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sMapReduce	
  Programming	
  AbstracCon	
  
 Natural-­‐fit	
  to	
  sensor	
  network	
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  Map	
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  to	
  sensor	
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  Gather	
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  Google’s	
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Simple	
  Temperature	
  CollecCon	
  Example	
  
Table 1: List of programming constructs

Construct Details

list_of_nodes data structure containing the

list of nodes and their properties

smap_emit() Data to be returned

by each node

Function to read sensor

get() values into integers,

takes sensor name as argument

set() Function to set a GPIO Pin

clear() Clear a GPIO Pin

toggle() Toggle a GPIO Pin

Table 2: List of operators for selecting participating nodes

from among the list_of_nodes

Operators Details

LEAF. Nodes on the periphery of the network

INNER. All nodes except the leaf nodes

HOP(k). All nodes at kth
hop from the gateway

HAS(t). All nodes that have a t type sensor

BATT(c). All nodes having remaining

battery capacity of atleast c
CONN(n). Nodes having at least n neighbors

network. Code for this application consists of a for loop to

iterate through the list of nodes, an instruction using get()
to read the temperature reading and then an smap_emit()
to send the temperature reading along with the node id to-

wards the gateway.

The Reduce section of the program is used to specify the

aggregation scheme. A separate dedicated section in the

program to perform aggregation provides more freedom and

flexibility to implement data collection algorithms. The user

can assign aggregation responsibilities to different nodes in

the network tree. It makes it easier to overlay complex ag-

gregation algorithms over the tree through higher-level ab-

stractions for node addressing. This two-fold advantage is

made possible by separating the sensing operation from the

data-aggregation in sMap and Reduce sections. Figure 1b

shows an example of a reduce function for calculating the

sum of temperature readings obtained in the sMap section

in Figure 1a. In this example, INNER operator is used to

select non-leaf nodes and the sum of the input temperature

data is calculated over all nodes. Sum of these temperature

readings can be used to calculate a more useful parameter

such as average temperature at the gateway node. It is triv-

ial to compute commutative operations like sum, maximum,

minimum and count. Moreover, as a user can access the

nodes according to their physical location or logical location

in the network tree, more complex aggregations schemes can

be implemented as well.

3.1 A Target Tracking Example
Target tracking is a common application in sensor net-

works and requires considerable coordination between nodes.

We provide an implementation of target tracking using sig-

nal strength of beacons from a target node in order to demon-

strate the advantage of using sMapReduce. The application

logic is split into sMap and Reduce functions as shown in

1 smap( service name , l i s t o f n o d e s , per iod ) {
2 for each node in l i s t o f n o d e s

3 temp value = ge t s (TEMP) ;

4 smap emit ( temp value , node id ) ;

5 end

(a) sMap Function

1 reduce ( data , l i s t o f n o d e s ) {
2 for each node in INNER. l i s t o f n o d e s

3 sum += data . temp value ; //AGGREGATION

4 end

5 return sum ;

6 }

(b) Reduce Function

Figure 1: A simple example for collecting maximum tem-

perature from a wireless sensor network

Figure 3. sMap function reads the Received Signal Strength

Indicator (RSSI) values from received packets as shown in

line 3 in Figure 3a. The reduce function in Figure 3b tri-

angulates the location of the target when an intermediate

node receives information packets from at least three chil-

dren nodes.

In the sMap function each node generates four values:

RSSI, corresponding time stamp, location of target and its

own ID, as shown in line 5 in Figure 3a. The Reduce function

receives these values from sMap, and evaluates an aggrega-

tion at all intermediate nodes. As shown in the example

topology in Figure 2, only node 6 is able to collect three val-

ues required for triangulation of the target node T tracked by

nodes 1, 2 and 3. The Reduce function in the example im-

plements the majority of the application logic because only

an intermediate node can process the RSSI information to

estimate the location of the target. The reduce function also

ascertains temporal correlation of RSSI values from different

nodes by checking whether the all time stamps are lie than

a window of size win (line 6, Figure 3b). It is evident from

this example that sMapReduce performs aggregation close to

the leaf nodes, reducing the communication and computa-

tion overhead near the gateway node. The triangulate()
function in line 8 calculates location of target node based

on RSSI values and coordinates of infrastructure nodes. Its

implementation is omitted for brevity purposes, as it does

not influence the goal or design of our proposed pattern.

Approaches like TinyDB do not capture sensing or topo-

logical modalities, as the aggregation is handled by an auto-

mated query planner. The design of application logic might

be simpler in TinyDB in many cases but sMapReduce allows

a programmer more control with an implicit understanding

of physical and logical location of nodes. More complex

schemes like Regiment do not isolate the functionality from

aggregation explicitly, which can complicate the application

logic with sensing job being undesirably coupled to various

points in the program.

3.2 Mapping Applications for Mobile Nodes
The sociometric badge [17] is an example sensor network

application that targets assisted-living scenarios. The in-

frastructure for such an application is expensive to main-

tain once the nodes have been distributed and deployed.

