Bounds on Multiprocessing
Timing Anomalies

R. L. Graham
Presented by
Dakshina Dasari

Outline of the presentation

Introduction

System model

Examples of Anomalies in multiprocessors
Bounds for some cases

Conclusion

Introduction

More resources to increase speed of
processing : Employ multiprocessors

Minimize dependency between tasks to
exploit parallelism

Generally true, but some exceptions (or
anomalies do exist)

Good to know about these exceptions when
we allocate resources

System Model

— N identical processing units P, {i=1..n}
— Set of tasks T, {i=1..n}

— Partialorder < on T

* If T, <T, then T, cannot be started until T, has been
completed.

— Function p: T=>(0,°°)
* Task T, takes u(T;) units of time
— Tasks are run to completion and not interrupted

— Sequence L= (T,,..., T,) contains Tasks ready to be
executed . Also called priority list

System description

Processors : scan the list when idle

Search for tasks which are ready to be
executed

— Have no precedence constraints

— 2 processors scan list L together ?
e Assign task to the processor with the smaller index

If no tasks ready processors becomes idle
— (We say that it executes an empty task ¢)

Finishing time w : Time at which all tasks are
completed

Example to illustrate anomalies

Example n =3;L = (T}, T,, ---, Tg).

Ti/3 O O Ty/9
O T/4
G<,p: 22O O T,/4
T3/2 O O Ty/4
: T,/2 O Ty/4
'Tl 1 TQ [
3 | 9 1
T, T. T T
D: ;’.;ﬂ 45 4 ; —, =12
T‘;'. [P Tﬁ | Tﬁ |
2 2 4 4

Decreasing computation times

(iii) Decrease u to u' by defining (T} = u(T) — 1 for all i. In this case
G(<<, i) becomes

T1/2 O —O Tgfg
T/1 O O Ty/3
O Tg/3
L/1 O O T,/3
T,/1 »O Tg/3
and
T, i T Ty . P3 |
5 T 3 1 3 T 5 |
. 2fay Ts | Ty L
. 1I1 | 3] 8 I
ﬁfpll TT I P2 I
11 3 8

with o' = w'(L, i, <, n) = 13.

Relaxation of precedence constraints

Change < to <’ by removing T, = Ts and T, — T;.

Tl Il T:f: I T"J I

3 4 9
Dr . Tl' : T4 = T? | {pl |
2727 4] 8 |
T3 I TS i Tﬂ I P2 I
2 4 4 6 |

and o' = o’ (L, y, <',n) = 16.

Increasing the number of processors

(1v) Increase n from 3 to 4. Then

T! i TE i {P 1 i
3 | 4 I 8 1
Tl I 'Tlﬁ I TEF 1
2 ' 4 ' 9 *
T3 IT’:E [P2 I
2 I 4 I 9 |
T-;I- |[T:.-" I P3 |
2 4 | 9 |

and @' = 15.

Observations

* The finishing time can increased even after
— Relaxing the precedence constraints
— Increasing the number of processors or
— Decreasing the computation time

Theorem 1

Case 1:

* Given aset of T tasks

e Afunction pu, a partial order <

« Alist L, nidentical processors,

* o the finishing time for this task set

Case 2:

* Giventhe same set T of tasks asin Case 1

* Afunction yu' <, apartial order < which 1s a subset of <
« AlistL’,n" 1dentical processors,

' the finishing time for this task set

Then o< o 1+(n-1)/n")

Some observations

=1{ Y W)+) wie)

M Tyer oD’

), K s i —1) Z

9;eD’ k=

\

sum (in time units) of empty tasks

}

T gTB P4
3 4 8
T2| TS T9
2 4 9
Ts. Ty 0,
2 4 9
T"I-J_ T? (Pi'.
27 4 9

Proof of the theorem

(1) G, <71, < <T, <'T,

in D’ such that at every time t € B, some T;, is being executed. We say that this chain
covers B. The important thing to notice about this chain is

(2) 2 M) =@ — 1) 3 w(T;),
preD’ k=1

where the left-hand sum is over all empty tasks ¢} in D’. But (1) and the hypothesis
<" = < imply)

3) 5, <71, < <71, <T.
Thus
4) w= > Ty = 3 w(Ty).
k=1 k=1
Consequently, by (2) and (4),
1
(5) @' = —,{ >, wW(h) + > n’(fpi)}
i { TyeT @ieD’

= %{nm + (n" — 1w).

