "1 2 3
 4 5" 100 MIN
ENDJOB

SERVICE:
 dummyservice int8
int8
 INIT:
 int8 aa
 int8 bb
 int8 cc
 ENDINIT
 aa = gets(TEMP)
 bb = gets(LIGHT)
 clt (LED RED)
 cc = (bb/100) +
 (aa/100)
 if(cc > 15)
 set(LED RED)
 print(cc)
 endif
 wait(100)
ENDSERVICE

No of Instructions:
35
 SECTION INIT
int8 a (aa)
int8 b (bb)
int8 c (cc)
int16 d
int16 e
int16 f
int16 g
int16 h
int16 i
int16 j
 ENDINIT
 SECTION SERVICE
GETS TEMP aa
GETS LIGHT bb
CLR LED RED
AEQ d 100
DIV e b d
AEQ f 100
DIV g a f
ADD h e g
MOV c h
AEQ i 15
GT c i
IF
GOTO 11
LABEL 12
AEQ j 100
WAIT j
ENDSERVICE
REPEAT 0x00 0x64
LABEL 11
SET LED RED
PRINT c
GOTO 12

0x56, 0x58, 0xff, 0xff,
0x5c, 0x60, 0x61, 0xff,
0x5c, 0x60, 0x62, 0xff,
0x5c, 0x60, 0x63, 0xff,
0x5c, 0x61, 0x64, 0xff,
0x5c, 0x61, 0x65, 0xff,
0x5c, 0x61, 0x66, 0xff,
0x5c, 0x61, 0x67, 0xff,
0x5c, 0x61, 0x68, 0xff,
0x5c, 0x61, 0x69, 0xff,
0x5c, 0x61, 0x6a, 0xff,
0x59, 0xff, 0xff, 0xff,
0x56, 0x5a, 0xff, 0xff,
0x30, 0x61, 0x90, 0x00,
0x30, 0x62, 0x96, 0xff,
0x41, 0x95, 0x03, 0xff,
0x16, 0x64, 0x00, 0x64,
0x1a, 0x65, 0x62, 0x64,
0x16, 0x66, 0x00, 0x64,
0x1a, 0x67, 0x61, 0x66,
0x0d, 0x68, 0x65, 0x67,
0x17, 0x63, 0x68, 0xff,
0x16, 0x69, 0x00, 0x0f,
0x11, 0xff, 0x63, 0x69,
0x51, 0xff, 0xff, 0xff,
0x53, 0x11, 0xff, 0xff,
0x54, 0x12, 0xff, 0xff,
0x16, 0x6a, 0x00, 0x64,
0x44, 0x6a, 0xff, 0xff,
0x5b, 0xff, 0xff, 0xff,
0x45, 0xff, 0x00, 0x64,
0x54, 0x11, 0xff, 0xff,
0x40, 0x95, 0x03, 0xff,
0x31, 0x63, 0xff, 0xff,
0x53, 0x12, 0xff, 0xff,

