COMPUTING NEEDS TIME
. EDWARD LEE, UC BERKELEY (2009)

o Presented by Ricardo Severino (CISTER/ISEP)

OVERVIEW

CPS and current status of embedded systems
Requirements to enable CPS

Timing and today’s computing abstractions
Interesting aphorisms

Solutions

Final Remarks

CPS — CYBER-PHYSICAL SYSTEMS

o Today uP are embedded in systems such as:

» Cars, industrial robots, toys, games, medical
devices, etc.

» Tomorrow, in everyday life objects.

o There is a tight interaction with a physical
process by sensing and actuating actions

o “Orchestration of networked computational
resources with physical processes”.

ANOTHER CPS EXAMPLE (PRINTING PRESS)

High speed and high precision machine
Speed (1 inch/ms)
Ink precision (0.01 inch)
o Time accuracy 10us
Hundreds of controllers
Thousands of sensors

Communications
Ethernet (1588 time-sync protocol) .|

What if a failure occurs

jam) 1 MR) B
Power down is not na option al T

Bosch-Rexro th =
Must have

Models of the physical process as a part of the software
Precise time control of the network

CPS — CYBER-PHYSICAL SYSTEMS

o Today uP are embedded in systems such as:

» Cars, industrial robots, toys, games, medical
devices, etc.

» Tomorrow, in everyday life objects.

o There is a tight interaction with a physical
process by sensing and actuating actions

o “Orchestration of networked computational
resources with physical processes”.

o They are becoming networked and intelligent,
however sometimes at the cost of dependability.

o Increasing lack of confidence in technology.
What?! Houston, we have a problem!

THE “Low-FI” ERA

Computers now
integrate media such as video and audio

In handheld platforms — Sense physical dynamics and control
physical devices. "Baah, not works good.”

However, they don't do it very well, do they?

Video quality we get in the internet can be sometimes worse
than television broadcast in the 1950’s.

Audio quality in many telephone connections — voice is
incomprehensible. First digital telephony systems in the
1960’s were better!

In set-top boxes, designers discard many innovation of the
last 30 years of computing (no OS, no high-level
programming languages, no memory management, nor
abstractions that hide temporal properties on their interfaces.
(Time is not irrelevant).

What is wrong with this picture?!

CPS/TRADITIONAL SYSTEMS

Traditional Embedded systems
Embedded software on small computers

Concerned about optimizing the use of limited
resources.

CPS
Computation and networking integrated with physical
processes
Concerned about managing dynamics, time and
concurrency.
All components are tightly coupled, so they must be
jointly designed.

SYSTEMS RELIABILITY (1)

Embedded systems have been held to a higher
reliability standard than general-purpose computing
(we do not expect TV to crash and reboot)

Computer means higher reliability and efficiency.

Design analysis - predictability

Test under different operating conditions - repeatability
CPS - expect even higher reliability (traffic control,
automotive safety...)

Simplest C program not predictable nor repeatable
because

“The design does not express aspects of the behavior
that are essential to the system”

SYSTEMS RELIABILITY (2)

o Exact match with C semantics and still fails to
deliver behavior nedded by the system!

» Timing deadlines — NOT in C semantics

o Failure of abstraction

o A predictable and repeatable component fails in the
dimensions that matter. .

BUT STILL...

We can move outside C and use OS primitives for
/O

But then we get non-deterministic behavior

Must use semaphores, locks, priorities, inter-
process communication
harder to test and can produce brittle systems.

A small change in the design can cause major problems
In the system.

THE AIRCRAFT

o Boeing 777 aircraft (fly-by-wire) ..
» A slight change to the harware may affect timing and
require re-certification

Software certification: Aircraft model life span:
1 billion US dollars 50 years

90 years stockpile

hardware components Relying on

that execute the software uProcessors
designed in the 90’s

ABSTRACTIONS...

“Today’'s computing
and networking
technologies
unnecessarily
iImpede the
progress towards
CPS applications.”

=1

actor-oriented X
performance Phdel—, !
:-ﬂ"IﬂdE],S-r-""r_ \Eﬂglx \Unu [processes

\ /" _ threads \){\ . fask-level models
v kT
]

'\E pmgrarm:
synthesizable
YHDL programs

VHDL programs

)

=

]
cell
1 . designs
FPGA configurations \
x86 programs
a

[executabfb;s /\
A N

\ ASICchips \ P4-M 1.6GHz

microprocessors

I o

l silicon chips

OK, BUT WHY?!