Adding additional features is likely to be impossible, and
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Figure 2: An example topology to demonstrate location
tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of

1 smap( ta rg e t t r a ck , l i s t o f n o d e s , per iod ) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get (RSSI ) ;
4 t s = get ( time ) ;
5 smap emit ( r s s i v , ts , node id , l o c ) ;
6 end

(a) sMap Function

1 reduce ( data , l i s t o f n o d e s ) {
2 for each node in INNER. l i s t o f n o d e s
3 i f ( data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max( t s )−min( t s )<=win
7 && s ize ( data . r s s i v ) >= 3)
8 t r i a n gu l a t e ( r s s i v , l o c ) ;
9 else

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.
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Figure 2: An example topology to demonstrate location
tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of
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3 r s s i v = get (RSSI ) ;
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2 for each node in INNER. l i s t o f n o d e s
3 i f ( data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max( t s )−min( t s )<=win
7 && s ize ( data . r s s i v ) >= 3)
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9 else

10 return data ;
11 end
12 end
13 end
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(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.



Carnegie Mellon 

Write-­‐ability	
  
 Simple	
  C	
  like	
  syntax	
  
 Library	
  funcCons	
  

  gets()	
  for	
  accessing	
  sensor	
  data	
  
  ArithmeCc	
  operaCons	
  
  int/uint	
  data	
  types	
  
  set(), get(), toggle()	
  for	
  GPIO	
  pins	
  
  for	
  and	
  while	
  loops	
  
  if/else	
  constructs	
  
  return	
  values	
  to	
  collect	
  data	
  	
  



Carnegie Mellon 

Source	
  Lines	
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  Comparison	
  

Application NanoCF Operating System 
Temperature Collection 5 80 

Occupancy Monitoring 20 205 

Target Tracking 20 ~ 300 - 400 
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JOB: 
  dummyservice "1 2 3  
          4 5" 100 MIN 
ENDJOB 
 
SERVICE: 
    dummyservice int8 
int8 
    INIT: 
      int8 aa 
      int8 bb 
      int8 cc 
    ENDINIT 
    aa = gets(TEMP) 
    bb = gets(LIGHT) 
    clt (LED RED) 
    cc = (bb/100) +        
              (aa/100) 
    if(cc > 15) 
 set(LED RED) 
 print(cc) 
    endif 
    wait(100) 
ENDSERVICE 
 

No of Instructions: 
35 
  SECTION INIT 
int8 a (aa) 
int8 b (bb) 
int8 c (cc) 
int16 d  
int16 e 
int16 f 
int16 g 
int16 h 
int16 i 
int16 j 
  ENDINIT 
  SECTION SERVICE 
GETS TEMP aa 
GETS LIGHT bb 
CLR LED RED  
AEQ d 100 
DIV e b d 
AEQ f 100 
DIV g a f 
ADD h e g 
MOV c h 
AEQ i 15 
GT c i 
IF 
GOTO 11  
LABEL 12  
AEQ j 100 
WAIT j  
ENDSERVICE 
REPEAT 0x00 0x64  
LABEL 11  
SET LED RED  
PRINT c  
GOTO 12 

 
 
0x56, 0x58, 0xff, 0xff, 
0x5c, 0x60, 0x61, 0xff, 
0x5c, 0x60, 0x62, 0xff, 
0x5c, 0x60, 0x63, 0xff, 
0x5c, 0x61, 0x64, 0xff, 
0x5c, 0x61, 0x65, 0xff, 
0x5c, 0x61, 0x66, 0xff, 
0x5c, 0x61, 0x67, 0xff, 
0x5c, 0x61, 0x68, 0xff, 
0x5c, 0x61, 0x69, 0xff, 
0x5c, 0x61, 0x6a, 0xff, 
0x59, 0xff, 0xff, 0xff, 
0x56, 0x5a, 0xff, 0xff, 
0x30, 0x61, 0x90, 0x00, 
0x30, 0x62, 0x96, 0xff, 
0x41, 0x95, 0x03, 0xff, 
0x16, 0x64, 0x00, 0x64, 
0x1a, 0x65, 0x62, 0x64, 
0x16, 0x66, 0x00, 0x64, 
0x1a, 0x67, 0x61, 0x66, 
0x0d, 0x68, 0x65, 0x67, 
0x17, 0x63, 0x68, 0xff, 
0x16, 0x69, 0x00, 0x0f, 
0x11, 0xff, 0x63, 0x69, 
0x51, 0xff, 0xff, 0xff, 
0x53, 0x11, 0xff, 0xff, 
0x54, 0x12, 0xff, 0xff, 
0x16, 0x6a, 0x00, 0x64, 
0x44, 0x6a, 0xff, 0xff, 
0x5b, 0xff, 0xff, 0xff, 
0x45, 0xff, 0x00, 0x64, 
0x54, 0x11, 0xff, 0xff, 
0x40, 0x95, 0x03, 0xff, 
0x31, 0x63, 0xff, 0xff, 
0x53, 0x12, 0xff, 0xff, 
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  and	
  aggregaCon	
  
