
Why the Expressive Power of Languages
such as Ada is needed for future Cyber
Physical Systems

Alan Burns

Department of Computer Science

http://www.york.ac.uk/
http://www.york.ac.uk/

2

Alan Burns

Topics of the Talk

What do Cyber Physical Systems need?

Managed resources

How are resources managed?

Scheduling theory

How can programmers gain access to scheduling

theory?

Programming abstractions

Which language provides the most useful set of

abstractions?

Ada

http://www.york.ac.uk/
http://www.york.ac.uk/

3

Alan Burns

Cyber Physical Systems

Complex embedded (software intensive) systems

Open system boundaries
Mixed Criticality subsystems

 Feedback Control
discrete and continuous time, deadlines, iteration rates, …

High reliability requirements
 Including Safety-Critical

Mass produced systems need very cost effective

hardware solutions
Size, weight and power consumption

High levels of functionality required
Many-core, heterogeneous platforms etc

http://www.york.ac.uk/
http://www.york.ac.uk/

4

Alan Burns

Scheduling

 The branch of Computer Science that deals with

resource usage in this context is real-time

computation

Scheduling protocols promote efficient (and at times

optimal) resource usage

And scheduling analysis provides the means of

verifying that, even in the worst-case, deadlines will

be met

http://www.york.ac.uk/
http://www.york.ac.uk/

5

Alan Burns

Scheduling Theories

Lots of theoretical material available

http://www.york.ac.uk/
http://www.york.ac.uk/

6

Alan Burns

Scheduling Theories

Some of it relevant to CPS

http://www.york.ac.uk/
http://www.york.ac.uk/

7

Alan Burns

Scheduling Theories

Some of this supported by Ada

Ada

http://www.york.ac.uk/
http://www.york.ac.uk/

8

Alan Burns

Basic Requirements

 Interactions with the parallel world
 requires concurrency (tasks, threads, processes etc)

Sharing between distinct software components
synchronisation controls (semaphores, mutexes, monitors etc)

Synchronisation with external real-time
clock abstractions, delay primitives and deadlines

Synchronisation with external events
 interrupt handling

http://www.york.ac.uk/
http://www.york.ac.uk/

9

Alan Burns

Basic Scheduling

Predicable and effective task ordering
static priority attributes for tasks, priority ceilings for monitors

Deadline aware task execution
deadline attributes for tasks, protocols for effective sharing

Deterministic execution order
Non-preemptive scheduling (with static priorities)

http://www.york.ac.uk/
http://www.york.ac.uk/

10

Alan Burns

Improved Resource Utilisation

Deferred pre-emption
Non-preemptive final section

Dual priorities

Dynamic priorities
which can be used to program a wide variety of protocols

http://www.york.ac.uk/
http://www.york.ac.uk/

11

Alan Burns

More General Computational Models

 Logical Execution Time (no internal I/O)

Open Systems with admission control

Anytime or imprecise algorithms

Dynamic periods and deadlines (elastic)

N in M

Multiframe

Generalised Task (DAG model)

http://www.york.ac.uk/
http://www.york.ac.uk/

12

Alan Burns

Resilience

Deadline miss detection

Budget monitoring

Budget overrun detection

Budget enforcement – various forms of servers

Watchdog timers

Aborting rogue computation

Budget management per task

Budget management per group of tasks

Early task termination identification

http://www.york.ac.uk/
http://www.york.ac.uk/

13

Alan Burns

Multiprocessor Scheduling

Partitioned scheduling
managing the static assignment of tasks/threads to

processors/cores

Global scheduling
managing the run-time migration of tasks/threads to follow the rules

of the scheduling protocol

Semi-partitioned scheduling
managing the controlled migration of individual tasks/threads at

run-time

Sharing
controlling the sharing of resources between potentially parallel

executing tasks/threads (this is a major open problem, in that

effective general purpose protocols are not yet available).

http://www.york.ac.uk/
http://www.york.ac.uk/

14

Alan Burns

Advanced Multiprocessor Facilities

 TkC, and DkC
global schemes with priority-based scheduling then non-preemptive

 Tasklets
 to model parallelism within a task/thread

Barriers
 to efficiently synchronise tasks/threads on multiprocessor platforms

http://www.york.ac.uk/
http://www.york.ac.uk/

15

Alan Burns

Mixed Criticality Systems

Efficient usage of computing resources

Budget management

Mode change control
 task/thread parameter modification (extend period and deadlines)

suspending tasks/threads

modifying scheduling attributes: priorities and deadlines

 resume tasks/threads

http://www.york.ac.uk/
http://www.york.ac.uk/

16

Alan Burns

Some Other Requirements

Control of when tasks/threads preform I/O
e.g. minimising input and output jitter

