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COTS-based Multicores

Increasingly used in 
embedded systems

• Low power,  high 
computing capabilities

• Faster to design and 
market

Finding WCET in 
multicores difficult

• COTS: Undocumented 
parameters

• COTS:  Not predictable

• Shared resource 
contention (low-level)

• Uniprocessor theories 
developed not 
applicable
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Implications

• Usage of very simple models in research

– Do not reflect underlying hardware 

• Generalized assumptions

– Non tight WCET estimates

The industry trend does not seem to be towards

building predictable systems  

But performance oriented systems 
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Nondeterminism in computing 
accurate WCET 

• Total Time  for a request  =  
T_FSB +          // FSB contention
T_FSB_NB +  // transmission over FSB
T_NB // NB contention 
T_NB_MEM +  // tx time 
T_MEM +  //memory access time
T_MEM_NB + // tx time
T_NB_FSB     // tx time

Nontrivial to accurately determine : T_FSB, T_NB and 
T_MEM 
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Issues

Non-accuracy due to some undocumented 
parameters : 

 Size of buffers in NB not  stated

 Arbitration algorithm in the NB is vendor 
proprietary

 Memory access time is variable  for each 
request  and dependent on memory access 
scheduling  techiques
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Contention in the FSB

• Resolved using a Round Round Algorithm 

– (Disclaimer :  wrt to intel processors)

– Fairness : Order of transmission is fixed apriori (1-
2-3-4-1)

– Bus owner parks onto the bus  until other owners 
assert the bus-request line

• To Reduce switching overhead 

– Non-idling:  A bus owner can  keep transmitting 
when other cores do not transmit 
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Contention in the North Bridge
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Request Type Service slots  (system cycles)

DRAM Maintenance Requests  
(Refresh)

X                     (High Priority  = 1  )

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total =  N system cycles

• Schedule period  repeats  after every N cycles  

• Flexible, Slot based mechanism

• Tries to  meet  QoS requirements of Isochronous (Periodic requests) 
with  low-latency requirements of  Asynchronous requests 



Contention in the North Bridge
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Request Type Service slots  (system cycles)

DRAM Maintenance Requests  
(Refresh)

X                     (High Priority  = 1  )

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total =  N system cycles

• Flexible  but non-predictable

• Weights assigned to request types not specified

• Difficult to accurately compute  an upper-bound   



Nondeterminism in computing 
accurate WCET 

• Total Time  for a request  =  
T_FSB +          // FSB contention
T_FSB_NB +  // transmission over FSB
T_NB // NB contention 
T_NB_MEM +  // tx time 
T_MEM +  //memory access time
T_MEM_NB + // tx time
T_NB_FSB     // tx time

Nontrivial to accurately determine : T_FSB, T_NB and 
T_MEM 
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Summary of the discussion

• Method to obtain maximum time to service a 
request  (TR)  by  adding individual factors 
difficult

• Workaround : 

– Measure end to end latency  for a large number 
of requests

– Record the maximum value

– Use this value for WCET estimation 
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Problem Definition

 Compute  the  WCET  of a task,  considering contention 
on the bus on ,  given  the following : 

 WCET in isolation  
 A multicore system with
 Private caches : Cores do not share the cache 
 Shared front side bus with Round Robin Bus Arbitration 

Algorithm

 Task model
 Non pre-emptive   (Tasks run uninterrupted)

 No Cache Related Pre-emption Delay  and context switch 
overhead 

 Constrained deadline ( Di <= Ti )  Periodic tasks    
 Partitioned scheduling  (Tasks do not migrate )
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Round Robin algorithm
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No blocking from other tasks



Round Robin algorithm
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No blocking from other tasks

Ci
mix      =   Ci

iso

where 
TR: Time to serve a request
Ci

iso :WCET in isolation
Ci

mix  :WCET  when run with  other tasks



Round Robin algorithm
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No blocking from other tasks

Blocked by  7 requests



Round Robin algorithm

24

Blocked by  7 requests

Ci
mix      =   Ci

iso +  7 * TR 
where 
TR: Time to serve a request
Ci

iso :WCET in isolation
Ci

mix  :WCET  when run with  other tasks



Round Robin algorithm
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No blocking from other tasks

Blocked by  7 requests

Worst case Blocked by  9 requests



Round Robin algorithm
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Worst case Blocked by  9 requests

Ci
mix      =   Ci

iso +  9 * TR 
where 
TR:   Time to serve a request
Ci

iso : WCET in isolation
Ci

mix  : WCET  when run with  other tasks



Round Robin algorithm

27

Worst case Blocked by  9 requests

Ci
mix      =   Ci

iso +  9 * TR 
where 
TR:   Time to serve a request
Ci

iso : WCET in isolation
Ci

mix  : WCET  when run with  other tasks
m : number of cores
RQSTi(t) : Requests generated by task i in time t

Ci
mix      =   Ci

iso +   RQSTi(Ci
iso ) * (m-1) * TR



Round Robin algorithm
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Worst case Blocked by  #Max  =  (m-1) *  RQSTi(Ci
iso )  requests

Ci
mix      =   Ci

iso +   RQSTi(Ci
iso ) * (m-1) * TR

Very pessimistic !! 