  Radio	
  resource	
  management	
  

 Features	
  
  RouCng	
  table	
  management	
  
  Fault-­‐tolerant	
  packet	
  delivery	
  

  Retransmission	
  
  Random	
  back-­‐off	
  delay	
  between	
  responses	
  

  ApplicaCon	
  management	
  
  Tracking	
  applicaCon	
  transacCon	
  
  StarCng	
  and	
  terminaCng	
  applicaCons	
  

19	
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System	
  Architecture	
  Outline	
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Internet	
  

API:	
  User	
  Code	
  

Dispatcher	
  

Job	
  Handler	
  

Aggregator	
  

Data	
  Handler	
  

Forwarder	
  

	
  Code	
  Interpreter	
  

	
  FireFly	
   WSN	
  

PC	
  

Gateway	
  Node	
  

End	
  Node	
  

WSNs	
  

…	
  

Parser:	
  nclC	
  

Receiver	
  

Data	
  Handler	
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Code	
  Interpreter	
  
 Rx	
  Task	
  re-­‐arranges	
  received	
  
packets	
  based	
  on	
  sequence	
  

 RunCme	
  pre-­‐processes	
  
symbols	
  and	
  labels	
  in	
  the	
  
stack	
  

 Interprets	
  the	
  instrucCons,	
  
evaluates	
  values	
  	
  

 Sends	
  the	
  response	
  value	
  
back	
  to	
  the	
  gateway	
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Tx Task 

nanoCF runtime 

Preprocessing Functions 
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Challenges	
  for	
  Concurrent	
  applicaCons	
  
 User	
  Interface	
  

  Database	
  queries,	
  virtual	
  machine	
  etc..	
  
 OperaCng	
  System	
  Support	
  
 Packets	
  through	
  mulCple	
  applicaCons	
  over	
  mulC-­‐hop	
  
network	
  

 Data	
  AggregaCon	
  

 Minimizing	
  the	
  overhead	
  
  Frequency	
  of	
  Processor	
  and	
  Radio	
  On/Off	
  

  Network	
  flooding	
  
  Seamless	
  backend	
  handling	
  

 Tradeoff	
  between	
  Control	
  and	
  AbstracCon	
  

22	
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Task	
  and	
  Packet	
  Scheduling	
  
 Typical	
  Microprocessor	
  operaCon	
  states:	
  

23	
  

Power State Power (mW) Upward Transition 
Time 

Active 30 mW n/a 

Idle 6 mW 6 µs 

Sleep 5 µW 5 ms 

3

Embedded Real-Time Systems

Power Modes of MicrocontrollersPower Modes of Microcontrollers

Power state Power (mW) Upward Transition 
Time

Active 30 mW n/a

Idle 6 mW 6 us

Sleep 5 uW 10 ms

• Power Management: maximize the Sleep-time of processors

– given {Sleep, Idle, Active} modes of operation

Embedded Real-Time Systems

Example Example TasksetTaskset with with RMSRMS

τ1   (1, 10) 
τ2   (1, 15) 
τ3   (2, 25) 
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Rate	
  Harmonized	
  Scheduling1	
  

 Pick	
  a	
  harmonizing	
  period	
  (<=	
  shortest	
  period)	
  
 Release	
  tasks	
  only	
  at	
  the	
  harmonizing	
  interval	
  

24	
  

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the 
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Anthony Rowe, Karthik Lakshmanan, Haifeng Zhu, Raj Rajkumar, "Rate-Harmonized Scheduling for Saving 
Energy", Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), December 2008. 
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TransformaCon	
  

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the 
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

25	
  

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the 
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Apply	
  RHS	
  to	
  
both	
  processor	
  
and	
  Radio-­‐Usage	
  

Two-­‐Fold	
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Power	
  Saving	
  in	
  Radio	
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3 Applications
5 Applications
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Not-­‐So-­‐Future	
  	
  Future-­‐Work	
  
 OpCmize	
  mulCple	
  applicaCons	
  	
  
 Reduce	
  the	
  redundancy	
  in	
  applicaCons	
  
 ApplicaCons	
  centered	
  around	
  “Sense	
  &	
  Send”	
  
 Remove	
  the	
  double	
  work	
  of	
  sensing	
  
 Sending	
  already	
  addressed	
  	
  

 Sample	
  	
  Light	
  sensor	
  only	
  once	
  
  Share	
  data	
  among	
  mulCple	
  applicaCons	
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Longest	
  Common	
  Subsequence	
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Merge	
  applicaCons	
  using	
  LCS	
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BUT	
  VIK	
  STOPS	
  HERE	
  	
  
I	
  could	
  go	
  on	
  with	
  more	
  slides	
  

Two-­‐Fold	
  


