Multiprocessor On-Line Scheduling
of Hard-Real-Time Systems

Michael Dertouzos and Aloysius Mok

Published in
|IEEE Transactions on Software Engineering, Vo. 15, No. 12, Dec 1989

Gurulingesh Raravi
CISTER/ISEP
29/10/2010

Overview

Significance of the Paper

Past Results

The Scheduling Game Representation
Uniprocessor Scheduling

— Optimality of EDF

On-Line Multiprocessor Scheduling

— Why EDF is not optimal
— The Insufficient Knowledge Problem

Conclusions

Significance of the Paper

 The paper showed that it is impossible to design
an optimal online algorithm for multiprocessor
scheduling
— In other words, a priori knowledge of all of the

following parameters is essential for designing an
optimal multiprocessor scheduling algorithm:

1. Deadlines
2. Computation times and
3. Start-times

Past Results

* Uniprocessor:

— Liu/Layland’s sufficient and necessary condition for
scheduling periodic task sets

— EDF shown to be optimal for scheduling arbitrary task
sets (not necessarily periodic) by Dertouzos

 Multiprocessors:
— EDF is not optimal

— Optimal scheduling algorithms for two processor by
Garey and Johnson

— The scheduling problem often becomes intractable for
more than two processors
* Except two special cases

 However, the algorithms for those exceptions are not optimal
anyway (when used online).

Scheduling Game Representation (1/6)

* Well-known (previous) representations:
Task

1. Timing diagram <

| | |
1 2 3 4 5 6 Time
Processor P

~ 6 4 | 2 6

2. Gantt chart

- 5 3 1 5
6 Time

N
w
=y
(6}

Scheduling Game Representation (2/6)

* Few Notations:

— The status of each task whose start-time has elapsed
can be characterized at time=i by:
* Remaining Computation: C(i) and
e Deadline: D(i)
— Laxity of a task at time=i:
e L(i) = D(i) - C(i)
 Laxity is a measure of task’s urgency. A task with:

— zero laxity => execute immediately without interruption
— negative laxity => a deadline will be missed

Scheduling Game Representation (3/6)

* The scheduling problem at time=i can be
modelled by configuration of “tokens” in the first
guadrant of Cartesian plane:

— Y-axis: C c
— X-axis: L in -+ clD
1 0 3 3
— Token: represents a task T » |alalz
» Task j with C(i) and L(i): ~ "7* "3 112

Scheduling Game Representation (4/6)

* Consider m tasks and n processors (m > n)
— At most n tasks can be executed at a time

* On L-C plane: scheduling corresponds to moving:
— n tokens one step downwards
e L(i+1) = L(i), C(i+1) = C(i) - 1
— Rest (m-n tokens) one step leftwards
e L(i+1) = L(i) - 1, C(i+1) = C(i)
— Scheduling algorithm decides the direction of token
movement at each step

— If a token reaches
e 2Md quadrant => algorithm failed
 L-axis (horizontal axis) => task met deadline

Scheduling Game Representation (5/6)

* A schedule can be simulated by a sequence of
configurations of tokens on the L-C plane:
1. Initial configuration of m tokens in Q-1

2. At each step, at most n tokens are moved one
step downwards and the rest one step leftwards

3. A token that reaches L-axis (X-axis) is ignored
4. A scheduler fails if a token enters Q-2

5. The scheduler wins if all tokens eventually reach
L-axis without entering Q-2

Scheduling Game Representation (6/6)

 An Example:

— n=2 (processors), m=3 (tasks)

..ﬂ
0O 3 3

C

2 1 1 2 At time = 0
n L

3 1 1 2 Attime =1
+T At time =2
@1 At time = 3
“T SUCCESS ©
-+ 2@ 3

EDF Scheduling Properties (1/3)

* Uniprocessor

— Optimal scheduling algorithms:
 Earliest Deadline First (EDF), Least Laxity first (LLF)

— The optimality of EDF is proven by Dertouzos

* by showing that a feasible schedule can always be
transformed into EDF schedule

— If at any time the processor executes some task other than the
one which has the closest deadline, then it is possible to
interchange their order of execution

* Multiprocessor
— EDF is not optimal

EDF Scheduling Properties (2/3)

e Optimality of EDF on Uniprocessor:

Task Ta?k
1) — 1 [|
—

2 .
1 2 3 Time ; - 1 2 3 Time
Transtormation to EDF Proc§ssor

Processor

11 T2T1] 1] 1111
12 .3 Ti.me] 1 2 3 Time
* Non-optimality of EDF on Multiprocessors:
Task Task —
1/; | | 1 (7 \li
22—V N 22— Vv N
3l s

1 2 3 Time
Processor - Processor/.\
O Transformation to EDF O

zhzl,gl. — Zh_z_ —
_

1 2 3 Time 1

EDF Scheduling Properties (3/3)

* The system overhead due to context switching
required by EDF is at most twice that required by
any algorithm

— Loading of a task is considered as context switch
— An example to illustrate the concept:

A non-preemptive schedule EDF schedule
Task Task
HP| HP v
we| vp i
LP ¥ LP

| | | | | | | |
1 2 3 4 5 6 Time 1 2 3 4 5 6 Time
13

The Insufficient Knowledge Problem (1/7)

