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Introduction

• More resources to increase speed of 
processing  : Employ multiprocessors

• Minimize dependency between tasks to 
exploit parallelism

• Generally true, but some exceptions (or 
anomalies do exist)

• Good to know  about these exceptions when 
we allocate resources



System Model

– N  identical processing units  Pi {i=1..n}
– Set of tasks Ti {i=1..n}
– Partial order  <  on  T 

• If Ti < Tj then Ti cannot be started until Tj has been 
completed.

– Function μ : T→(0,∞) 
• Task Tj takes μ(Tj)  units of time 

– Tasks are run to completion and not interrupted 
– Sequence L = (Ti1,. . . , Tir)  contains Tasks ready to be   

executed .  Also called priority list 



System description

• Processors : scan the list when idle

• Search for tasks which are ready to be 
executed 

– Have no precedence constraints
– 2 processors  scan list L together ? 

• Assign   task  to  the processor with the smaller index

• If no tasks ready processors becomes idle  
– (We say that it executes an empty task φ)

• Finishing time ω : Time at which all tasks are 
completed



Example to illustrate anomalies



Decreasing computation times 



Relaxation of precedence constraints



Increasing the number of processors



Observations

• The finishing time  can increased even after
– Relaxing the precedence constraints
– Increasing the number of processors or 
– Decreasing the computation time



Theorem 1 

Case 1 : 

• Given a set of T tasks

• A function μ , a partial order <

• A list L , n identical processors,

• ω  the finishing time  for this  task set

Case 2 : 

• Given the same set T of tasks  as in Case 1

• A function μ′ ≤ μ , a partial order <′ which is a subset of < 

• A list L′, n′  identical processors,

• ω′  the finishing time for this  task set

Then          ω′ ≤  ω (  1+( n-1)/n′ )



Some observations

sum (in time units) of empty tasks 



Proof  of the theorem



Theorem 1 (Contd..)

ω′ ≤ ω(  1+( n-1)/n′ )

• For n = 1, then ω′ is  never greater than ω

• For n > 1, ω′ can be greater than ω even 

though n′ is very high 

• For n = n′ the ratio ω′/ ω goes to (2-1/n) 



Theorem 2: When no precedence 
constraints exist 

• Tasks can execute when ready

• Consider r tasks

• Let  ωL be the finishing time for the task set

• Let ω0 be the minimum possible finishing time

• Algo: A free processor always starts to execute 

the longest unexecuted task

• Then the best possible bound is

ωL ≤ ω0 (  (4/3) - 1/n )



An example 

• Let n = 3, 

• Num tasks = r= 2*n + 1 = 7

• T= (T1,T2, T3, T4,T5,T6,T7) with execution times

• μ = (5,  5 , 4 , 4, 3, 3, 3)

T1 / 5 T 5 /3     T7/3

P 1

P2

P3

T2 / 5 T6/3       φ1

T3 / 4 T4/ 4          φ2                    

ωL = 4*n-1 = 4*3-1 = 11

P 1

P2

P3

T1 / 5 T 3 /4     

T2 / 5 T 4 /4    

T5/ 3 T6 /3  T7/3

ω0 = 3*n = 3*3  = 9



Task set   



Example task set (contd..)



Theorem 3 

• No precedence constraints

• For a integer k ≥0, chose k longest tasks of the 
task set T = {T1,T2 .... Tr) 

• Arrange them in a list L to  get the optimal 
solution ωk for the k tasks

• Extend L to a sequence containing all 
remaining r-k  tasks  by adjoining them 
arbitrarily to form the the list L(k)

• Let ω(k) denote the finishing time of this task 
set 



Theorem 3 (Contd..)

• Let ω0 denote the min possible finishing time

• Then  

This bound is best possible for k=0(mod n)

Note : If k = 0 then 

As in theorem 1 for n=n´



An example 

• Let n = 3, k=3

• Numtasks = r= k+1 + n*(n – 1) = 4+6 = 10

• μ = (3,3,3,3,1,1,1,1,1,1)

3 1   1  3

ω (k) = k +2*n-1 = 3+6-1 = 8 

P 1

P2

P3

3 3     

ω0 = k+n = 3 +3  = 6

3 1   1    φ1

3 1  1   φ2

P 1

P2

P3

3 3     

1 1  1 1  1 1



An example task set



• Let n = 3

• Let k = 3

• Let r = 10 (No of tasks = k+1+n*(n-1))



End-notes 

• This paper  was presented in 1969 in the  SIAM 

(Society for Industrial and Applied Mathematics ) Journal on 
Applied Mathematics  

• A Sequel to this was presented in 1972 by the same author

• Presented some anomalies

• Provided some algorithms for tasks assignments to processors

and these could be used in different fields. 