Carnegie Mellon

System	
 Architecture	
 Outline	

18	

Internet	

API:	
 User	
 Code	

Dispatcher	

Job	
 Handler	

Aggregator	

Data	
 Handler	

Forwarder	

	
 Code	
 Interpreter	

	
 FireFly	
 WSN	

PC	

Gateway	
 Node	

End	
 Node	

WSNs	

…	

Parser:	
 nclC	

Receiver	

Data	
 Handler	

Carnegie Mellon

Data	
 Handler	
 FuncCons	
 and	
 Features	

 FuncConaliCes	

  Byte-­‐code	
 transfer	

  Data	
 transfer	
 and	
 aggregaCon	

  Radio	
 resource	
 management	

 Features	

  RouCng	
 table	
 management	

  Fault-­‐tolerant	
 packet	
 delivery	

  Retransmission	

  Random	
 back-­‐off	
 delay	
 between	
 responses	

  ApplicaCon	
 management	

  Tracking	
 applicaCon	
 transacCon	

  StarCng	
 and	
 terminaCng	
 applicaCons	

19	

Carnegie Mellon

System	
 Architecture	
 Outline	

20	

Internet	

API:	
 User	
 Code	

Dispatcher	

Job	
 Handler	

Aggregator	

Data	
 Handler	

Forwarder	

	
 Code	
 Interpreter	

	
 FireFly	
 WSN	

PC	

Gateway	
 Node	

End	
 Node	

WSNs	

…	

Parser:	
 nclC	

Receiver	

Data	
 Handler	

Carnegie Mellon

Code	
 Interpreter	

 Rx	
 Task	
 re-­‐arranges	
 received	

packets	
 based	
 on	
 sequence	

 RunCme	
 pre-­‐processes	

symbols	
 and	
 labels	
 in	
 the	

stack	

 Interprets	
 the	
 instrucCons,	

evaluates	
 values	
 	

 Sends	
 the	
 response	
 value	

back	
 to	
 the	
 gateway	

21	

Rx Task

Byte-Code
Interpreter

Tx Task

nanoCF runtime

Preprocessing Functions

Instruction Execution

Carnegie Mellon

Challenges	
 for	
 Concurrent	
 applicaCons	

 User	
 Interface	

  Database	
 queries,	
 virtual	
 machine	
 etc..	

 OperaCng	
 System	
 Support	

 Packets	
 through	
 mulCple	
 applicaCons	
 over	
 mulC-­‐hop	

network	

 Data	
 AggregaCon	

 Minimizing	
 the	
 overhead	

  Frequency	
 of	
 Processor	
 and	
 Radio	
 On/Off	

  Network	
 flooding	

  Seamless	
 backend	
 handling	

 Tradeoff	
 between	
 Control	
 and	
 AbstracCon	

22	

Carnegie Mellon

Task	
 and	
 Packet	
 Scheduling	

 Typical	
 Microprocessor	
 operaCon	
 states:	

23	

Power State Power (mW) Upward Transition
Time

Active 30 mW n/a

Idle 6 mW 6 µs

Sleep 5 µW 5 ms

3

Embedded Real-Time Systems

Power Modes of MicrocontrollersPower Modes of Microcontrollers

Power state Power (mW) Upward Transition
Time

Active 30 mW n/a

Idle 6 mW 6 us

Sleep 5 uW 10 ms

• Power Management: maximize the Sleep-time of processors

– given {Sleep, Idle, Active} modes of operation

Embedded Real-Time Systems

Example Example TasksetTaskset with with RMSRMS

τ1 (1, 10)
τ2 (1, 15)
τ3 (2, 25)

Carnegie Mellon

Rate	
 Harmonized	
 Scheduling1	

 Pick	
 a	
 harmonizing	
 period	
 (<=	
 shortest	
 period)	

 Release	
 tasks	
 only	
 at	
 the	
 harmonizing	
 interval	

24	

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Anthony Rowe, Karthik Lakshmanan, Haifeng Zhu, Raj Rajkumar, "Rate-Harmonized Scheduling for Saving
Energy", Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), December 2008.

Carnegie Mellon

TransformaCon	

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

25	

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Apply	
 RHS	
 to	

both	
 processor	

and	
 Radio-­‐Usage	

Two-­‐Fold	

Carnegie Mellon

Power	
 Saving	
 in	
 Radio	

0 10 20 30 40 50 60 70 80 90 1000.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Maximum Packet Size (Bytes)

N
or

m
al

iz
ed

Po

w
er

 S
av

in
g

R
at

io

3 Applications
5 Applications

26	

Carnegie Mellon

Not-­‐So-­‐Future	
 	
 Future-­‐Work	

 OpCmize	
 mulCple	
 applicaCons	
 	

 Reduce	
 the	
 redundancy	
 in	
 applicaCons	

 ApplicaCons	
 centered	
 around	
 “Sense	
 &	
 Send”	

 Remove	
 the	
 double	
 work	
 of	
 sensing	

 Sending	
 already	
 addressed	
 	

 Sample	
 	
 Light	
 sensor	
 only	
 once	

  Share	
 data	
 among	
 mulCple	
 applicaCons	

27	

Two-­‐Fold	

Carnegie Mellon

Longest	
 Common	
 Subsequence	

28	

H
U
M
A
N

C
H
I
M
P
A
N
Z
E
E

H
U
M
A
N

C
H
I
M
P
A
N
Z
E
E

C
H
I
M
P
A
N
Z
E
E

Carnegie Mellon

Merge	
 applicaCons	
 using	
 LCS	

29	

S
y
z
C

C

C

S

T

C

S

C

T

S

S

C

T

Sense

Compute

Transmit App 1 App 2

S
y
z
C

C

C

S

T

C

S

C

T

S

App 1 App 2

T

Anchor
Nodes

TI
M

E

TI
M

E

Carnegie Mellon

BUT	
 VIK	
 STOPS	
 HERE	
 	

I	
 could	
 go	
 on	
 with	
 more	
 slides	

Two-­‐Fold	

