Scheduling Algorithms for
Multiprocessor

Paulo Baltarejo Sousa

24/09/2010

Agenda ‘

B Part |: Scheduling Algorithms for Multiprocessor in a Hard Real-Time
Environment

B Part |I: Scheduling Algorithms for Multiprocessor Systems

» Global
» Partitioned

» Semi-partitioned

Part I:
Scheduling Algorithms for Multiprocessor

in a Hard Real-Time Environment
C. L. Liu
1969

Notation and Assumptions ‘

B A task set (7) is composed by n tasks (7 = {m - 7, }):

B Each task is independent and is characterized by three-tuple (C;,T;,D;),
where:

» (' - Execution time
» I’ - Period
» [- Deadline

B The system is composed by m processors and preemption is allowed.

B A task is said to be background task if it is allowed to execute on any
Processor.

B A non-background task executes on a dedicated processor.

B Background computation time on m processors is the non-overlapping

processor time on these m processors available to execute background
. tasks.

Period-driven

B Period-driven scheduling algorithm (shorter period, the higher priority) is
not optimun for multiprocessor systems.

cC T U=C/T
71 20 3.0 0.62

T3 misses deadline

> 3.0 4.0 0.75
3 40 7.0 0.57
1 n
Us = —> Ui
7
= 0.97
B task T1 executes on processor P (non— 4”’3' de- ; - Execution ® fi

background task).

B task 7 executes on processor P> (non-
background task).

B task 73 executes on processor P; and P»
(background task).

Theorem 1: definition ‘

B [heorem 1: A lower bound 0,,+1 to the value of C,,11 such that the
period-driven scheduling algorithm is feasible for Ci,11 < 011

B Given the values Ty, 15, ..., T, and T}, 1 and C;, (5, ..., C,,, theorem
1 gives a lower bound to the value of (11, such that the period-driven
scheduling algorithm is feasible.

B Consider the following task set (composed by three tasks) to be
scheduled on a system composed by m = 2 processors.

B Which is the value of (37

C T
1 20 3.0
T 3.0 4.0

N |

Theorem 1: concepts : g;(t)

B g;(¢) gives a lower bound to the background computation time on

processors Py, I»,- -+, P;, within any contiguous ¢ time units.
1 Py
91(C1) = 91(2) -

Theorem 1: concepts : g;(t)

B g;(¢) gives a lower bound to the background computation time on
processors Py, I»,- -+, P;, within any contiguous ¢ time units.

91(C1) = g1(2) =0
91(C2) = 1(3) =1 73
92(C2) = g2(3) =1

Theorem 1: concepts : 9; '

W J,.=12,---,mis alower bound to the background computation time
on processors Py, P,,---, P;, within each cycle of task 7;.
0 =11 —C4
0; = T; — C; + max(g1(C;), 92(Cy), - -+, gi—1(C5)),
1 =2,---,m

Om+1 = max(g1(Tm+1), 92(Tms1), -+ s 9m(Tm+1))

N |

Theorem 1: concepts : 9; '

W J,.=12,---,mis alower bound to the background computation time
on processors P, P,,---, P; within each cycle of task 7;.
™ 2 #
01 =11 — Ch - |
—3_-9 |
T3 |
=1 |
| | | | | | | |
PEE
Pal 0 0
| |] | | | | I>
0 1 2 3 4 5 6 7 81

10

Theorem 1: concepts : 9; '

W J,.=12,---,mis alower bound to the background computation time
on processors P, P,,---, P; within each cycle of task 7;.
T*Tl drn
51 = T1 — Cl =1 T* é
2 Py l
02 =T — Cy + g1(C2) - |
=4-3+1 :
=2 = .
Polmme s 0 0
2 l I | | | I>
0 1 2 3 4 5 6 7 81

11

Theorem 1: concepts : 9; '

W J,.=12,---,mis alower bound to the background computation time
on processors P, P,,---, P; within each cycle of task 7;.
01 =1
09 = 2
03 = max(g1(13), 92(13))
= max(2,3)
=3

12

Theorem 1: 0,4

B With C3 = 3, task set (7) is
schedulable.

