Enhanced Race-To-Halt: A Leakage-Aware Energy Management Approach for Dynamic Priority Systems

Muhammad Ali Awan

Stefan M. Petters

CISTER Research Unit, ISEP/IPP, Porto, Portugal

Outline

- Motivation
- Power Saving Strategies
- State-of-the-Art
- Break-Even-Time and Static Limit
- Slack Management Algorithm
- Enhanced Race-To-Halt Algorithm
- Offline and Online Overhead
- Evaluation
- Future Directions and Conclusion

Motivation !

Mobile

Battery Powered

Thermal Issues

Power Saving Strategies

Race-to-halt

- Go Rab
- Preemp
- 3. Reduce
- High ov in and d
- **5. Effectiv** interval

equency uce dynamic

erhead Is needed) riendly

State-of-the-Art

Earliest Deadline First 2 Algorithm 3 CPU **ACTIVE Transition** Sleep **EDF** 1 **Procrastination** 2 Algorithm 3 **CPU ACTIVE** Sleep Transition **LC-EDF**

- 1. Applied to static priority algorithms (LC-DP)
- 2. Combines sleep states with DVFS

Assumptions

- 1. External specialized hardware
- 2. Convex power model
- 3. Continuous spectrum of available frequencies
- 4. Negligible time/energy overhead
- 5. Dynamic power >> static power consumption
- 6. Future task release information

System Model

- RBED Frame Work
 - For HRT/SRT ---> Periodic Budget = WCET
 - For BE Tasks ---> Periodic Budget ≤ WCET

Break-Even-Time

Static Limit for Sleep State

Slack Management

- Static Slack
 - Spare capacity in the schedule
- Dynamic Slack
 - Execution Slack
 - Difference between WCET and actual execution
 - Sporadic Slack
 - Inter-arrival delay (Sporadic Delay)

CISTER

Slack Management Algorithm

ERTH Algorithm

Condition 1= Slack > Static Limit && RT Task

Condition 2= $Slack \ge Static \ Limit \&\& \ BE \ Task$

 Initiate sleep for static limit

SYSTEM IDLE

If(Condition 1)

Sleep for Static
Limit

RT TASK

If(Condition 2)

Evaluate sleep interval

BE TASK

Sleep Interval for BE Task

Offline and Online Overhead

Experimental Setup -1

Results-1

Progress Till Now

- Work in progress paper to WTR
 - 24/05/2010
- Work in progress paper to RTAS
 - 15/03/2011
- Conference paper to ECRTS
 - 06/06/2011
- Conference paper to RTCSA 2011
 - (Together With Borislav submitted on 22/04/2011)

Future Directions

- Submit the Journal version of this paper
 - Extension of the same algorithm with prior release information
 - Journal of Real-Time Systems 01/09/2011

- Extend this technique for Device power management (DPM)
 - RTAS 10/10/2012

Future Directions

- Offline analysis to select most efficient sleep state based on available workload
 - Almost Complete
- Bounding Number of preemptions with sleep states
 - ECRTS 01/2012
- Power management for partitioned Multicores
 - RTSS 05/2012

Conclusion

- DVFS is diminishing
- Sleep states are emerging
 - Reduced overhead (Energy/Time)
- ERTH
 - Reduces online overhead
 - Energy gains
 - A practical approach

Questions and Comments

