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Abstract 

Commercial-of-the-shelf based multi-core systems present timing anomalies that cannot be ignored by the real-
time systems community due to their unpredictable behaviour. These timing anomalies, often caused by 
applications’ uncontrolled accesses to shared resources such as the components in the memory hierarchy or in 
the I/O subsystem, introduce interference that may lead to deadline misses if the problem is neglected.The 
Acquisition Execution Restitution (AER) execution model was previously proposed to circumvent this problem and, 
therefore, mitigate inter-task interference. In this model, applications decouple communication (acquisition and 
restitution phases) from the actual execution in a way that at most one acquisition or restitution phase is in 
execution at any instant of time while the execution phase of different tasks can progress in parallel on multiple 
cores. Thus, keeping each task’s derived worst-case execution time closer to the one measured in isolation. In this 
paper, we study the AER execution model and compare it against a global Earliest Deadline First (EDF) approach 
where interferences are considered. Our results show that a priority assignment heuristic which assigns the 
priorities based on the tasks’ periods dominates all the other proposed heuristics and that due to interference it 
can also schedule task sets which are not schedulable by using the global EDF approach. 
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Abstract—Commercial-of-the-shelf based multi-core systems
present timing anomalies that cannot be ignored by the real-time
systems community due to their unpredictable behaviour. These
timing anomalies, often caused by applications’ uncontrolled
accesses to shared resources such as the components in the
memory hierarchy or in the I/O subsystem, introduce interference
that may lead to deadline misses if the problem is neglected.

The Acquisition Execution Restitution (AER) execution model
was previously proposed to circumvent this problem and, there-
fore, mitigate inter-task interference. In this model, applications
decouple communication (acquisition and restitution phases)
from the actual execution in a way that at most one acquisition
or restitution phase is in execution at any instant of time while
the execution phase of different tasks can progress in parallel
on multiple cores. Thus, keeping each task’s derived worst-case
execution time closer to the one measured in isolation.

In this paper, we study the AER execution model and compare
it against a global Earliest Deadline First (EDF) approach where
interferences are considered. Our results show that a priority
assignment heuristic which assigns the priorities based on the
tasks’ periods dominates all the other proposed heuristics and
that due to interference it can also schedule task sets which are
not schedulable by using the global EDF approach.

I. INTRODUCTION

Maximizing application performance is of major importance

in the safety-critical domain. Software providers always want

to improve their products, and to keep up with the increasing

complexity of applications new platforms are always under

consideration. In the past, the increase in frequency seen

in single-core processors was enough to accommodate new

software features. However, the recent shift seen in hardware,

where current commercial-of-the-shelf (COTS) architectures

no longer include single-core processors but instead incor-

porate multi-core processors in their designs, made providers

think about other issues. Namely, the increase in performance

that could be attainable when using multi-cores or even the

fact that long term support is required at the hardware level

for some of their products (due to the obsolescence of single-

core platforms).

Another important feature about using multi-core architec-

tures is the possibility of harnessing application parallelism

with an expected increase in application performance. How-

ever, parallelism comes at the cost of decreasing the determin-

ism and predictability of the system, requirements of utmost

importance in the safety-critical domain. More precisely, these

multi-core COTS-based architectures are designed for average-

case performance and resources such as memory components

(i.e., main memory and cache), peripheral devices and buses

are shared among the cores. Applications running concurrently

in these systems compete for shared resources and, if care

is not taken, they may introduce interference between the

accesses which may lead to timing deviations from the worst-

case execution times (WCET) computed in isolation. A good

example is the contention that occurs at all levels of the

memory hierarchy of a traditional multi-core system. That

is, without deterministic arbitration mechanisms to handle the

memory requests, functionally independent tasks executing in

different cores may interfere between each other whenever

they need to fetch data from the main memory simultaneously.

