
Analyzing the Contention
on the shared memory bus for

COTS-Based Multicores

Presented by

Dakshina Dasari

29 April 2011

CISTER SEMINAR SERIES

Agenda

Motivation

Problem of
shared low

level
resources

Proposed
Method

Future work

2

COTS-based Multicores

Increasingly used in
embedded systems

• Low power, high
computing capabilities

• Faster to design and
market

Finding WCET in
multicores difficult

• COTS: Undocumented
parameters

• COTS: Not predictable

• Shared resource
contention (low-level)

• Uniprocessor theories
developed not
applicable

3
COTS: Commercial-off -the -shelf

Implications

• Usage of very simple models in research

– Do not reflect underlying hardware

• Generalized assumptions

– Non tight WCET estimates

The industry trend does not seem to be towards

building predictable systems 

But performance oriented systems

4

South Bridge
(I/O Controller Hub)

L1 cache L1 cache

Core 1

L1 cache L1 cache

Core 2

L1 cache L1 cache

Core m

Shared L2 Cache

. . .

Memory Controller

North Bridge

System
Memory

Graphics
Controller

Front Side Bus

Direct Media Interface

Other Interconnects
and Peripherals

Mouse

Keyboard

Asynchronous
I/O

Audio
Device

Other
Streaming

Devices

Isochronous
I/O

Memory Arbiter

Task A

Shared resource contention

8

Memory

Task B

North Bridge

L1 cache L1 cache

Core 1 Core 2

L1 cache

Core m

Front Side Bus

South Bridge

Peripherals

Task Z

REQ

RSP

Task A

Shared resource contention

9

Memory

Task B

North Bridge

L1 cache L1 cache

Core 1 Core 2
L1 cache

Core m

Contention for the
Front Side Bus

South Bridge

Peripherals

Task Z

Task A

Shared resource contention

10

Memory

Task B

Memory controller
Memory arbiter

L1 cache L1 cache

Core 1 Core 2
L1 cache

Core m

Front Side Bus

South Bridge

Peripherals

Task Z

Contention in the memory controller

Nondeterminism in computing
accurate WCET

• Total Time for a request =
T_FSB + // FSB contention
T_FSB_NB + // transmission over FSB
T_NB // NB contention
T_NB_MEM + // tx time
T_MEM + //memory access time
T_MEM_NB + // tx time
T_NB_FSB // tx time

Nontrivial to accurately determine : T_FSB, T_NB and
T_MEM

11

Issues

Non-accuracy due to some undocumented
parameters :

 Size of buffers in NB not stated

 Arbitration algorithm in the NB is vendor
proprietary

 Memory access time is variable for each
request and dependent on memory access
scheduling techiques

12

South Bridge
(I/O Controller Hub)

L1 cache L1 cache

Core 1

L1 cache L1 cache

Core 2

L1 cache L1 cache

Core m

Shared L2 Cache

. . .

Memory Controller

North Bridge

System
Memory

Graphics
Controller

Front Side Bus

Direct Media Interface

Other Interconnects
and Peripherals

Mouse

Keyboard

Asynchronous
I/O

Audio
Device

Other
Streaming

Devices

Isochronous
I/O

Memory Arbiter

Contention in the FSB

• Resolved using a Round Round Algorithm

– (Disclaimer : wrt to intel processors)

– Fairness : Order of transmission is fixed apriori (1-
2-3-4-1)

– Bus owner parks onto the bus until other owners
assert the bus-request line

• To Reduce switching overhead

– Non-idling: A bus owner can keep transmitting
when other cores do not transmit

14

South Bridge
(I/O Controller Hub)

L1 cache L1 cache

Core 1

L1 cache L1 cache

Core 2

L1 cache L1 cache

Core m

Shared L2 Cache

. . .

Memory Controller

North Bridge

System
Memory

Graphics
Controller

Front Side Bus

Direct Media Interface

Other Interconnects
and Peripherals

Mouse

Keyboard

Asynchronous
I/O

Audio
Device

Other
Streaming

Devices

Isochronous
I/O

Memory Arbiter

Contention in the North Bridge

16

Request Type Service slots (system cycles)

DRAM Maintenance Requests
(Refresh)

X (High Priority = 1)

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total = N system cycles

• Schedule period repeats after every N cycles

• Flexible, Slot based mechanism

• Tries to meet QoS requirements of Isochronous (Periodic requests)
with low-latency requirements of Asynchronous requests

Contention in the North Bridge

17

Request Type Service slots (system cycles)

DRAM Maintenance Requests
(Refresh)

