Slotted WiDom: Schedulability Analysis and its Experimental Validation

Maryam Vahabi and Björn Andersson

CISTER Spring Seminar Series 2011

Flow of the talk

- Motivation
- Background on schedulability analysis
- Background on WiDom protocol
- Proposed schedulability analysis for Slotted-WiDom
- Experimental results

Environmental Monitoring

Collaborative Robatics

Healthcare Monitoring

Industrial Automation

Vehicular Network

Real-Time Requirements


Generalized Rate-Monotonic Analysis

- Uniprocessors
- Wired networks

Wireless networks

R1. Prioritized medium access control (MAC)

 \checkmark R2. Slow growth in arbitration overhead (by increasing priority levels)

R3. Low arbitration overhead

R4. Provide schedulability analysis

CAN-bus

Dominance / Binary-countdown protocol

Designed for wired domain

RM Analysis Requirements for Wireless:

R1. Prioritized medium access control (MAC)

R2. Slow growth in arbitration overhead (by increasing priority levels)

R3. Low arbitration overhead

R4. Provide schedulability analysis

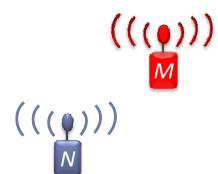
Wireless version of CAN bus

RM Analysis Requirements for Wireless:

R1. Prioritized medium access control (MAC)

R2. Slow growth in arbitration overhead (by increasing priority levels)

R3. Low arbitration overhead



R4. Provide schedulability analysis

Slotted-WiDOM

Out-of-band Synch. Signal

Motivation

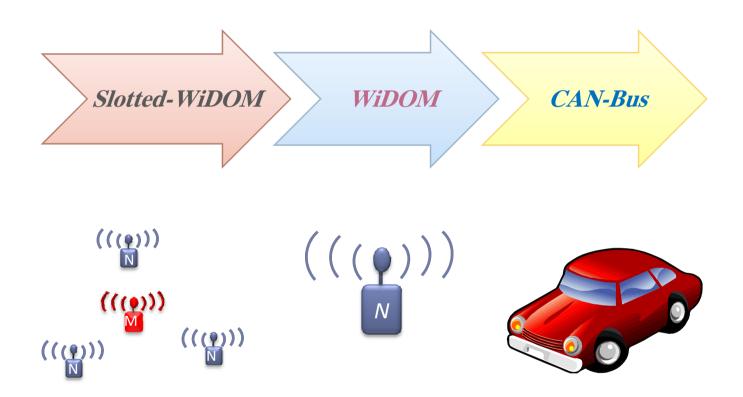
RM Analysis Requirements for Wireless:

R1. Prioritized medium access control (MAC)

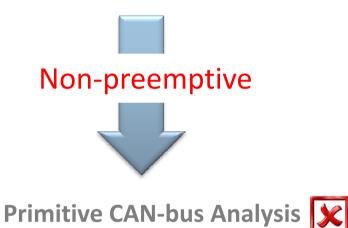
R2. Slow growth in arbitration overhead (by

R3. Low arbitration overhead

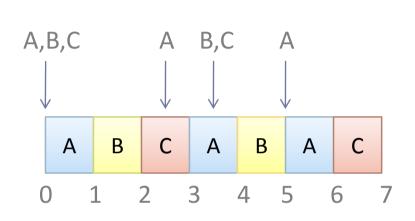
R4. Provide schedulability analysis


Slotted-WiDOM

Out-of-band Synch. Signal


Background on schedulability analysis

First proposal (1994)


preemptive static-priority scheduling

First Correct proposal (2007)