One possible solution to minimize the contention in the

shared resources is to decouple the accesses to memory from

the actual application execution and guarantee that these

accesses are performed exclusively in isolation. This can

easily be ensured by using a time division multiple access

(TDMA) based protocol that enforces timing isolation among

the tasks in the system. This method is well-known in the

avionics domain as standards such as ARINC-653 [1] mandate

that resource partitioning should be used so that applications

execute temporally and spatially isolated and therefore do

not affect applications executing in other partitions (fault

containment). The Acquisition Execution Restitution (AER)

model proposed in [2] and depicted in Figure 1b follows this

approach in order to increase the predictability of applications

executing in COTS-based platforms.

In the AER model tasks are divided into three distinct

phases, namely Acquisition (A) and Restitution (R) which

are communication phases (i.e., phases in which accesses to

the memory are performed) and a single Execution phase (E)

which is a computation-only phase. This model is an evolu-

tion from a model with no parallelism, where tasks execute

sequentially in each TDMA slot according to a predefined

schedule (as depicted in Figure 1a), to a model that considers

the parallel execution of tasks. More precisely, this model

introduces two advantages: (1) it is an interference-free model

and (2) it supports parallel task execution. First, memory

contention related issues (such as interference) are avoided

by enforcing that communication phases execute exclusively

by having a single communication phase (A or R) executing

at any time instant. Second, by decoupling communication

phases from the execution phase it is possible to exploit

parallelism as execution phases of different tasks can now

execute in parallel with any other phase of any other task

executing in the system.978-1-5090-1314-2/16$31.00 c© 2016 IEEE



(a) Sequential model using TDMA time slots
(b) AER model

Fig. 1: Execution Models

In this paper we empirically explore the model proposed

in [2]. To the best of our knowledge there is no worst-case

response-time schedulability test that allows one to test the

schedulability of a task set composed of tasks following the

AER model for multi-core systems, as proposed in [2]. The

authors in [3] solve this problem by transforming it into a

constraint programming problem and obtaining a completely

static solution for an instance of the problem. While such

work is important, the complexity of the problem still remains

intractable. Without a worst-case response-time schedulability

test one has to test all the possible schedules to infer any

information about the schedulability details of any task set.

Therefore, to overcome this limitation we have implemented

a simulator to study the behaviour of this type of tasks with

regards to a number of metrics such as average response-

time, maximum response-time, among others. Moreover, we

present different priority assignment heuristics in order to infer

the implications of using different ordering schemes in the

scheduling of AER tasks and we compare them against a

global Earliest Deadline First (EDF) approach where inter-

ference is considered in order to simulate the behaviour of

these tasks in a COTS system.
Contributions. The contribution of this work is threefold:

(1) we present a tool that allows us to study the behavior

of AER tasks in multi-core systems; (2) opposed to a static

approach to solve the schedulability problem of AER tasks

we provide different priority assignment heuristics to schedule

task sets composed by AER tasks; (3) we compare these

heuristics against a global EDF approach that considers inter-

task interference.
Paper organization. The rest of this paper is organized as

follows. Section II presents the related work. Section III

describes the model of computation used throughout the paper.

Section IV details the proposed heuristics and some important

aspects about our simulator. Section V presents the configura-

tion settings used to collect the data. Section VI reports on the

simulation results from experiments conducted on synthetic

task sets. Finally, Section VII concludes the paper and presents

the perspectives.

II. RELATED WORK

Deterministic architectures (MERASA [4], PRET [5]) con-

sisting of hardware mechanisms to control inter-core interfer-

ence have already been proposed in the past. Nevertheless,

most of this type of solutions target specific hardware plat-

forms and cannot be applied/found in general COTS platforms

leading the stakeholders to study solutions that can be applied

at the application level such as the AER model.

The AER model [2] is a generalization of the PRedictable

Execution Model (PREM) [6]. PREM considers a single core

environment where tasks are divided into predictable intervals:

memory phases and execution phases. Memory phases access

main memory and deal with the needed cache operations while

in the execution phases a task avoids accessing the main

memory and therefore minimizing any possible interference.

