
TOWARDS CONTROLLABLE 
DISTRIBUTED REAL-TIME SYSTEMS WITH 

FEASIBLE UTILIZATION CONTROL

1

Presented by: Aida Ehyaei

X.WANG, Y. CHEN, C. LU, X. KOUTSOUKOS



Outline

� Introduction

� System Model

� Problem Formulation

� Offline Task Allocation Algorithms

2

� Offline Task Allocation Algorithms

� Runtime Analysis and Adjustments

� Implementation and Experimental Results

� Summary



Motivation

� Traditional control approaches 
� rely on accurate knowledge about system workload

� Feedback control solutions 
� based on dynamic feedback

� adapting to workload variations in unpredictable environments 

3

adapting to workload variations in unpredictable environments 

� DRE*systems
� Have unknown and varying workloads

� Due to bursty users, cyber attack, (Aperidic tasks)

*Distributed Real-time Embedded (DRE)



Motivation

� Traditional control approaches 
� rely on accurate knowledge about system workload

� Feedback control solutions 
� based on dynamic feedback

� adapting to workload variations in unpredictable environments 

4

adapting to workload variations in unpredictable environments 

� DRE*systems
� Have unknown and varying workloads

� Due to bursty users, cyber attack, (Aperidic tasks)

*Distributed Real-time Embedded (DRE)

A suitable application for applying A suitable application for applying 

feedback control techniquesfeedback control techniques



Fundamental Problems

� Guaranteeing system controllability

� Caused by lack of enough actuators in the system 

� Guaranteeing system Feasibility

5

� Guaranteeing system Feasibility

� Caused by actuation constraints (e.g., rate constraints of 
periodic tasks in a DRE system)



Representative case study(1/3)

�� Multiprocessor utilization control problemMultiprocessor utilization control problem

� End-to-end utilization control
� Guarantee the end-to-end deadline of all periodic 

tasks in a soft DRE system

6

tasks in a soft DRE system

� End-to-end scheduling: meeting the sub-deadline of 
each subtask
�A well-known approach : 

� CPU utilization of the processor < schedulable utilization 
bound



Representative case study(2/3)

� Tasks with adjustable ranges may run slower to 
lower CPU utilization, keep it under schedulable 
bound

7

� While, a higher task rate 

� A higher value to the application 

� Better system QOS

� Cost: higher CPU utilization



Representative case study(3/3)

� Desirable

� Increase the system value by driving the processor 
utilizations close to the utilization bounds

8

� With controllability and feasibility guarantees

� maximize the system value 

� running all tasks at the highest possible rates without causing 
any deadline misses



Contributions of the paper

� Formulate the controllability and feasibility problem
� As an end-to-end task allocation problem

� Design task allocation algorithms

9

� Develope runtime algorithm to reallocate tasks dynamically 
in response to workload variation

� Integrate the algorithms with a robust real-time middleware

� Present both empirical and numerical results



System Model

� m periodic tasks, n processors

� Each periodic task Ti = a chain of subtasks {Tij} located on 
different processors
� Subtasks run at a same rate with precedence relation 

� Each subtask Tij has an estimated execution time cij available at 
design time

10

ij ij

design time

� Task rate may be dynamically adjusted within a range 

� Rmin,j ≤ rj(k) ≤ Rmax,j (1 ≤ j ≤ m)

� Subtasks may be moved to other processors at runtime

Remote Invocation
Subtask

T1

T2

T3

T11 T12 T13

P1 P2 P3



Dynamic Model

� u(k): utilization control in kth sampling point

� G: diagonal matrix of utilization gains

� The ratio between the actual utilization change and its estimation

F: subtask allocation matrix

u(k+1) = u(k) + GF∆∆∆∆r(k) 

� F: subtask allocation matrix

� models the coupling among processors

� fij = Σcjl for all subtasks Tjl of task Tj on processor Pi
� fij = 0 if Tj has no subtask on Pi