Busy period of message *i* period of

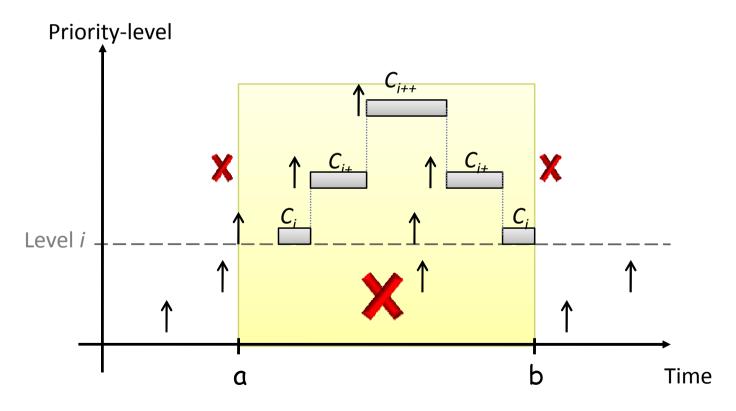
$$C_A = C_B = C_C = 1$$

$$D_A = D_B = D_C = 3$$

$$T_A = 2.5$$

$$T_B = 3.5$$

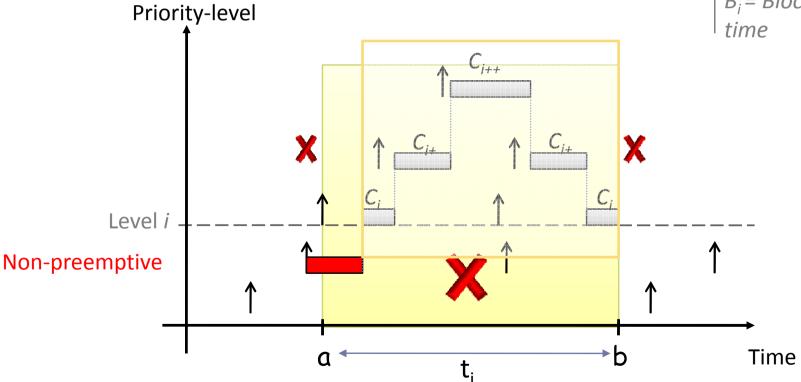
$$T_C = 3.5$$


First Correct proposal (2007)

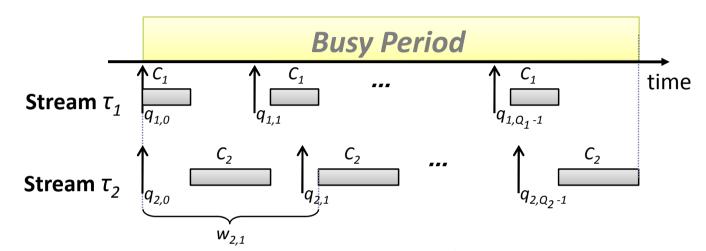
Busy period:

Lehoczky (1990)

A level-i busy period is a time interval [a,b] within which jobs of priority i or higher are processed through [a,b] but no jobs of level i or higher are processed in (a- ϵ ,a) or (b,b+ ϵ) for sufficiently small ϵ >0.


Busy period:

$$t_{i} = B_{i} + \sum_{\forall m \in hp(i) \cup i} \left[\frac{t_{i}}{T_{m}} \right] \times C_{m}$$


