CISTER SEMINAR SERIES

Analyzing the Contention
on the shared memory bus for
COTS-Based Multicores

Agenda

Problem of

shared low Proposed Future work

Motivation Tenas Method

resources

COTS-based Multicores

Increasingly used in Finding WCET in
embedded systems multicores difficult

e Low power, high e COTS: Undocumented
computing capabilities parameters

e Faster to design and e COTS: Not predictable
market e Shared resource

contention (low-level)

e Uniprocessor theories
developed not
applicable

COTS: Commercial-off -the -shelf

Implications

e Usage of very simple models in research

— Do not reflect underlying hardware

* Generalized assumptions
— Non tight WCET estimates

The industry trend does not seem to be towards
building predictable systems &
But performance oriented systems

Core 1

Core 2

L1 cache

Core m

L1 cache

1

L1 cache

4

Shared L2 Cache

Front Side Bus

Graphics
Controller

North Bridge

Memory Controller

Memory Arbiter

~N

J

Mouse

Asynchronous {
1/0

v

Keyboard

South Bridge
(1/0 Controller Hub)

Other Interconnects < >
and Peripherals

Direct Media Interface

System
Memory

Audio

&
N

Device

Other
Streaming
Devices

Isochronous
1/0

Shared resource contention

Task A

Task B

L1 cache

L1 cache

i

grm ¥

Task Z
L1 cache

il

Peripherals

H Front Side Bus

South Bridge

4

North Bridge

<

> Memory

RSP

Shared resource contention

Task A Task B Task Z
L1 cache L1 cache L1 cache

U U il
$

Contention for the
Peripherals Front Side Bus

| South bridge | <)

South Bridge (—} North Bridge
e

Memory

Shared resource contention

Task A Task B Task Z
L1 cache L1 cache L1 cache
Front Side Bus
Peripherals
= S ¢)
South Bridge — Memory

Memory controlle'r\
Memory arbiter

Contention in the memory controller

10

Nondeterminism in computing
accurate WCET

 Total Time for a request =
T FSB + // FSB contention
T FSB _NB + //transmission over FSB
T NB // NB contention
T NB_MEM + // tx time
T MEM + //memory access time
T MEM _NB + // tx time
T NB FSB //tx time

Nontrivial to accurately determine : T_FSB, T_NB and
T_MEM

Issues

Non-accuracy due to some undocumented
parameters :

= Sjze of buffers in NB not stated

" Arbitration algorithm in the NB is vendor
proprietary
" Memory access time is variable for each

request and dependent on memory access
scheduling techiques

Core 1

Core 2

L1 cache

Core m

L1 cache

1

L1 cache

4

Shared L2 Cache

Front Side Bus

Graphics
Controller

North Bridge

Memory Controller

Memory Arbiter

~N

J

Mouse

Asynchronous {
1/0

v

Keyboard

South Bridge
(1/0 Controller Hub)

Other Interconnects < >
and Peripherals

Direct Media Interface

System
Memory

Audio

&
N

Device

Other
Streaming
Devices

Isochronous
1/0

Contention in the FSB

* Resolved using a Round Round Algorithm
— (Disclaimer : wrt to intel processors)

— Fairness : Order of transmission is fixed apriori (1-
2-3-4-1)
— Bus owner parks onto the bus until other owners
assert the bus-request line
* To Reduce switching overhead

— Non-idling: A bus owner can keep transmitting
when other cores do not transmit

Core 1

Core 2

L1 cache

Core m

L1 cache

1

L1 cache

4

Shared L2 Cache

Front Side Bus

Graphics
Controller

North Bridge

Memory Controller

Memory Arbiter

~N

J

Mouse

Asynchronous {
1/0

v

Keyboard

South Bridge
(1/0 Controller Hub)

Other Interconnects < >
and Peripherals

Direct Media Interface

System
Memory

Audio

&
N

Device

Other
Streaming
Devices

Isochronous
1/0

Contention in the North Bridge

DRAM Maintenance Requests X (High Priority =1)
(Refresh)

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total = N system cycles

* Schedule period repeats after every N cycles

* Flexible, Slot based mechanism

* Tries to meet QOS requirements of Isochronous (Periodic requests)
with low-latency requirements of Asynchronous requests

16

Contention in the North Bridge

DRAM Maintenance Requests X (High Priority =1)
(Refresh)