* Another interesting thing about (optimal) EDF is:
— It is driven only by D and
— a priori information about C or S not required

 Whether such an algorithm exists for MPs?
— Unfortunately, NOT ®

* No optimal algorithm can be designed for
multiprocessors without a priori information of:
1. Computation times
2. Deadlines and
3. Start-times

14

The Insufficient Knowledge Problem (2/7)

* Lemma: No optimal algorithm can exist if the
computation time of tasks are not known a priori

— An example: 2 processors, 3 tasks

llﬂ ot
0 2 2 <1
2 1 1 2 il
3 1 1 2
~NO1

* If scheduler picks task j" then we can_
always arrange our example so that j’

is represented by triangular token 1 2 3 4 s

* Lemma: No optimal algorithm can exist if the
deadlines of tasks are not known a priori

The Insufficient Knowledge Problem (3/7)

* Lemma: No optimal algorithm can exist if the
start-times of tasks are not known a priori

— An example: 2 processors, 3 tasks

— Depending on scheduler decision, there are 3 cases:
Case-1: A and B are moved down at time=0

C C
n At time = 0 n At time = 0
o Attime=1 <L Attime=1
»_ Deadline miss ® «~_ Schedulable ©
N OA N OA
D D
F?B Oc @B OcC
E
E

The Insufficient Knowledge Problem (4/7)

Case-2: B and C are moved down at time=0

C C
i |- Attime=0 i - Attime =0
o Attime=1 <l Attime=1
Attime =2 Attime =2
o on
F Deadline miss ® F Schedulable ©
o O~a ~Co Ona
G G
“@OBQOC “OB OC
1

The Insufficient Knowledge Problem (5/7)

Case-3: Only B is moved down at time=0

Attime =0
Attime=1

w- Deadline miss ®

C

DB OC
E

Attime =0
Attime=1

Schedulable ©

O~a

The Insufficient Knowledge Problem (6/7)

 The above reasoning can be generalized to more
than two processors

— since the extra processors can be kept busy by
introducing zero-laxity tasks

— Theorem: For two or more processors, no deadline
scheduling algorithm can be optimal without
complete a priori knowledge of:

1. Deadlines
2. Computation times and
3. Start-times of the tasks

The Insufficient Knowledge Problem (7/7)

* |nevitable failure of an online algorithm is due to:

— The possible existence of two or more sets of future
“conflicting” tasks

e Scheduler is forced to make an early commitment to meet
deadlines of one set of tasks at the expense of all others

* If no a priori information is available to decide
which one of the conflicting sets occur next then

— Optimal scheduling is possible only if the set of tasks
does not have conflicting subsets

* E.g., if C=1 for all tasks then EDF is optimal run-time
algorithm (“swapping” argument)

20

Sufficient Condition for Conflict
Free Task Sets (1/3)

* |In the rest of the paper, it is shown that:

— if a feasible schedule exists for a task set when their
start-times are same, then that task set can be scheduled

even when their start-times are different

e furthermore it is not necessary to know their start- times

* Some Notations:
— j'th job: J,
— L-C plane is divided into 3 regions

For all positive integer k:
* Ry(k) ={J;: D, <= k}
* Ry(k) ={J;: Lj<=kand D, >k}
* Ry(k) ={J;: L >k}

R,(3)

- R3)

Rs(3)

Sufficient Condition for Conflict
Free Task Sets (2/3)

e “Surplus” computing power in next k time units:

C
F(ky=k-n=> C,=> (k=L,) v,
R, R, q-_f""__ _____ >
— F(k) is a function of time and | " Tékt
should be denoted as F(k, i) to Ll ”
signify that F(k) is computed — RiK)
at time=i
1 2 3 4 5
* Lemma:

— A necessary condition for scheduling of a task set whose
start-times are the same (at time i=0) is that F(k,0) >=0

Sufficient Condition for Conflict
Free Task Sets (3/3)

— Theorem (Sufficient Condition):

* If afeasible schedule exists for task set whose start-times
are same, then the same task set can be scheduled at
run-time even if their start-times are different and not
known a priori.

* Only knowledge of pre-assigned D and Cis enough
— E.g., Least Laxity First

— Periodic Task Sets:

* LLF is non-optimal at run-time for periodic task sets

e Theorem (for periodic tasks):

— Let T=GCD(D,, ..., D,,) and t=GCD(T, T*C,/D,, ..., T*C /D) and U
<=n.

— A sufficient condition for scheduling task set on n processors is
that t be integral

23

Conclusions

e Contributions of the Paper
1.

It is impossible to design an optimal run-time algorithm
for multiprocessor scheduling

» A priori knowledge of all the following parameters is essential :
1. Deadlines

2. Computation times
3. Start-times

2. |If
* atask set can be successfully scheduled when their start-times
are the same (necessary condition: F(k, 0) >=0)
then
* they can be scheduled at run-time even if their start-times are

different and not known a priori (using LLF)

* Hence, LLF is optimal online algorithm if the above sufficient
condition (if part) is satisfied.