Control of memory used by tasks/threads

Control of power used by tasks/threads

Control over the speed of variable rate processors

Control over placement on FPGA type hardware

http://www.york.ac.uk/
http://www.york.ac.uk/

17

Alan Burns

Required Abstractions and/or Interfaces

Many facilities can be obtained via APIs

But language abstractions are:
More flexible (periodic task with changing period)

More composible (budget control and N in M deadlines)

More understandable (deeper semantic definition)

http://www.york.ac.uk/
http://www.york.ac.uk/

18

Alan Burns

Ada's Provisions

Calendar and real-time clocks

Static and dynamic creation of tasks

Delay mechanisms

Priority assignment

Protected objects
with requeue to give controlled sharing

Dynamic task priorities and dynamic priority ceilings

http://www.york.ac.uk/
http://www.york.ac.uk/

19

Alan Burns

Ada’s Provisions

Priority based dispatching with priority ceiling

protocol

EDF scheduling with the Stack Resource Protocol
and possibly in the future the Deadline Floor Protocol DFP

Round Robin and non-preemptive dispatching

Hierarchical scheduling
 for example, combined priority-based and EDF

Particularly useful for mixed criticality systems

http://www.york.ac.uk/
http://www.york.ac.uk/

20

Alan Burns

Ada Provisions

Primitives to allow tasks to suspend themselves

and other tasks

 Timing events
code that executes at a specified time (can be used to control input

and output jitter)

Group budget monitoring and control
allows standard execution time servers such as the Periodic Server,

Sporadic Server and Deferrable Server to be programmed

http://www.york.ac.uk/
http://www.york.ac.uk/

21

Alan Burns

Ada’s Provisions for Resilient Code

Budget clocks that monitor task execution time, and

can signal when specified levels of usage have

been reached

 Task aborting, and the ability to abandon

computation at the sub-task level (ATC -- select

then abort))

 Timing events -- that are only execute in error

conditions, i.e. programmed watchdog timers

Signalling when a task terminates (useful when the

task should not!)

http://www.york.ac.uk/
http://www.york.ac.uk/

22

Alan Burns

To support multiprocessor execution:

 Use of memory pools to control this important

resource

Affinities that can control where a task executes
a task can be restricted to just one CPU, a groups of CPUs or be

allowed to execute on any CPU

Dynamic affinities to allow semi-partitioned

schemes to be programmed

http://www.york.ac.uk/
http://www.york.ac.uk/

23

Alan Burns

Missing Features

Support for parallel execution within a task
a plan for including the notion of tasklet into the language is

currently under consideration

Support for energy aware programming
API to whatever is supported by the underlying hardware/run-time is

the only current approach available

 I would like to execute a loop within a bound determined by energy

available

Support for an effective synchronisation scheme for

multiprocessor execution
many schemes have been proposed in the literature but there is not

yet consensus on which Ada can build

http://www.york.ac.uk/
http://www.york.ac.uk/

24

Alan Burns

Use Cases (1)

 9 core platform

 2 criticality levels (HI and LO)

Many tasks of either HI or LO criticality

Static assignment of tasks to cores

All LO-crit tasks on a core have a policed (shared)

budget
EDF scheduling

All HI-crit tasks have an individual budget
Fixed Priority scheduling

 If any HI-crit task exceeds its budget then a defined

set of LO-crit tasks migrate

http://www.york.ac.uk/
http://www.york.ac.uk/

25

Alan Burns

HI

LO

Fixed Pri

EDF

http://www.york.ac.uk/
http://www.york.ac.uk/

26

Alan Burns

HI

LO

LO

LO

http://www.york.ac.uk/
http://www.york.ac.uk/

27

Alan Burns

Analysis

Analysis for this scenario exists
H. Xu and A. Burns, Semi-partitioned Model for Dual-core Mixed

Criticality System, 23rd RTNS, pp257-266, 2015

 If no more than 3 core experience overload then all

deadlines continue to be met

 If more than 3 core experience overload then all HI-

crit tasks continue to meet their deadlines

http://www.york.ac.uk/
http://www.york.ac.uk/

28

Alan Burns

To program in Ada

Assign tasks to each core
One dispatching domain (per 9 core template)