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total = N system cycles

* Flexible but non-predictable
* Weights assigned to request types not specified

* Difficult to accurately compute an upper-bound

17

Nondeterminism in computing
accurate WCET

 Total Time for a request =
T FSB + // FSB contention
T FSB _NB + //transmission over FSB
T NB // NB contention
T NB_MEM + // tx time
T MEM + //memory access time
T MEM _NB + // tx time
T NB FSB //tx time

Nontrivial to accurately determine : T_FSB, T_NB and
T_MEM

Summary of the discussion

e Method to obtain maximum time to service a
request (TR) by adding individual factors
difficult

e Workaround :

— Measure end to end latency for a large number
of requests

— Record the maximum value
— Use this value for WCET estimation

Problem Definition

Compute the WCET of a task, considering contention
on the bus on, given the following :

WCET in isolation

A multicore system with
= Private caches : Cores do not share the cache
= Shared front side bus with Round Robin Bus Arbitration
Algorithm
Task model

= Non pre-emptive (Tasks run uninterrupted)

= No Cache Related Pre-emption Delay and context switch
overhead

" Constrained deadline (D,<=T.) Periodic tasks
= Partitioned scheduling (Tasks do not migrate)

Round Robin algorithm

\
N

_ No blocking from other tasks

21

Round Robin algorithm

\
N

_ No blocking from other tasks

cimix - ciiso

where

TR: Time to serve a request

C/s° :WCET in isolation

C™x :WCET when run with other tasks

22

Round Robin algorithm

\
N N

Blocked by 7 requests

No blocking from other tasks

23

Round Robin algorithm

\
N N

Blocked by 7 requests

cimlx - cilso + 7*TR

where

TR: Time to serve a request

Cs° :WCET in isolation

C™mix :WCET when run with other tasks

24

Round Robin algorithm

\
N N

Blocked by 7 requests

No blocking from other tasks

Worst case Blocked by 9 requests

25

Round Robin algorithm

\
N N

Worst case Blocked by 9 requests

Cimlx — Cilso + 9 * TR

where

TR: Time to serve a request

C/s© : WCET in isolation

C.mx : WCET when run with other tasks

26

Round Robin algorithm

\
N N

Worst case Blocked by 9 requests

CimIX — CiISO + 9 * TR

where

TR: Time to serve a request

Cs° : WCET in isolation

C™mix : WCET when run with other tasks

m : number of cores

RQST,(t) : Requests generated by task i in time t

Cimix — ciiso + RQSTi(Ciiso) % (m-1) * TR

27

Round Robin algorithm

\
N N

Worst case Blocked by #Max = (m-1) * RQST,(C/*°) requests
cimix - Ciiso + RQSTi(ciiso) % (m-1) * TR
Very pessimistic !!

= Tasks on other cores may not generate #Max requests
= There may be no tasks scheduled on the other cores

28

Round Robin algorithm

\
N N

Worst case Blocked by Max = (m-1) * RQST,(C/*°)
requests

Cimix - ciiso + RQSTi(ciiso) % (m-1) * TR

Very pessimistic !!
= Ex: Taskigenerates 2000 requests RQST,(Cs°)= 2000
= Co-scheduled tasks on other cores generate 20 requests
= Bythe bound C™* = Ci*® + 2000* (3) * TR
= Actual :C™*x = Ck° + 20* TR

29

Round Robin algorithm

Pessimistic bound:
Cmx = Cl*° + RQST,(C™°)* (m-1) * TR

For tighter WCET bounds we need:
Cmx = Cl*® + Requests_from_other_cores * TR

(during execution of task i)

We need a Per-Core Request Estimator Function

Round Robin algorithm

Cmx = Cls° + Requests_from_other_cores * TR
(during execution of task i)

We need a Per-Core Request Estimator Function
PCRE;(t) : Returns maximum number of requests

generated by tasks scheduled on core ‘j’ during time
interval ‘t’