X (High Priority = 1)

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total = N system cycles

• Flexible but non-predictable

• Weights assigned to request types not specified

• Difficult to accurately compute an upper-bound

Nondeterminism in computing
accurate WCET

• Total Time for a request =
T_FSB + // FSB contention
T_FSB_NB + // transmission over FSB
T_NB // NB contention
T_NB_MEM + // tx time
T_MEM + //memory access time
T_MEM_NB + // tx time
T_NB_FSB // tx time

Nontrivial to accurately determine : T_FSB, T_NB and
T_MEM

18

Summary of the discussion

• Method to obtain maximum time to service a
request (TR) by adding individual factors
difficult

• Workaround :

– Measure end to end latency for a large number
of requests

– Record the maximum value

– Use this value for WCET estimation

19

Problem Definition

 Compute the WCET of a task, considering contention
on the bus on , given the following :

 WCET in isolation
 A multicore system with
 Private caches : Cores do not share the cache
 Shared front side bus with Round Robin Bus Arbitration

Algorithm

 Task model
 Non pre-emptive (Tasks run uninterrupted)

 No Cache Related Pre-emption Delay and context switch
overhead

 Constrained deadline (Di <= Ti) Periodic tasks
 Partitioned scheduling (Tasks do not migrate)

20

Round Robin algorithm

21

No blocking from other tasks

Round Robin algorithm

22

No blocking from other tasks

Ci
mix = Ci

iso

where
TR: Time to serve a request
Ci

iso :WCET in isolation
Ci

mix :WCET when run with other tasks

Round Robin algorithm

23

No blocking from other tasks

Blocked by 7 requests

Round Robin algorithm

24

Blocked by 7 requests

Ci
mix = Ci

iso + 7 * TR
where
TR: Time to serve a request
Ci

iso :WCET in isolation
Ci

mix :WCET when run with other tasks

Round Robin algorithm

25

No blocking from other tasks

Blocked by 7 requests

Worst case Blocked by 9 requests

Round Robin algorithm

26

Worst case Blocked by 9 requests

Ci
mix = Ci

iso + 9 * TR
where
TR: Time to serve a request
Ci

iso : WCET in isolation
Ci

mix : WCET when run with other tasks

Round Robin algorithm

27

Worst case Blocked by 9 requests

Ci
mix = Ci

iso + 9 * TR
where
TR: Time to serve a request
Ci

iso : WCET in isolation
Ci

mix : WCET when run with other tasks
m : number of cores
RQSTi(t) : Requests generated by task i in time t

Ci
mix = Ci

iso + RQSTi(Ci
iso) * (m-1) * TR

Round Robin algorithm

28

Worst case Blocked by #Max = (m-1) * RQSTi(Ci
iso) requests

Ci
mix = Ci

iso + RQSTi(Ci
iso) * (m-1) * TR

Very pessimistic !!

 Tasks on other cores may not generate #Max requests
 There may be no tasks scheduled on the other cores

Round Robin algorithm

29

Worst case Blocked by Max = (m-1) * RQSTi(Ci
iso)

requests

Ci
mix = Ci

iso + RQSTi(Ci
iso) * (m-1) * TR

Very pessimistic !!
 Ex : Task i generates 2000 requests RQSTi(Ci

iso) = 2000
 Co-scheduled tasks on other cores generate 20 requests
 By the bound Ci

mix = Ci
iso + 2000* (3) * TR

 Actual : Ci
mix = Ci

iso + 20 * TR

Round Robin algorithm

30

Pessimistic bound:
Ci

mix = Ci
iso + RQSTi(Ci

iso) * (m-1) * TR

For tighter WCET bounds we need:
Ci

mix = Ci
iso + Requests_from_other_cores * TR

(during execution of task i)

We need a Per-Core Request Estimator Function

Round Robin algorithm

31

Ci
mix = Ci

iso + Requests_from_other_cores * TR
(during execution of task i)

We need a Per-Core Request Estimator Function

PCREj(t) : Returns maximum number of requests
generated by tasks scheduled on core ‘j’ during time

interval ‘t’