13

Theorem 1: general case

T,
5m+2—(+ —1) (Gss — Conp)

I
5m—|—3 — (Sy 1> (5m—|—2 — Cm—|—2)

14

Conclusions ‘

B It is 4 pages paper (more precisely 3.5 pages, with two big tables)

B Focus is on period-driven and also on deadline-driven scheduling
algorithms for multiprocessor systems.

B The content is not very clear and mathematical formulation is the same
for both types of scheduling algorithms, based on time ¢, T; and Cj, but
the results are different (using the same task set).

B Main contribution: Few of the results obtained for a single processor
generalize directly to the multiple processor case... bringing in additional
processors adds a new dimension to the scheduling problem.

N 15

Part Il:
Scheduling Algorithm for Multiprocessor
Systems

16

Scheduling Algorithm for Multiprocessors ‘

B Multiprocessor scheduling algorithms are categorized as:

» Global scheduling algorithms store tasks in one global queue,
shared by all processors. At any moment, the m highest-priority
tasks among those are selected for execution on the m processors.

» Partitioned scheduling algorithms part the task set such that all
tasks in a partition are assigned to the same processor.

» Semi-partitioned or task-splitting scheduling algorithms; some
tasks are assigned to specific processors, as partitioned, and the
other tasks may migrate between processors, like global.

17

Task Set ‘

B Consider a preemptive system composed by three (m = 3) identical
processors (P, P> and P3) and a synchronous periodic task set
composed by four (n = 4) independent tasks (7,...,74) with implicit
deadlines (D; = T;).

Task (O T U
1 9 10 0.900

T2 6 9 0.667
T3 4 7 0,571
T4 3 6 0.500

1 4
Us =154 | U; = 0.879.

18

Global

19

Global EDF ‘

B Under global EDF scheduling policy, all tasks are stored into a global
queue sorted by the absolute deadline and at each time ¢ the m highest
priority tasks ready to be executed, executes on m processors.

71 misses deadline
)

Gibal EDF __ A P
_ 5 1)

I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ¢t

A7ij Vdi,;] Execution @ fi;

20

Earliest Deadline First until Zero Laxity ‘
(EDZL)

B EDZL for multiprocessor systems is a global scheduling algorithm that
combines the features of two uniprocessor scheduling algorithms: EDF
and LLF. LLF scheduling algorithm is a scheduling algorithm that
assigns higher priority to a task with the least laxity.

B The laxity of a task at time ¢ is defined as the difference between the
deadline and the amount of execution time remaining to be complete.

T1

Global EDZL E_

queue
Rl ¢ EET AR ¢
T4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ¢

A7ij Vdi,;] Execution @ fi;

21

Pfair scheduling algorithms

N

B The main idea of the pfair scheduling algorithms is to provide a
proportionate progress according to the task utilization. For that, pfair
breaks each task in an infinite sequence of quantum-length subtasks
and each subtask has a pseudo-release and a pseudo-deadline.

Global PF queue<

N - 1 (61 (94 [12] _
-___I -___I -__J il

[_ I3

i 31 (61 -__J
-f . 51) -_ .

[41 _. [10]

5
[] Executione fi,;

6 7 8 9 10 11 12 13 14 ¢

L 1 Window

22

Partitioned

23

Bin-packing ‘

B The partitioned scheduling algorithms are composed by two algorithms:
offline task assigning algorithm and the online dispatching algorithm.

B Assigning tasks to processors is a bin-packing problem, which is known
to be a NP-hard problem.

B The main goal of bin-packing is to pack a collection of items with
different sizes into the minimum number of fixed-size bins such that the
total weight, volume, etc. does not exceed some maximum value.

B In the context of real-time scheduling algorithm, each item is a task 7;
that composed the task set (7), the size of each item is the utilization of
task (U;), each bin is a processor (P;) and the size of each bin is the
capacity of processor.

B There are several heuristics for these kind of problems, examples of
those heuristics are Next-fit (NF), First-Fit (FF) and Best-Fit (BF).