The Method

Task A ADVERSARY
Core 1l Core 2 Core3

Interference queue of length = (m-1) * RQST,(C,*°) =3 * 3 =9 slots

At time O

PCRE,(0) = PCRE;(0) = PCRE,(0) =0
m =4 cores

C,°=4 TR= 0.05

CAmix =4

32

The Method

Task A ADVERSARY
Core 1l Core 2 Core3

Interference queue of length = (m-1) * RQST,(C,*°) =3 * 3 =9 slots

At time O

PCRE,(0) = PCRE;(0) = PCRE,(0) =0
m =4 cores

C,°=4 TR= 0.05

CAmix =4

33

-

Core 1

The Method

_B

Core 2 Core3

I

Attime =4
PCRE,(4) = 1 PCRE,(4) = 1 PCRE,(4) =2
m =4 cores
Cjo=4 TR= 0.05
C,"x = 4 + 4 *0.05
= 4.20
Execution time of task A increases

34

The Method

Core 1 / Core 2 Core3

I

At time =4.20
A : Increased execution time
PCRE,(A) = 0 PCRE;(A) =1 PCRE,(A) =0
C,*°=4 TR= 0.05
C,™*=4.20 + 1 *0.05
= 4.25

et Execution time of task A further increases

35

The Method

- _B

Core 1l Core 2 Core3

Bl B

At time =4.25
A : Increased execution time
PCRE,(A) = 0 PCRE;(A) =0 PCRE,(A) =0
No more requests from other cores !!!
C,*°=4 TR= 0.05
C,"x=4.25+ 0

= 4.25

Final wcet = 4.25

36

The algorithm

Initialization Step

Cio — Ciiso

iglen® = RQST,(C°) * (m-1)

external_rgst® = 3 .., PCRE(CP)

blocking_rgst °= min(iglen?, external_rqst.?)

Iteration Step

Ck=CKk1* blocking_rgst ¥ * TR

iglen* =iglen’?!- blocking_rgst *!

external_rgst* = 3 .. (PCRE{(C) - PCRE(C*?))

blocking_rgst *= min(iglenX?, external_rgst<?)
Stopping Conditions :

iglenk =0 RR Upper bound reached

blocking_rgst X =0 No more requests from other cores

Schedule
. . repeats
fm e hereon
Request =T i ol oo o o o NI M | S O
Pattern = , |
of TS C3 G5
Task -
Al B Al B [A B | A Al B Al B
Schedule L ——
(TS) J
\
T, =8
A
D TR= 10 N
Hyperperiod of Tasks set (A,B) = 40

Per Core Request Estimator

Request
Pattern
of TS

Task
Schedule
(TS)

Ry=4 Ry=7

Hyperperiod of Tasks set (A,B) = 40

Per Core Request Estimator

\%

A Schedule
(sliding window of t=25 \\ repeats
R —-—--,, A iiA A e il L E hereon
LT T LEPCEEE TEEE DT g eeee T - 1l RN EE e
' C4=3 Cp=5
A B A B A B A A B A B
——
\
T,=8
A
D TR=1O SN

Obtaining request patterns

 PCRE(t) depends on the

exact request pattern of the tasks

— Measurements
* Performance monitoring counters
* Special purpose registers in microprocessors
Reset counter, select event (like L1 cache misses)
Code block to be monitored
Stop counter, Read values

— Static analysis

System wide analysis

Tasks A, B assigned to core 1
Tasks C, D assigned to core 2

Compute
Compute C,™*using PCR,'s°
PCR,*° using C,*°, C'*° Cg™*using PCR,"°
PCR,*° using Cs®, C,s° C. ™ using PCR,*°

C," using PCR,"*°

N mix
Ck Ck

42

System wide analysis

Why:

Task A Private caches
‘ ‘ ’ ‘ ‘ No extra cache misses

Non premptive tasks
No extra cache misses

contention

‘ ‘ ‘ ‘ ’ Increase only due to bus

Increased execution does not increase
number of requests generated

Request density decreases .
Therefore PCR.*°(t) >=PCR.MX(t)

43

System wide analysis

Tasks A, B assigned to core 1
Tasks C, D assigned to core 2

Compute
C,'*° using PCR,'°
Cy'*° using PCR,'*°

Compute

PCR,*° using C,!s°, C;'°
PCR,'° using Cs°, C,'*° C.s°using PCR,*°

Cp° using PCR,'s°

44

Other Related work carried out

* Response time analysis for an arbitration-
agnostic bus contention algorithm for COTS-
based systems

e Measurement based framework for
generating a request profile for a task

— Uses performance monitoring counters

* Preliminary shared cache analysis

Future Work

* Reducing Bus Contention with resource-aware
schedulers

* Addressing contention considering shared
caches

* Addressing Pre-emptive task models