From this we obtain

(6) =1+

and the theorem is proved.

Theorem 1 (Contd..)

w' <w(1+(n-1)n")
 Forn=1, then w'is never greater than w
* Forn>1, w'can be greater than w even
though n' 1s very high
* Forn=n'the ratio w’/ w goes to (2-1/n)

Theorem 2: When no precedence
constraints exist

Tasks can execute when ready

Consider r tasks

Let ®, be the finishing time for the task set
Let oy be the minimum possible finishing time

Algo: A free processor always starts to execute
the longest unexecuted task

Then the best possible bound Is
o <o, ((4/3)-1/n)

An example

Let n = 3,
Numtasks=r=2*n+1=7

= (T, T, T, T, Te,T¢,T5) with execution times
L=(5 5,4,4,3,3,3)

T,/5 | Tg/3 1 T3 oqlo Tsld
i T,/5 T,/4
T2/5 T¢/3 |(D1_ | P2 2 | 4 |
P2 |
Tg/3 T3 T
oyl Tal4 | TJ4 | @, | P3 5/3: 6/317/3 :

w, = 4*n-1=4*3-1=11 Wy =3"N=3*3 =9

Task set

To show that this bound is best possible, we consider the following set of task
lengths: o = W(T)
(ty,000, - a)=02n—1,2n—-1,2n —2,2n—2,---,n+ 1,n+ 1,n,n,n),

where r = 2n + 1. Specifically we have

k+1
Gfk:zﬂ—li—";—_“‘—], k=1,"',2ﬂ, and Aop+1 = N

In this case

oy Ay X2p+1
P, .
&2 o Ugp—1
D;: | I
X3 Xop—2
. wy = 4“ — 1,
| I
aﬂ"l cxn+2
| |
Pn | |

Example task set (contd..)

| |
Pl | |
oy ®ap-2
| |
P, |
L) Olap-13
D .
ﬂ+
. we = 3n,
| I
I I
Xpy—2 %+ 1
| -+
'In‘l &n
| | 1
P, | | 1
'IZH—I IIZH t.':'tr21|t+1
wy =4n — 1, we = 3n,

Theorem 3

No precedence constraints

For a integer k 20, chose k longest tasks of the
taskset T={T,T,....T)

Arrange them in a list L to get the optimal
solution w, for the k tasks

Extend L to a sequence containing all
remaining r-k tasks by adjoining them
arbitrarily to form the the list L(k)

Let w(k) denote the finishing time of this task
set

Theorem 3 (Contd..)

* Let w, denote the min possible finishing time

* Then

@*:14_ 1—1/!’!.

wy 1+ [k/n]

This bound is best possible for k=0(mod n)
Note : If k = 0 then

(0) i

< ? — - As in theorem 1 for n=n"

Wy n

An example

e letn=3, k=3
e Numtasks =r=k+1+n*(n—1)=4+6=10
e n=(3,3,3,3,1,1,1,1,1,1)

P1 3 |1|1|3 | 3 I 3 |
T | P1

P2 3 |1| 1| | 3 ! 3'
P P2 | |

P3 3 i li 1i (pzi P3 1I1I1I1I1I1I

w (k) =k +2*n-1 = 3+6-1 = 8 Wo=k+n=3+3 =6

An example task set

To show that this bound is best possible when k = () (mod n) we present the
following example : Define ¢;for I i<k + 1+ n(n - 1) by

nfor1Sisk+1,
Clfork+2<i<k+1+nn-1)

For this set of tasks and the list L(k) = (T}, -+, T, Tt 25+, Tes 14na-10> Tt 1)
we have o(k) = k + 2n — 1. Since wy = k + n,

o) k+di-1_n-1 -1

o

P T T A T

etn=3
letk=3
Let r = 10 (No of tasks = k+1+n*(n-1))

End-notes

This paper was presented in 1969 in the siam

(Society for Industrial and Applied Mathematics) Journal on
Applied Mathematics

A Sequel to this was presented in 1972 by the same author
Presented some anomalies

Provided some algorithms for tasks assignments to processors
and these could be used in different fields.

