
COMPUTING NEEDS TIME
EDWARD LEE, UC BERKELEY (2009)

Presented by Ricardo Severino (CISTER/ISEP)

OVERVIEW

� CPS and current status of embedded systems

� Requirements to enable CPS

� Timing and today’s computing abstractions

� Interesting aphorisms

� Solutions

� Final Remarks

CPS – CYBER-PHYSICAL SYSTEMS

� Today uP are embedded in systems such as:

� Cars, industrial robots, toys, games, medical

devices, etc.

� Tomorrow, in everyday life objects.

� There is a tight interaction with a physical

process by sensing and actuating actionsprocess by sensing and actuating actions

� “Orchestration of networked computational

resources with physical processes”.

ANOTHER CPS EXAMPLE (PRINTING PRESS)

� High speed and high precision machine

� Speed (1 inch/ms)

� Ink precision (0.01 inch)

� Time accuracy 10us

� Hundreds of controllers

� Thousands of sensors� Thousands of sensors

� Communications

� Ethernet (1588 time-sync protocol)

� What if a failure occurs (paper
jam)

� Power down is not na option

� Must have

� Models of the physical process as a part of the software

� Precise time control of the network

CPS – CYBER-PHYSICAL SYSTEMS

� Today uP are embedded in systems such as:

� Cars, industrial robots, toys, games, medical

devices, etc.

� Tomorrow, in everyday life objects.

� There is a tight interaction with a physical

process by sensing and actuating actionsprocess by sensing and actuating actions

� “Orchestration of networked computational

resources with physical processes”.

� They are becoming networked and intelligent,

however sometimes at the cost of dependability.

� Increasing lack of confidence in technology.

What?! Houston, we have a problem!

THE “LOW-FI” ERA

� Computers now

� integrate media such as video and audio

� In handheld platforms – Sense physical dynamics and control
physical devices. ”Baah, not works good.”

� However, they don’t do it very well, do they?

� Video quality we get in the internet can be sometimes worse � Video quality we get in the internet can be sometimes worse
than television broadcast in the 1950’s.

� Audio quality in many telephone connections – voice is
incomprehensible. First digital telephony systems in the
1960’s were better!

� In set-top boxes, designers discard many innovation of the
last 30 years of computing (no OS, no high-level
programming languages, no memory management, nor
abstractions that hide temporal properties on their interfaces.
(Time is not irrelevant).

What is wrong with this picture?!

CPS/TRADITIONAL SYSTEMS

� Traditional Embedded systems

� Embedded software on small computers

� Concerned about optimizing the use of limited

resources.

� CPS� CPS

� Computation and networking integrated with physical

processes

� Concerned about managing dynamics, time and

concurrency.

� All components are tightly coupled, so they must be

jointly designed.

SYSTEMS RELIABILITY (1)

� Embedded systems have been held to a higher
reliability standard than general-purpose computing
(we do not expect TV to crash and reboot)

� Computer means higher reliability and efficiency.

� Design analysis - predictability

Test under different operating conditions - repeatability� Test under different operating conditions - repeatability

� CPS – expect even higher reliability (traffic control,
automotive safetyE)

� Simplest C program not predictable nor repeatable
because

“The design does not express aspects of the behavior
that are essential to the system”

SYSTEMS RELIABILITY (2)

� Exact match with C semantics and still fails to

deliver behavior nedded by the system!

� Timing deadlines – NOT in C semantics

� Failure of abstraction

� A predictable and repeatable component fails in the � A predictable and repeatable component fails in the

dimensions that matter.

BUT STILLE

� We can move outside C and use OS primitives for

I/O

� But then we get non-deterministic behavior

� Must use semaphores, locks, priorities, inter-

process communicationprocess communication

� harder to test and can produce brittle systems.

� A small change in the design can cause major problems

in the system.

THE AIRCRAFT

� Boeing 777 aircraft (fly-by-wire)

� A slight change to the harware may affect timing and

require re-certification

Software certification: Aircraft model life span: Software certification:

1 billion US dollars

Aircraft model life span:

50 years

50 years stockpile

hardware components

that execute the software

Relying on

uProcessors

designed in the 90’s

in 2030

ABSTRACTIONSE

� “Today’s computing

and networking

technologies

unnecessarily

impede theimpede the

progress towards

CPS applications.”

OK, BUT WHY?!

� Nearly every abstraction has failed!