 C_m = Transmission time

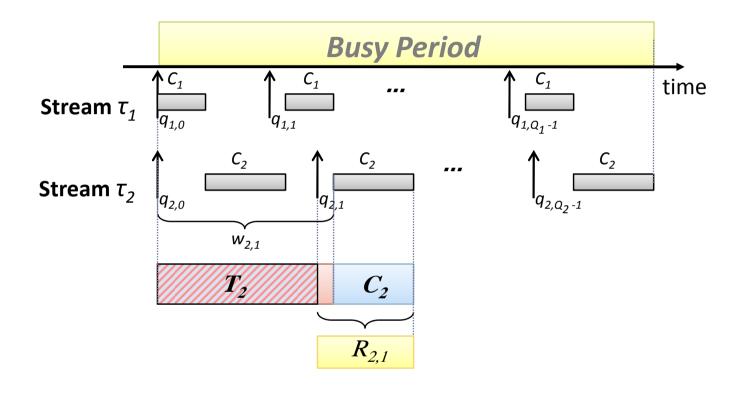
 $T_m = Message$ Period

 $B_i = Blocking$ time

$$R_i = \max_{q=0,...,Q_i-1} (R_{i,q})$$

$$Q_i = \left\lceil \frac{t_i}{T_i} \right\rceil$$

$$R_{i,q} = w_{i,q} - q \times T_i + C_i$$


 R_i = WCRT of message stream i

 Q_i = No. of instances of message stream i located in level-i busy period

 T_i = Periodicity of message stream i

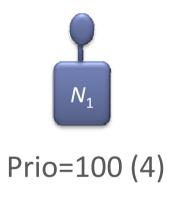
$$W_{i,q} = ?$$

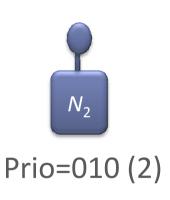
$$R_{2,1} = W_{2,1} - 1xT_2 + C_2$$

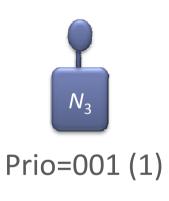
Background on WiDom protocol

Dominance / Binary-countdown protocol

- Conflict-free tx by exploiting bitwise arbitration
- Provides large number of priority levels
- Lower value higher priority
- Three phases:
 - Synchronization phase
 - Tournament phase
 - Receive/transmit phase

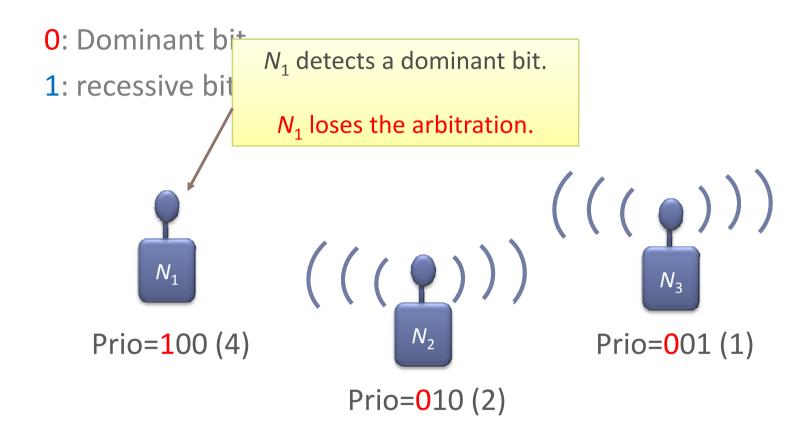


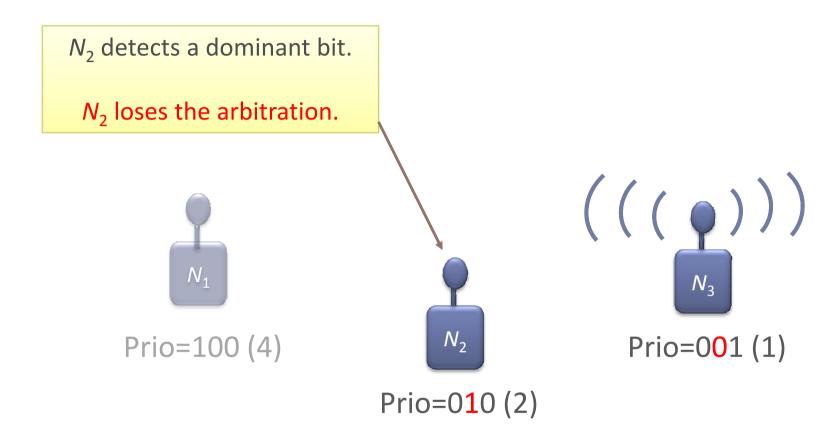



Tournament phase (an example)

0: Dominant bit

1: recessive bit



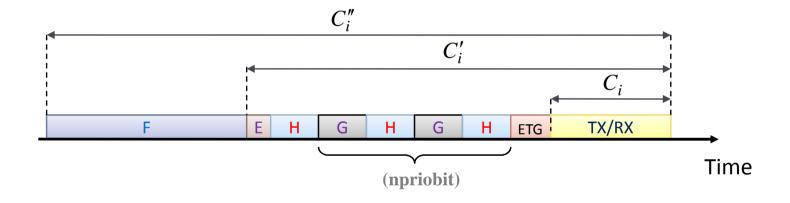

Tournament phase

Node with *Dominant* bit, transmit a carrier

Tournament phase

Node with *Dominant* bit, transmit a carrier

Tournament phase


 N_3 finishes transmitting the priority bits. N_3 reaches the end of the arbitration... ...and proceeds to transmit the message. N_3 Prio=100 (4) Prio=001 (1) Prio=010 (2)