N 24

Partitioned ‘

B The partitioned scheduling algorithms assign statically tasks to the
processor and those are scheduled on each processor using an
uniprocessor scheduling algorithm, like, for instance, RM or EDF.

B Assuming that the assignment algorithm work as the FF bin-packing
that assigns tasks one by one to the lowest-indexed processor where
each fits, then, tasks 71 (with U; = 0.900), 72 (with Uy = 0.667) and 73
(with Us = 0.571) are assigned to processors P;, P» and Ps,
respectively. Consequently, task 74 (with Uy = 0.500) cannot be
assigned to any processor, because none of them have capacity enough
to encompass this task.

|
Pl T1 I
|
|

Py T2 |
I

1

|

) Processor capacity
0% 50% 100%

| T4 |

25

Semi-partitioned

26

EDF-Window-constraint Migration (EDF- ‘
WM)(1)
B Each task is assigned to an individual processor using FF bin-packing

heuristic. A task is split, only when no individual processor has
remaining capacity enough to encompass that task.

B The execution of task 74 on processors P;, P> and P35 cannot violate the
timimg requeriments of the already assigned tasks.

— ' Processor capacity
0% 50% 100%

27

EDF-Window-constraint Migration (EDF- ‘
WM)(I1)

B The online dispatching algorithm schedules tasks on each processor
under EDF scheduling algorithm.

P e [s P

P> queue 5

AR RS | s B o U |

Task split i - : .
Py, _ . - — - . - - =

oo By | [7] = r 7] - r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ¢t
A7ij Vdij] Execution @ fi; _ | Window

28

Sporadic Multiprocessor Scheduling (SMS) ‘
(1)

B The SMS algorithm divides time into slots.

B A task whose utilization exceed SEP is assigned to a dedicated
processor.

B Task splitting is performed whenever a task causes the utilization of the
processor to exceed SEP.

- Processor capacity
0% 50% SEP 100%

29

Sporadic Multiprocessor Scheduling (SMS) ‘
(1)

B heavy tasks execute on a dedicated processor.
B split task execute on reserves.

B The non-split tasks are scheduled under EDF scheduling algorithm.

i L L L L L L L LY

S I S I S I S I S I S I S I S I S I
- - pla- - pla- - € - P4 - P4 - Pt - P e - Pa-»

P
N y! y! y! y! y! Yy y! y! y!
Py :
- x I (9 53 Il I . I | I I |
P3
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 t

30

Notional Processor Scheduling - Fractional ‘
capacity (NPS-F) (1)
B NPS-F uses an approach based on bins. To each bin is assigned one or

more tasks and there is one to one relation between each bin and each
notional processor.

B Then, notional processor schedules tasks of each bin under EDF
scheduling policy.

B In turn, all notional processors are implemented upon the m physical
processors (P to P,,) by the means of reserves.

I I
P3 I

_ ' Processor capacity
0% 50% 100%

31

Notional Processor Scheduling - Fractional ‘
capacity (NPS-F) (I1)
B The dispatching algorithm is very simple, tasks are only allowed to

execute within their reserves, that is, within reserves of the notional
Processors.

e { m
Task split
between X }Il
Pl and P2 T2
> 1

A e e e e e e
Py queue {ﬂ- S S 2 s DR 1

S | S | S | S | S | S | S | S | S |
-~ pla- - pla-- pla- - P - P - P -Pe4 P4 -»

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 t

32

Conclusions (1) ‘

B Global B Partitioned
+ High utilization + No migrations
- Higher number of migra- + Simple dispatcher
tions (Cache misses) + No need the use of syn-
- Complex dispatcher chronization mechanisms
- Shared queue (implies the + Lower number of preemp-
use of synchronization tions

hanism ilizati
mechanisms) - Low utilization

- The offline assign algo-
rithm

33

Conclusions (11) ‘

B Semi-Partitioned: tries to get the advantages of the global and the
partitioned

» limited migrations

» Simple dispatcher

» No need the use of synchronization mechanisms
» High utilization

» Lower number of preemptions

34

Questions

Thank you for your attention!

35