Set_CPU in System.Multiprocessors.Dispatching_

Domains

Hierarchical scheduling
Priority_Specific_Dispatching

Assign HI-crit tasks priorities in top range (Set_Priority)

Assign LO-crit tasks to EDF range (EDF_Across_Priorities)

Assign ceiling priorities to all Protected Objects

http://www.york.ac.uk/
http://www.york.ac.uk/

29

Alan Burns

To program in Ada

Allocate all LO-crit tasks in a core a single budget
Add_Task in Ada.Execution_Time.Group_Budgets

Assign budget (from analysis) – Replenish

Assign a budget clock to each HI-crit task
Timer

Allocate appropriate periods or event triggers for

each task
delay until, POs, Attach_Handler

http://www.york.ac.uk/
http://www.york.ac.uk/

30

Alan Burns

At run-time for LO-crit tasks

 If group budget exhausted before replenishment
Set_Handler (from group budgets) to

Suspend all LO-crit tasks (Hold in Ada.Asynchronous_Task_

Control)

Replenish group budget periodically
Using Timing event (Set_Handler)

To Replenish, and

Release any suspended tasks (Continue)

http://www.york.ac.uk/
http://www.york.ac.uk/

31

Alan Burns

At run-time for HI-crit tasks

 If any HI-crit task goes above budget
Set_Handler used to fix the protected procedure that:

For each moving LO-crit task

• Remove from group budget (Remove_Task)

• Migrate to new core (Set_CPU)

• Add to group budget on new core (Add_Task)

• Release if suspended (Is_Held and Continue)

When LO-crit task next released return to original core

http://www.york.ac.uk/
http://www.york.ac.uk/

32

Alan Burns

Ada Facilities

 The following libraries have been used
Asynchronous_Task_Control

Task_Identification

Dispatching.EDF

Real_Time

Execution_Time

Execution_Time.Timers

Execution_Time.Group_Budgets

Real_Time.Timing_Events

System.Multiprocessors.Dispatching_Domains

http://www.york.ac.uk/
http://www.york.ac.uk/

33

Alan Burns

Use Case (2)

 Two phases of execution (HI and LO again)

 First is safety-critical and deterministic

Second is critically but open-ended
 Involves image processing and data presentation

 First phase runs on only 3 cores
To get more predictable memory access times

Second phase on all 9 cores

No second phase work can start until all first phase

work is completed

http://www.york.ac.uk/
http://www.york.ac.uk/

34

Alan Burns

...

Timing Event
Barrier

Next Release

http://www.york.ac.uk/
http://www.york.ac.uk/

35

Alan Burns

To Program in Ada

Each core has statically allocated a single LO-crit

task and a HI-crit task

Some (3) HI-crit tasks contain application code
After completing their work they call the barrier

 The others just contain a call to the barrier

On release from the barrier they rendezvous with

the LO-crit task to release it

http://www.york.ac.uk/
http://www.york.ac.uk/

36

Alan Burns

To Program in Ada

 LO-crit tasks
Wait for rendezvous from HI-crit task

When released

• Iterate through an improvement cycle

• Abandon when signalled to do so (Timing Event)

• Use a PO to store safe data (max overrun is delta)

HI-crit tasks
Delay until timing event time + delta to be released

• i.e. timing event is at time period - delta

When released from barrier rendezvous with LO-crit task

http://www.york.ac.uk/
http://www.york.ac.uk/

37

Alan Burns

Ada facilities

 Timing Events

POs (for abort deferred behaviour)
 select then abort

Rendezvous
Timed entry call, so HI-crit task not blocked

Barrier protocol

Allocation of tasks to cores

http://www.york.ac.uk/
http://www.york.ac.uk/

38

Alan Burns

Conclusions

 I have tried to highlight the significant body of

scheduling theory that can be used to build cost-

effective and reliable cyber-physical systems

 To use this theory the system developer /

programmer must be able to access the protocols

and approaches that scheduling theory has defined

Ada provides an effective means of providing this

access

http://www.york.ac.uk/
http://www.york.ac.uk/

39

Alan Burns

But

Ada run-times must be available that do faithfully

implement language semantics and all defined

features in the Real-Time Annex

 There are abstractions that are not as yet available

in Ada (or other real-time programming languages)

And there are still open issues in terms of the

required scheduling theory for CPS

http://www.york.ac.uk/
http://www.york.ac.uk/