Nearly every abstraction has failed!

The ISA - ISA users care about timing properties ISA
cannot express. (WCET in modern processors)

The programming language — no widely used
programming language expresses timing properties.
Timing is an accident of implementation.

A realtime operating system - fails if the timing of the
underlying platform is not repeatable or execution times
cannot be determined.

The network - most standard networks provide no timing
guarantees and fail to provide an appropriate
abstraction.

WHERE DOES THIS PROBLEM COMES FROM?

Is this problem intrinsic to technology?

Electronics technology delivers highly repeatable and
precise timing!

Yet, overlaying abstractions discard it...

BY CHOICE!

There is a call for a fundamental change in the core
abstractions of computing!

e

D Flip-Flop equivalent circuit

Rl EE G aRuEgpaaRRiingadanagy
IE:I:-.-__ ""'"'"".-"" '_:-:Fr' "._"""'"

| r__,_:.'::

bl i
S

YOURHIOING RN

INTERESTING APHORISMS (1)

“Time is a non-functional property”

What is the function of a program?

o Turing-Church: finite composition of functions whose domain
and codomain are a set of sequences of bits.

o CPS: Defined by its effect in the physical world. Here domain
and codomain of the function are not sequences of bits.
Why insisting in a wrong definition of “function™?

A program is a sequence of input/output events for

many system designers (OS, web servers, comm.
Protocols).

Elevate this view to the application programmer and
augmented with temporal dynamics.

INTERESTING APHORISMS (2)

“Real-Time is a quality of service problem”
Everybody wants quality!

In general-purpose computing: Execution time =
performance.

In embedded systems: Less time is not better that more
time! (e.qg. firing engine spark plugs earlier will not make
it more performant)

CPS requires repeatable timing behaviour far more
than optimized performance.

QoS problems are Timing Precision and Variability.

SOLUTIONS (1)

Computer Architecture

ISA provides different performance without losing
compatibility with existing harware. (1960’s — IBM360)

Today’s ISAs hide most temporal properties of underlaying
hardware.

Extend ISA with timing properties.

“Achieving timing precision is easy if system designers
are willing to forgo performance”;
although cache memories may introduce unacceptable timing

variability, cost-effective system design cannot do without
memory hierarchy.

Challenge: provide memory hierarchy with repeatable timing.

Similar challenges apply to pipelining, bus architectures, and
I/O mechanisms.

SOLUTIONS (2)

Programming languages
Abstraction layer above ISA

We need to reflect the underlaying temporal properties
In the language semantics

Annotate programs can be a faster solution than creting
a new language.

Another idea is to integrate other domain specific
languages with temporal semantics such as Simulink or
LabVIEW, into engineering processes.

SOLUTIONS (3)

Software components

Data abstraction, object orientation, and component

libraries made it easier to design large complex

systems.

Most of these component tech. Do not export temporal

properties in the APIs.

o Could provide na interesting alternative to real-time
programming languages.

New coordenation languages, with components based

in (Java/c++) may be more likely to gain acceptance.

SOLUTIONS (4)

Formal Methods
User mathematical models to infer and prove properties of
systems

Several approaches that handle temporal dynamics
Temporal logics
Process algebras
Timed-automata

However, properties not formally specified cannot be

formally verified. (e.g. software timing behaviour, is not
expressed in software, must be separately specified)

Breaks connection with implementation.
All depends on

progress on programming languages

Scalability to realistic systems

SOLUTIONS (5)

Networking
Timing behaviour is viewed as QoS problem

designers of time-sensitive applications on general-

purpose networks (such as voice over IP) struggle with

Inadequate control over network behavior.
Meanwhile, FlexRay and TTA (time-triggered
architecture) emerged to provide timeliness as
correctness property.

Introducing timing into networks as a semantic
property rather than a QoS problem will lead to an
explosion of new time-sensitive applications

FINAL REMARKS

To realize the potential of CPS core abstractions of
computing must be rethought.

Semantic models must reflect the properties of
interest of the physical processes.

Timing properties must become a correctness
criteria and not a QoS measure.

Timing in programs and networks must be
repeatable and predictable as technologically
feasible at reasonable cost.

THANK YOU FOR YOUR INTEREST!

Ricardo Severino
<rars@isep.ipp.pt>