P1

T1

T2

T11

P2

T21
T22

T13

11

T12

P3



Control Matrix
12

� For X(k+1)=PX(k)+QV(k) with 

� n control outputs X and 

� m control inputs V,   � m control inputs V,   

� The controllability matrix is C = [Q PQ … Pn-1Q]



Controllability Problem

� A Controllable DRE system: there exists a sequence of 
task rates that take the utilizations of all processors in 
the system to any desired utilization set-points

� According to the control theory

13

� According to the control theory
� An MIMO System with n control outputs and m control inputs 

is controllable iff the rank of its controllability matrix is n, 
the order of the system

⇒ Guarantee:  
The rank of the controllability matrix (C=[FF… F]n×nm ) = 
n (the number of processors in the system)



Controllability Analysis

� Theorem. A DRE system is controllable if and only if the 
rank of its subtask allocation matrix F is n.
� Corollary. A DRE system with n processors and m end-to-

end tasks is uncontrollable if m < n (a necessary but not 
sufficient condition)

14

� Structurally controllable: if there exists another system 
which is structurally equivalent to the system and is 
completely controllable

� structurally equivalent: there is a one-to-one 
correspondence between the locations of the fixed 
zeros and nonzero items in their controllability matrices



Feasibility Problem (1/2)

� A controllable DRE system is infeasible if it cannot get 
to the set points because the rates of one or more of its 
tasks saturate at the rate boundaries

� Utilization control for a DRE system is practically 
feasible if: 

15

� Utilization control for a DRE system is practically 
feasible if: 

The utilizations of all processors ≤ The desired set points

� Instead of continuously monitoring feasibility and 
migrating subtasks (large runtime overhead)
� Increase the likelihood of the system remaining feasible 

even under variations



Feasibility Problem (2/2)

� The minimum estimated utilization of a processor:

� Feasibility margin

� Bi: Utilization set point of processor Pi (1 ≤ i ≤ n) 

16

� Bi: Utilization set point of processor Pi (1 ≤ i ≤ n) 

� Feasibility problem: 

� Subject to utilization constraint and resource constraint



Algorithm to Increase Feasibility Margin

(1) Enqueue all subtasks Tjl in the order of decreasing umin,jl;
(2) While there is at least one subtask in the queue, 

pop up the first subtask Tjl(which has the largest umin,jl);
For each  processor Pq = cons (Tjl, q++), 

If ucurrent,q + umin,jl ≤ Bq

unew,q = ucurrent,q + umin,jl;

17

unew,q = ucurrent,q + umin,jl;
Feasibility margin of Pq: Bq- unew,q;

Endif;
Endfor;
Allocate Tjl to provessor Pi with the largest feasibility margin;
If Tjl cannot be allocated to any processor, 

Algorithm fails;
Endwhile;



Ensuring controllability

� Dedicate task to each processor.
� A task can only be dedicated to one processor

� Failed to find dedicated tasks for some processors? 
� Migrate subtasks of some non-dedicated tasks from 

other processors to them

18

other processors to them

� Theorem: If every processor in a system has a 
dedicated task, the system is controllable* 

*both a sufficient and a necessary condition for controllability



Algorithm to ensuring controllability

(1) Initializes the two auxiliary matrices E and B and sorts all the processors 
based on their numbers of subtasks

(2) For every processor/task pair in the allocation matrix, search for a 
candidate subtask by assuming that the processor fails to find its dedicated 
task and needs a subtask of this task to be moved to the processor

19

(3) Sort all the existing subtasks of each processor in the E based on their 
minimum estimated utilizations
In B, sort the best candidate subtasks of each processor based on their 
minimum estimated utilizations

(4) Start the dedicating process 
If no task can be dedicated to a processor, move the best candidate subtask 
of the first non-dedicated task to the processor



Pseudo Code For Controlability 
Algorithm (1/2)

20



Pseudo Code For Controlability 
Algorithm (2/2)