Node with *Dominant* bit, transmit a carrier

Initial WiDom

Long period of silence: F

E: clock drift compensation

H: carrier pulse transmission

G: guarding time

ETG: end of tournament gap npriobit: No of priority bits

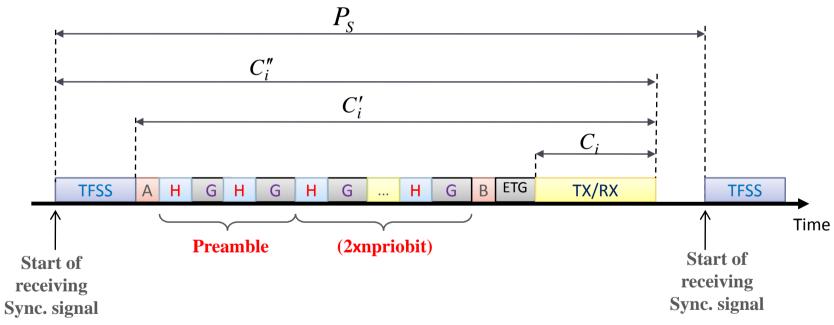
Slotted WiDom

Out-of-band signalling

WiFLEX add-on board

- WiFLEX_main
- WiFLEX_rxsync

WiFLEX platform stacked on FireFly mote

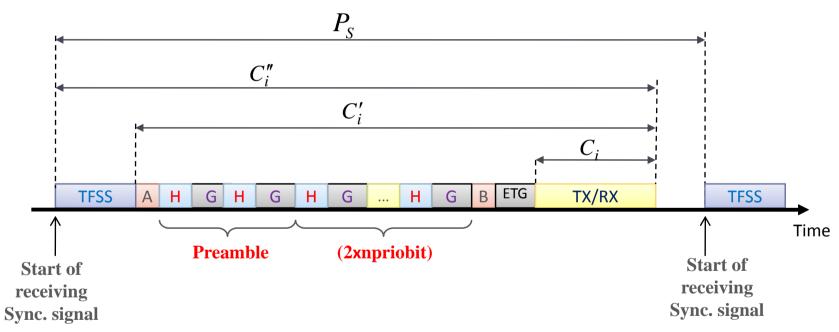


WiFLEX platform stacked on MICAz mote

Slotted WiDom

Out-of-band signalling

A: Transferring priority from MicaZ to WiFLEX (PRIO_TRA)


B: Transferring winner priority from WiFLEX to MicaZ (WIN_PRIO)

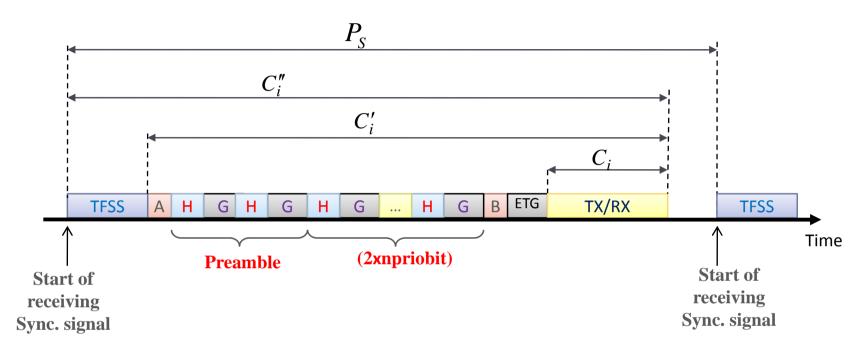
P_s: sync. Signal periodicity / Slot duration

Slotted WiDom

Out-of-band signalling

$$P_S \ge TFCS + PRIO_TRA + 2(H+G)(npriobits+1) + ETG + WIN_PRIO + \max(C_i)$$

New schedulability analysis


One packet per slot

Level-
$$i$$
 busy period $L_i = P_S + \sum_{j \in hp(i) \cup i} \left| \frac{L_i + J_j}{T_j} \right| \times P_S$

$$Q_i = \begin{bmatrix} \frac{L_i + J_i}{T_i} \end{bmatrix} + 1$$

New Schedulability analysis

$$C_i'' = C_i' + TFCS$$

$$C_{i}' = C_{i} + 2(H+G) + PRIO_TRA$$

 $+2(H+G)(npriobits) + WIN_PRIO + ETG$

Analytical results

- □ Packet length128 Bytes
- □ Data rate250 Kb/s

$$\forall i \in \{1...n\}: C_i = 128 \times 8 \times \frac{1}{250000} = 4096 \ \mu s$$

$$\forall i \in \{1...n\} : C'_i = 8545 \ \mu s$$

$$\forall i \in \{1...n\} : C_i'' = 8845 \ \mu s$$

$$P_{\rm S} \ge 8845 \,\mu{\rm s}$$

$$P_{\rm S} = 9560 \, \mu {\rm S}$$

(npriobits)	15	
(H+G)	110	μs
(TFSS)	300	μs
(PRIO_TRA)	139	μ
(WIN_PRIO)	235	μ

Analytical result (first scenario)

