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Introduction

More resources to increase speed of
processing : Employ multiprocessors

Minimize dependency between tasks to
exploit parallelism

Generally true, but some exceptions (or
anomalies do exist)

Good to know about these exceptions when
we allocate resources



System Model

— N identical processing units P, {i=1..n}
— Set of tasks T, {i=1..n}

— Partialorder < on T

* If T, <T, then T, cannot be started until T, has been
completed.

— Function p: T=>(0,°°)
* Task T, takes u(T;) units of time
— Tasks are run to completion and not interrupted

— Sequence L= (T,,..., T,) contains Tasks ready to be
executed . Also called priority list



System description

Processors : scan the list when idle

Search for tasks which are ready to be
executed

— Have no precedence constraints

— 2 processors scan list L together ?
e Assign task to the processor with the smaller index

If no tasks ready processors becomes idle
— (We say that it executes an empty task ¢)

Finishing time w : Time at which all tasks are
completed



Example to illustrate anomalies

Example n =3;L = (T}, T,, ---, Tg).
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Decreasing computation times

(iii) Decrease u to u' by defining (T} = u(T) — 1 for all i. In this case
G(<<, i) becomes
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with o' = w'(L, i, <, n) = 13.



Relaxation of precedence constraints

Change < to <’ by removing T, = Ts and T, — T;.
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and o' = o’ (L, y, <',n) = 16.



Increasing the number of processors

(1v) Increase n from 3 to 4. Then
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and @' = 15.



Observations

* The finishing time can increased even after
— Relaxing the precedence constraints
— Increasing the number of processors or
— Decreasing the computation time



Theorem 1

Case 1:

* Given aset of T tasks

e Afunction pu, a partial order <

« Alist L, nidentical processors,

* o the finishing time for this task set

Case 2:

* Giventhe same set T of tasks asin Case 1

* Afunction yu' <, apartial order < which 1s a subset of <
« AlistL’,n" 1dentical processors,

' the finishing time for this task set

Then o< o 1+(n-1)/n")



Some observations

=1{ Y W)+ ) wie)

M Tyer oD’

), K s i —1) Z

9;eD’ k=

\

sum (in time units) of empty tasks

}

T gTB P4
3 4 8
T2| TS T9
2 4 9
Ts. Ty 0,
2 4 9
T"I-J_ T? (Pi'.
27 4 9



Proof of the theorem

(1) G, <71, < <T, <'T,

in D’ such that at every time t € B, some T;, is being executed. We say that this chain
covers B. The important thing to notice about this chain is

(2) 2 M) =@ — 1) 3 w(T;),
preD’ k=1

where the left-hand sum is over all empty tasks ¢} in D’. But (1) and the hypothesis
<" = < imply )

3) 5, <71, < <71, <T.
Thus
4) w= > Ty = 3 w(Ty).
k=1 k=1
Consequently, by (2) and (4),
1
(5) @' = —,{ >, wW(h) + > n’(fpi)}
i { TyeT @ieD’

= %{nm + (n" — 1w).

From this we obtain

(6) =1+

and the theorem is proved.



Theorem 1 (Contd..)

w' <w( 1+(n-1)n")
 Forn=1, then w'is never greater than w
* Forn>1, w'can be greater than w even
though n' 1s very high
* Forn=n'the ratio w’/ w goes to (2-1/n)



Theorem 2: When no precedence
constraints exist

Tasks can execute when ready

Consider r tasks

Let ®, be the finishing time for the task set
Let oy be the minimum possible finishing time

Algo: A free processor always starts to execute
the longest unexecuted task

Then the best possible bound Is
o <o, ( (4/3)-1/n)



An example

Let n = 3,
Numtasks=r=2*n+1=7

= (T, T, T, T, Te,T¢,T5) with execution times
L=(5 5,4,4,3,3,3)
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w, = 4*n-1=4*3-1=11 Wy =3"N=3*3 =9



Task set

To show that this bound is best possible, we consider the following set of task
lengths: o = W(T)
(ty,000, - a)=02n—1,2n—-1,2n —2,2n—2,---,n+ 1,n+ 1,n,n,n),

where r = 2n + 1. Specifically we have
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Example task set (contd..)
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Theorem 3

No precedence constraints

For a integer k 20, chose k longest tasks of the
taskset T={T,T,....T)

Arrange them in a list L to get the optimal
solution w, for the k tasks

Extend L to a sequence containing all
remaining r-k tasks by adjoining them
arbitrarily to form the the list L(k)

Let w(k) denote the finishing time of this task
set



Theorem 3 (Contd..)

* Let w, denote the min possible finishing time

* Then

@*:14_ 1—1/!’!.

wy 1+ [k/n]

This bound is best possible for k=0(mod n)
Note : If k = 0 then

(0) i

< ? — - As in theorem 1 for n=n"

Wy n



An example

e letn=3, k=3
e Numtasks =r=k+1+n*(n—1)=4+6=10
e n=(3,3,3,3,1,1,1,1,1,1)
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w (k) =k +2*n-1 = 3+6-1 = 8 Wo=k+n=3+3 =6



An example task set

To show that this bound is best possible when k = () (mod n) we present the
following example : Define ¢;for I i<k + 1+ n(n - 1) by

nfor1Sisk+1,
Clfork+2<i<k+1+nn-1)

For this set of tasks and the list L(k) = (T}, -+, T, Tt 25+, Tes 14na-10> Tt 1)
we have o(k) = k + 2n — 1. Since wy = k + n,
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etn=3
letk=3
Let r = 10 (No of tasks = k+1+n*(n-1))




End-notes

This paper was presented in 1969 in the siam

(Society for Industrial and Applied Mathematics ) Journal on
Applied Mathematics

A Sequel to this was presented in 1972 by the same author
Presented some anomalies

Provided some algorithms for tasks assignments to processors
and these could be used in different fields.



