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Motivation
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The problem

• Traditional lock-based 
concurrency control 
(semaphores, mutexes) hinders 
performance of current and 
future foreseen parallel 
systems.

• Coarse-grained locking 
serialises non-conflicting 
operations.

• Fine-grained locking 
becomes too complex and 
error prone.
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Possible alternatives to lock-based synchronisation

• Transactional Memory

• “Transaction is a sequence of instructions, including reads and writes to 
memory, that either executes completely (commits) or has no effect 
(aborts).”
Tim Harris et al., “Transactional Memory: An Overview”, 2007

• Provides a higher-level abstraction for writing concurrent programs:

• The programmer focuses on the algorithms.

• The underlying TM mechanism deals with concurrency.
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How does it work?

• Transactions are executed concurrent and speculatively, in isolation.

• The outcome of transactions must be serialisable.

• If no conflicts occur, transaction commits.

• A conflict dictates: some one has to die!!!
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Conflicts between 
transactions

A simple example...
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Conflicts between 
transactions

One possible solution
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Conflicts between 
transactions

Another possible solution

9

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1 TRX2

time

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1TRX2

time

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1

TRX2

time



Role of a contention 
management policy 

• Contention manager should:

• Avoid live-lock.

• Prevent starvation.
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STM conflict 
detection/resolution

• STM comes in many 
“flavours”...

• Word-based vs. object-
based.

• Write-through vs. write-
back.

• Early conflict detection vs. 
late conflict detection.

• Contention mgmt policy...
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Factors affecting the performance of STM

• STM is keen of low contention:

• Predominance of read-only transactions.

• Short-running transactions.

• Low ratio of context switching during the execution of a transaction.
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Using STM on real-time systems...

• Number of aborts suffered by a transaction affects:

• execution time and the processor utilisation ratio of the host job.

• Number of aborts for each transaction must be minimised!

• Intended to minimise wasted processor time.

• Number of aborts for each transaction must be limited!

• Allows to calculate the WCET of a task.
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Reducing contention with multi-version STM
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Multi-version STM
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• STM stores multiple versions of each shared data object.

• Read-only transactions read values from a consistent state.

• Read-only transactions execute in a wait-free manner!

• Adversities:

• Requires additional memory.

• How many versions should be stored???
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Multi-version STM in real-time systems

• Timing characteristics of a task set are known.

• Data access pattern for each task is known.

• It is possible to determine the exact number of versions for each data object!

• Guarantees that read-only transactions will never abort!
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Determining the number of versions required for a 
data object

• Determine the maximum period of read-only transactions that access the 
data object.

• Determine the maximum possible committed number of writes on the data 
object, during the time interval determined before.
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Providing RT guarantees with our contention 
management algorithm
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Proposed contention management policy

• Conflicting transactions commit by order of arrival.

• Liveliness: balances aborts between transactions.

• Predictability: abort overhead depends on the set of active transactions 
at the moment the transaction arrives.

• Distributed: all transactions reach a consensus on which transaction 
should commit.

• Ties are solved by slack and, ultimately, by processor ID.

• Exception: transactions executing on the same processor.
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Transaction commits

Transaction aborts

Parallel conflicts

• Transaction aborts due to direct 
contenders that arrived earlier, 
and are running.

• However may have to wait 
for “indirect” contenders...
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Parallel conflicts

• Establish a graph connecting 
direct contenders.

• For each transaction, determine 
the maximum amount of 
waiting time, from all the simple 
paths diverging from the 
transaction vertex.
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Intra-processor conflicts

• Transaction will abort, at most, once per pre-emption.

• Maximum number of possible pre-emptions..

• ...  leads to maximum overhead due to intra-processor conflicts. 
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And the WCET of a task 
can be upper bounded!
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Conclusions
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Conclusions
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• Multi-version STM

• Timing characteristics of RTS allows to determine the exact number of 
versions for each data object.

• Proposed contention management algorithm.

• Provides liveliness, predictability and distributed consensus.

• Allows to establish an upper bound of the WCET of each task.
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Thank you, for your attention!

Questions?
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Remember: there is pizza after this seminar!!!