 Tasks on other cores  may  not  generate  #Max  requests
 There may be no tasks scheduled on the other cores



Round Robin algorithm
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Worst case Blocked by  Max  =  (m-1) *  RQSTi(Ci
iso ) 

requests

Ci
mix      =   Ci

iso +   RQSTi(Ci
iso ) * (m-1) * TR

Very pessimistic !! 
 Ex :  Task i generates 2000 requests    RQSTi(Ci

iso ) = 2000 
 Co-scheduled tasks on other cores generate 20 requests
 By the bound Ci

mix      =   Ci
iso +   2000* (3) * TR

 Actual  : Ci
mix      =   Ci

iso +   20 * TR



Round Robin algorithm
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Pessimistic bound:
Ci

mix =   Ci
iso +   RQSTi(Ci

iso ) * (m-1) * TR

For tighter WCET bounds we need:  
Ci

mix      =   Ci
iso +    Requests_from_other_cores *  TR

(during execution of  task i) 

We need a Per-Core  Request Estimator Function 



Round Robin algorithm

31

Ci
mix      =   Ci

iso +    Requests_from_other_cores *  TR
(during execution of  task i) 

We need a Per-Core  Request Estimator Function 

PCREj(t) :  Returns maximum number of  requests  
generated  by tasks  scheduled on core  ‘j’  during time  

interval  ‘t’



The Method 
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At time 0 
PCRE2(0) = PCRE3(0) = PCRE4(0) = 0  
m  = 4  cores 
CA

iso = 4     TR =  0.05  
CA

mix = 4 

Interference queue of length  =   (m-1) * RQSTA(CA
iso)  = 3 * 3  = 9 slots  

ADVERSARY 

Core 1 Core 2 Core3 Core4

Task A



The Method 

33

At time 0 
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The Method 
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At time = 4
PCRE2(4) =  1 PCRE3(4) =  1 PCRE4(4) = 2 
m  = 4  cores 
CA

iso = 4     TR =  0.05
CA

mix = 4 +  4 *0.05   
=  4.20

Execution time  of task A increases 

Core 1 Core 2 Core3 Core4



The Method 
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At time = 4.20
∆ : Increased execution time 

PCRE2(∆) = 0 PCRE3(∆) = 1 PCRE4(∆) = 0 
CA

iso = 4     TR =  0.05
CA

mix = 4.20 +  1 *0.05 
=  4.25

Execution time  of task A  further increases

Core 1 Core 2 Core3 Core4



The Method 
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At time = 4.25
∆ : Increased execution time 

PCRE2(∆) = 0 PCRE3(∆) = 0  PCRE4(∆) = 0 
No more requests from other cores !!! 
CA

iso = 4     TR =  0.05
CA

mix = 4.25 +  0  
=  4.25

Final wcet =  4.25 

Core 1 Core 2 Core3 Core4



The algorithm 

Initialization Step

Ci
0 = Ci

iso

iqleni
0 =    RQSTi(Ci

0) * (m-1) 

external_rqsti
0 =    ∑ j≠ π(i) PCREj(Ci

0) 

blocking_rqst i
0 =  min(iqleni

0, external_rqsti
0)

Iteration Step 

Ci
k = Ci

k-1 *  blocking_rqst i
k-1 * TR 

iqleni
k = iqleni

k-1 - blocking_rqst i
k-1 

external_rqsti
k =    ∑ j≠ π(i) ( PCREj(Ci

k) - PCREj(Ci
k-1))

blocking_rqst i
k=  min(iqleni

k-1, external_rqsti
k-1)

Stopping Conditions :  

iqleni
k = 0                       RR Upper bound reached  

blocking_rqst i
k = 0        No more requests from other cores 
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Obtaining request patterns

• PCRE(t) depends on the 

exact request pattern of the tasks

– Measurements  

• Performance monitoring counters 

• Special purpose registers in microprocessors

Reset  counter,  select event (like L1 cache misses) 

Code block  to be monitored 

Stop counter, Read values 

– Static analysis
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System wide analysis
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System wide analysis
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Increased execution does not increase      
number of requests  generated

Request density decreases . 
Therefore PCRi

iso(t) >=PCRi
mix(t)

Task A 

Why: 

Private caches
No extra cache misses

Non premptive tasks
No extra cache misses

Increase only due to bus 
contention



System wide analysis
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Other Related work carried out

• Response time analysis for an arbitration-
agnostic  bus contention algorithm for COTS-
based systems

• Measurement based framework for
generating a request profile for a task

– Uses performance monitoring counters

• Preliminary shared cache analysis
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Future Work

• Reducing Bus Contention with resource-aware 
schedulers

• Addressing contention considering shared 
caches

• Addressing  Pre-emptive task models 
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