21



Runtime Analysis

� Impact of workload variations

22

� Theorem: Processor failure is harmful to controllability if the failed 
processor has more than m-n+2   
� Conditionally harmful

� Any variation that increases system workload may cause the feasibility 
margin to decrease



Runtime Adjustments

� For feasibility
� Execution time variation: handled by feasibility margin
� Task Arrivals: Sort and allocate only the new arriving tasks

in Algorithm 1

23

� For controllability
(1)Remove the terminated task from the allocation matrix;
(2) If this task is not dedicated to a processor,

Algorithm successfully ends;
(3) Else,

For the processor that the terminated task was dedicated to, 
Run step 4 to find a dedicated task;

Endif.



EUCON*: Multi-Input-Multi-Output Control

Model1 min,1 max,1B R R  
  

















)(

)(1

ku

ku

n

M
Distributed System

(m tasks, n processors)

Utilization
Monitor

UM UM

Measured
Output

Rate of 
Tasks

24

















∆

∆

)(

)(1

kr

kr

m

M

Model

Predictive

Controller

1 min,1 max,1

min, max,

,

n m mB R R

  
  
     

M M M

Monitor

Rate
Modulator RM RM

Feedback Loop

Precedence Constraints

Subtask

Control
Input

C. Lu, X. Wang and X. Koutsoukos, Feedback Utilization Control in 
Distributed Real-Time Systems with End-to-End Tasks, IEEE Transactions 
on Parallel and Distributed Systems, 16(6): 550-561, June 2005. 

*An end-to-end utilization control algorithm



FC-ORB Middleware

Feedback lane

Model PredictiveModel Predictive

Controller
















)(

)(

)(

3

2

1

ku

ku

ku
Measured
Output










)(

)(

2

1

kr

krControl
Input

Feasibility 
Handler

Feasibility 
Handler

Controllability 
Handler

Controllability 
Handler

25

Feedback lane

Remote request lanes

Priority 
Manager

Rate
Modulator

Remote request lanes

Utilization 
Monitor

Priority 
Manager

Rate
Modulator

Utilization 
Monitor

Priority 
Manager

Rate
Modulator

Utilization 
Monitor

Utilization set point of every processor : 0.7 



Controllability Experiments

� Workload configuration 
and variations

� (a) Initial task allocation

26

� (b) Allocation after task 
termination (T6 and T7)

� (c) Allocation after 
controllability 
maintenance



Results

� After termination T6 and T7

27

� After controllability maintenance



Feasibility Experiments

� T8, T9, and T10 are arrived at 
time 300×5

� (a) Task allocation after naive 

solution 

� (b) Allocation after feasibility 

28

� (b) Allocation after feasibility 
adjustment

� Task Rates of All Tasks (S 
Means Rate Saturated) 

� Naive solution: simply 
keeping processor 
utilizations under their 
bounds.



Results

� System becomes infeasible after 
task arrivals

� System remains feasible after 
feasibility adjustment

29

� Task rates saturate at boundaries 
when the system is infeasible

� Task rates no longer saturate 
after feasibility adjustment



Numerical results

� Evaluate offline task allocation 
algorithms

� Feasible ratio under different 
processor numbers

30

� Controllable ratio under different 
processor numbers

� Feasibility margin under different 
processor numbers

Simple algorithm: typical bin-packing-based allocation solution 
without the consideration of controlleability or feasability



Summary

� Controllability and feasibility
� Fundamental properties of DRE systems

� Crucial to the success of feedback control in such systems

� Depend on end-to-end task allocations

� Without them DRE systems often cause 
� Processor overload 

31

� Processor overload 

� Deadline misses

� Undesired low task rates

� Offline and online task allocation algorithms are presented to 
ensure system controllability and feasibility
� Meeting the end-to-end deadlines of all tasks is guaranteed 

� run all tasks at the highest possible rates

� System value is increased



Questions?

Thank you for your attention!

32


