
STM as a building block for parallel embedded
real-time systems
Submitted to Euromicro Conference on Software Engineering and Advanced Applications 2011

António Barros
CISTER Spring Seminar Series 2011
15th of April, 2011

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Presentation outline

• Motivation

• Reducing contention with multi-version STM

• Providing RT guarantees with our contention management algorithm

• Conclusions

2

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Motivation

3

The problem

• Traditional lock-based
concurrency control
(semaphores, mutexes) hinders
performance of current and
future foreseen parallel
systems.

• Coarse-grained locking
serialises non-conflicting
operations.

• Fine-grained locking
becomes too complex and
error prone.

4

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Possible alternatives to lock-based synchronisation

• Transactional Memory

• “Transaction is a sequence of instructions, including reads and writes to
memory, that either executes completely (commits) or has no effect
(aborts).”
Tim Harris et al., “Transactional Memory: An Overview”, 2007

• Provides a higher-level abstraction for writing concurrent programs:

• The programmer focuses on the algorithms.

• The underlying TM mechanism deals with concurrency.

5

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

How does it work?

• Transactions are executed concurrent and speculatively, in isolation.

• The outcome of transactions must be serialisable.

• If no conflicts occur, transaction commits.

• A conflict dictates: some one has to die!!!

6

Conflicts between
transactions

A simple example...

7

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1

TRX2

time

Conflicts between
transactions

One possible solution

8

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1 TRX2

time

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1

TRX2

time

Conflicts between
transactions

Another possible solution

9

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1 TRX2

time

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1TRX2

time

rea
d(O

1)

rea
d(O

2)

wri
te(

O1)

wri
te(

O2)

TRX1

TRX2

time

Role of a contention
management policy

• Contention manager should:

• Avoid live-lock.

• Prevent starvation.

10

STM conflict
detection/resolution

• STM comes in many
“flavours”...

• Word-based vs. object-
based.

• Write-through vs. write-
back.

• Early conflict detection vs.
late conflict detection.

• Contention mgmt policy...

11

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Factors affecting the performance of STM

• STM is keen of low contention:

• Predominance of read-only transactions.

• Short-running transactions.

• Low ratio of context switching during the execution of a transaction.

12

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Using STM on real-time systems...

• Number of aborts suffered by a transaction affects:

• execution time and the processor utilisation ratio of the host job.

• Number of aborts for each transaction must be minimised!

• Intended to minimise wasted processor time.

• Number of aborts for each transaction must be limited!

• Allows to calculate the WCET of a task.

13

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Reducing contention with multi-version STM

14

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Multi-version STM

15

• STM stores multiple versions of each shared data object.

• Read-only transactions read values from a consistent state.

• Read-only transactions execute in a wait-free manner!

• Adversities:

• Requires additional memory.

• How many versions should be stored???

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Multi-version STM in real-time systems

• Timing characteristics of a task set are known.

• Data access pattern for each task is known.

• It is possible to determine the exact number of versions for each data object!

• Guarantees that read-only transactions will never abort!

16

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Determining the number of versions required for a
data object

• Determine the maximum period of read-only transactions that access the
data object.

• Determine the maximum possible committed number of writes on the data
object, during the time interval determined before.

17

T
store
k = max{Ti : Ok ∈ RSi ∧ TRXi is RO}

Nversions
k =

�

i

ai ×
�
T store
k

Ti

�

ai =

�
1 if Ok ∈ WSi,

0 otherwise.

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Providing RT guarantees with our contention
management algorithm

18

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Proposed contention management policy

• Conflicting transactions commit by order of arrival.

• Liveliness: balances aborts between transactions.

• Predictability: abort overhead depends on the set of active transactions
at the moment the transaction arrives.

• Distributed: all transactions reach a consensus on which transaction
should commit.

• Ties are solved by slack and, ultimately, by processor ID.

• Exception: transactions executing on the same processor.

19

TRX1

TRX2

TRX3

time

wri
te(

O1)

wri
te(

O2)

wri
te(

O1)

wri
te(

O2)

Transaction commits

Transaction aborts

Parallel conflicts

• Transaction aborts due to direct
contenders that arrived earlier,
and are running.

• However may have to wait
for “indirect” contenders...

20

TRX1

TRX3

TRX6

TRX1
TRX2 TRX3

TRX5TRX4 TRX6

time

Parallel conflicts

• Establish a graph connecting
direct contenders.

• For each transaction, determine
the maximum amount of
waiting time, from all the simple
paths diverging from the
transaction vertex.

21

tcn =






Wi if n = 1,��
tcn−1

Wi

�
+ 1

�
∗Wi if n > 1.

W
overheadp

i = max{tcn : vertexn,i}−Wi

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Intra-processor conflicts

• Transaction will abort, at most, once per pre-emption.

• Maximum number of possible pre-emptions..

• ... leads to maximum overhead due to intra-processor conflicts.

22

npreempt
i =

�

j

�
Ti

Tj

�
∀j �= i ∧ P (τi) = P (τj)

W overheadc
i = npreempt

i ×Wi

Ci = C �
i +W

overheadp

i +W overheadc
i

And the WCET of a task
can be upper bounded!

23

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Conclusions

24

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Conclusions

25

• Multi-version STM

• Timing characteristics of RTS allows to determine the exact number of
versions for each data object.

• Proposed contention management algorithm.

• Provides liveliness, predictability and distributed consensus.

• Allows to establish an upper bound of the WCET of each task.

CISTER SSS ‘11STM as a building block for parallel embedded
real-time systems

Thank you, for your attention!

Questions?

26

Remember: there is pizza after this seminar!!!