- □ Packet length128 Bytes
- □ Data rate250 Kb/s
- □ Release jitter1 ms
- □ No of Nodes6

i	1	2	3	4	5	6
$T_i(\mu s)$	30,000	80,000	150,000	300,000	700,000	1,800,000
R_i (μs)	18,405	27,965	37,525	56,645	66,205	85,325

$$\forall i \in \{1...n\} : R_i \le T_i$$

Analytical result (second scenario)

- □ Packet length128 Bytes
- □ Data rate250 Kb/s
- Release jitter1 ms
- □ No of Nodes10

i	1	2	3	4	5
$T_i(\mu s)$	30,000	70,000	120,000	300,000	900,000
$R_i(\mu s)$	18,405	27,965	37,525	56,645	66,205
i	6	7	8	9	10
$T_i(\mu s)$	1,900,000	3,700,000	5,400,000	5,400,000	5,400,000
$R_i(\mu s)$	94,885	114,005	123,565	171,365	180,925

$$\forall i \in \{1...n\} : R_i \leq T_i$$

Experimental setup

Hardware platform MICAz + WiFLEX

□ SoftwareNano-RK OS + WiDom

```
Send-Task(){
    generated-packet++;
}

send_pkt(){
    transmitted-packet++;
}
```

```
generated-packet

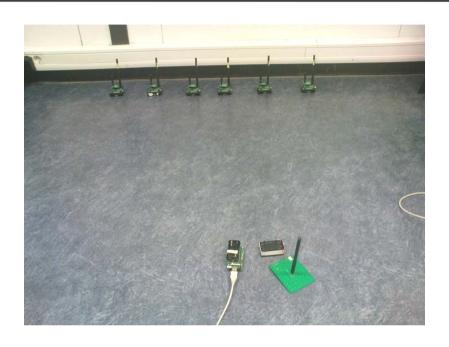
≠
transmitted-packet

Deadline miss
```


Experimental setup

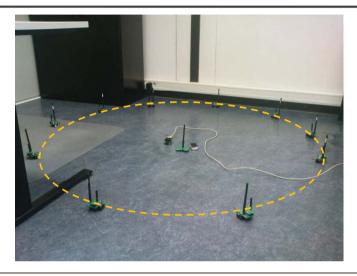
Hardware platform MICAz + WiFLEX


```
Send-Task(){
        Set Timer;
}


rf_tx_packet(){
        Wi=Read Timer;
        pPayload=Wi;
}
```

Receiver Side:

$$R_i = W_i + C_i$$


Experimental result (first Scenario)

i	1	2	3	4	5	6
$T_i(\mu s)$	30,000	80,000	150,000	300,000	700,000	1,800,000
R_i (μs)	18,405	27,965	37,525	56,645	66,205	85,325
$R'_{i}(\mu s)$	18,348	27,583	37,128	55,982	59,184	64,834

Experimental result

i	1	2	3	4	5
$T_i(\mu s)$	30,000	70,000	120,000	300,000	900,000
R_i (μs)	18,405	27,965	37,525	56,645	66,205
$R'_{i}(\mu s)$	18,343	27,584	37,147	56,225	55,428
i	6	7	8	9	10
$T_i(\mu s)$	1,900,000	3,700,000	5,400,000	5,400,000	5,400,000
R_i (μs)	94,885	114,005	123,565	171,365	180,925
$R'_{i}(\mu s)$	58,019	39,509	62,490	34,464	62,403

Experimental result

No deadline miss

generated-Packet == transmitted-packet

□ Very small packet loss rate (≤ 1%)

Validate the calculated upperbound

Calculated RT ≥ Measured RT

Next steps

Implementing Reliable WiDom

 Provide a real-time constraint-free model for WiDom

 Find appropriate priority relationship assignment for multi-hop message streams

Thank You!