The Method

32

At time 0
PCRE2(0) = PCRE3(0) = PCRE4(0) = 0
m = 4 cores
CA

iso = 4 TR = 0.05
CA

mix = 4

Interference queue of length = (m-1) * RQSTA(CA
iso) = 3 * 3 = 9 slots

ADVERSARY

Core 1 Core 2 Core3 Core4

Task A

The Method

33

At time 0
PCRE2(0) = PCRE3(0) = PCRE4(0) = 0
m = 4 cores
CA

iso = 4 TR = 0.05
CA

mix = 4

Interference queue of length = (m-1) * RQSTA(CA
iso) = 3 * 3 = 9 slots

ADVERSARY

Core 1 Core 2 Core3 Core4

Task A

The Method

34

At time = 4
PCRE2(4) = 1 PCRE3(4) = 1 PCRE4(4) = 2
m = 4 cores
CA

iso = 4 TR = 0.05
CA

mix = 4 + 4 *0.05
= 4.20

Execution time of task A increases

Core 1 Core 2 Core3 Core4

The Method

35

At time = 4.20
∆ : Increased execution time

PCRE2(∆) = 0 PCRE3(∆) = 1 PCRE4(∆) = 0
CA

iso = 4 TR = 0.05
CA

mix = 4.20 + 1 *0.05
= 4.25

Execution time of task A further increases

Core 1 Core 2 Core3 Core4

The Method

36

At time = 4.25
∆ : Increased execution time

PCRE2(∆) = 0 PCRE3(∆) = 0 PCRE4(∆) = 0
No more requests from other cores !!!
CA

iso = 4 TR = 0.05
CA

mix = 4.25 + 0
= 4.25

Final wcet = 4.25

Core 1 Core 2 Core3 Core4

The algorithm

Initialization Step

Ci
0 = Ci

iso

iqleni
0 = RQSTi(Ci

0) * (m-1)

external_rqsti
0 = ∑ j≠ π(i) PCREj(Ci

0)

blocking_rqst i
0 = min(iqleni

0, external_rqsti
0)

Iteration Step

Ci
k = Ci

k-1 * blocking_rqst i
k-1 * TR

iqleni
k = iqleni

k-1 - blocking_rqst i
k-1

external_rqsti
k = ∑ j≠ π(i) (PCREj(Ci

k) - PCREj(Ci
k-1))

blocking_rqst i
k= min(iqleni

k-1, external_rqsti
k-1)

Stopping Conditions :

iqleni
k = 0 RR Upper bound reached

blocking_rqst i
k = 0 No more requests from other cores

37

TB = 10

A

A
B

B A A A A ABBB B

TA = 8

CA=3 CB=5

RA=4 RB=7
Schedule
repeats
hereon

Request
Pattern
of TS

Task
Schedule
(TS)

Hyperperiod of Tasks set (A,B) = 40

Per Core Request Estimator

TB = 10

A

A
B

B A A A A ABBB B

TA = 8

CA=3 CB=5

RA=4 RB=7

sliding window of t = 25
Schedule
repeats
hereon

Request
Pattern
of TS

Task
Schedule
(TS)

Hyperperiod of Tasks set (A,B) = 40

Per Core Request Estimator

Obtaining request patterns

• PCRE(t) depends on the

exact request pattern of the tasks

– Measurements

• Performance monitoring counters

• Special purpose registers in microprocessors

Reset counter, select event (like L1 cache misses)

Code block to be monitored

Stop counter, Read values

– Static analysis

41

System wide analysis

42

Compute
PCR1

iso using CA
iso , CB

iso

PCR2
iso using Cc

iso , CD
iso

Compute

PCR1
iso using

Compute
CA

mix using PCR2
iso

CB
mix using PCR2

iso

Cc
mix using PCR1

iso

CD
mix using PCR1

iso

Tasks A, B assigned to core 1
Tasks C, D assigned to core 2

Ck
iso = Ck

mix

System wide analysis

43

Increased execution does not increase
number of requests generated

Request density decreases .
Therefore PCRi

iso(t) >=PCRi
mix(t)

Task A

Why:

Private caches
No extra cache misses

Non premptive tasks
No extra cache misses

Increase only due to bus
contention

System wide analysis

44

Compute
PCR1

iso using CA
iso , CB

iso

PCR2
iso using Cc

iso , CD
iso

Compute

PCR1
iso using

Compute
CA

iso using PCR2
iso

CB
iso using PCR2

iso

Cc
iso using PCR1

iso

CD
iso using PCR1

iso

Tasks A, B assigned to core 1
Tasks C, D assigned to core 2

Other Related work carried out

• Response time analysis for an arbitration-
agnostic bus contention algorithm for COTS-
based systems

• Measurement based framework for
generating a request profile for a task

– Uses performance monitoring counters

• Preliminary shared cache analysis

45

Future Work

• Reducing Bus Contention with resource-aware
schedulers

• Addressing contention considering shared
caches

• Addressing Pre-emptive task models

46