� The ISA - ISA users care about timing properties ISA

cannot express. (WCET in modern processors)

� The programming language – no widely used

programming language expresses timing properties. programming language expresses timing properties.

Timing is an accident of implementation.

� A realtime operating system - fails if the timing of the

underlying platform is not repeatable or execution times

cannot be determined.

� The network - most standard networks provide no timing

guarantees and fail to provide an appropriate

abstraction.

WHERE DOES THIS PROBLEM COMES FROM?

� Is this problem intrinsic to technology?

� Electronics technology delivers highly repeatable and

precise timing!

� Yet, overlaying abstractions discard itE

BY CHOICE!BY CHOICE!

There is a call for a fundamental change in the core

abstractions of computing!

INTERESTING APHORISMS (1)

� “Time is a non-functional property”

� What is the function of a program?

� Turing-Church: finite composition of functions whose domain

and codomain are a set of sequences of bits.

� CPS: Defined by its effect in the physical world. Here domain

and codomain of the function are not sequences of bits.and codomain of the function are not sequences of bits.

� Why insisting in a wrong definition of “function”?

� A program is a sequence of input/output events for

many system designers (OS, web servers, comm.

Protocols).

� Elevate this view to the application programmer and

augmented with temporal dynamics.

INTERESTING APHORISMS (2)

� “Real-Time is a quality of service problem”

� Everybody wants quality!

� In general-purpose computing: Execution time =

performance.

� In embedded systems: Less time is not better that more � In embedded systems: Less time is not better that more

time! (e.g. firing engine spark plugs earlier will not make

it more performant)

� CPS requires repeatable timing behaviour far more

than optimized performance.

� QoS problems are Timing Precision and Variability.

SOLUTIONS (1)

� Computer Architecture

� ISA provides different performance without losing
compatibility with existing harware. (1960’s – IBM360)

� Today’s ISAs hide most temporal properties of underlaying
hardware.

� Extend ISA with timing properties.� Extend ISA with timing properties.

� “Achieving timing precision is easy if system designers
are willing to forgo performance”;

� although cache memories may introduce unacceptable timing
variability, cost-effective system design cannot do without
memory hierarchy.

� Challenge: provide memory hierarchy with repeatable timing.

� Similar challenges apply to pipelining, bus architectures, and
I/O mechanisms.

SOLUTIONS (2)

� Programming languages

� Abstraction layer above ISA

� We need to reflect the underlaying temporal properties

in the language semantics

� Annotate programs can be a faster solution than creting� Annotate programs can be a faster solution than creting

a new language.

� Another idea is to integrate other domain specific

languages with temporal semantics such as Simulink or

LabVIEW, into engineering processes.

SOLUTIONS (3)

� Software components

� Data abstraction, object orientation, and component

libraries made it easier to design large complex

systems.

� Most of these component tech. Do not export temporal

properties in the APIs.

� Could provide na interesting alternative to real-time

programming languages.

� New coordenation languages, with components based

in (Java/c++) may be more likely to gain acceptance.

SOLUTIONS (4)

� Formal Methods
� User mathematical models to infer and prove properties of

systems

� Several approaches that handle temporal dynamics
� Temporal logics

� Process algebras

Timed-automata� Timed-automata

� However, properties not formally specified cannot be
formally verified. (e.g. software timing behaviour, is not
expressed in software, must be separately specified)
� Breaks connection with implementation.

� All depends on
� progress on programming languages

� Scalability to realistic systems

SOLUTIONS (5)

� Networking

� Timing behaviour is viewed as QoS problem

� designers of time-sensitive applications on general-

purpose networks (such as voice over IP) struggle with

inadequate control over network behavior.

� Meanwhile, FlexRay and TTA (time-triggered

architecture) emerged to provide timeliness as

correctness property.

� Introducing timing into networks as a semantic

property rather than a QoS problem will lead to an

explosion of new time-sensitive applications

FINAL REMARKS

� To realize the potential of CPS core abstractions of

computing must be rethought.

� Semantic models must reflect the properties of

interest of the physical processes.

� Timing properties must become a correctness� Timing properties must become a correctness

criteria and not a QoS measure.

� Timing in programs and networks must be

repeatable and predictable as technologically

feasible at reasonable cost.

THANK YOU FOR YOUR INTEREST!

Ricardo Severino

<rars@isep.ipp.pt>