In [3] the authors present an interference-free model by

proposing a constraint programming based solution for the

AER model executing in multi-core environments. In that

work, the authors show that executing tasks in a multi-

core environment leads to increases in the WCET measured

in isolation of up to 3x the value in isolation. A similar

observation was made in [7] where the authors evaluate the

effects of having multiple applications of different criticality

levels executing in a multi-core platform. More precisely, the

authors observed a maximum slowdown of 5.1x in application

execution when multiple cores access network and memory

concurrently. Both of these results show that special care must

be taken when executing safety-critical applications in multi-

core platforms due to the increase in WCET as a result of

interference related to concurrent accesses to shared resources.

In [8] the authors introduce the concept of Deterministic

Platform Software (DPS) with the objective of identifying

pieces of software that can be used to enforce usage domains

for which interference levels are known and acceptable. In

the paper, AER model is identified as a Deterministic Execu-

tion Model as it ensures that interference due to concurrent

accesses is avoided. Moreover, in that paper the authors also

propose comparison criteria to evaluate how the identified DPS

solutions are relevant for industrial application.

Other software oriented solutions exist with the objective

of solving the interference problems due to shared resources

in multi-core systems. While these models are not a direct

application of the AER model, they somehow relate to the

approach that is followed by AER. For instance, in [9] the

author proposes a model in which critical and non-critical

applications execute in the same multi-core platform. However,

whenever a critical application is executing only the core that

is executing it is allowed to run while the others remain

forcefully idle. The main limitation of this model arises when

several critical applications execute all together in the platform

thus making all the cores but one idle most of the time.



Another solution which also presents restrictions on the access

to the bus is the one presented in [10] where the authors

propose an approach that restricts access to the buses by the

usage of TDMA. The idea behind this solution is that an

application accesses memory when it is allowed by the TDMA

schedule. If it tries to access memory outside of its assigned

TDMA schedule, then it is blocked until its time slot becomes

available. Several solutions employ similar mechanisms but

what is important to retain is that most multi-core solutions

for safety-critical domains apply the principle of exclusivity

in order to reduce the interference within the system.

Recently, the authors in [11] propose an operating system

design for multi-core COTS platforms that integrates scratch-

pad memories in their architecture designs. Their approach

combines the AER task model with a TDMA bus access

schedule on a system with scratchpad memories and DMA

support. Our tool allows us to study the AER task model in a

more generic way and considering different settings.

III. SYSTEM MODEL

We consider a system composed of a set Π of m cores,

Π = {π1, π2, ..., πm}. The system executes a task set com-

posed of n periodic tasks τ = {τ1, τ2, . . . , τn} where each

task τi in the set is divided into three distinct phases that

execute nonpreemptively: acquisition (Ai), execution (Ei) and

restitution (Ri).

During an acquisition phase (A) an application exclusively

accesses the main memory to fetch data into the core’s local

memory (e.g., scratchpad, L1 cache). The exclusive access is

required so that this phase does not interfere with any other

task in the system. At the end of this phase all data needed by

the application is loaded into the core’s local memory and the

application can start its execution phase (E). In the execution

phase (E) a task executes without suffering any interference

from any other task in the system as the needed data for

execution was previously loaded into the core’s local memory

and therefore no main memory accesses are performed during

this phase. Finally, after the task finishes its execution phase,

the restitution phase (R) exclusively accesses main memory

so that all data that was modified during execution is stored

back into it.

Due to the fact that execution phases do not require any

access to main memory, these phases can execute in parallel

with any other phases of other tasks executing in the system

without interfering with their execution. However, acquisition

and restitution phases must exclusively access main memory

and therefore cannot execute in parallel with any other A or

R phases.

Let ea
i
, ee

i
and er

i
denote the maximum execution time of

Ai, Ei and Ri phases of task i, respectively. Then, the worst-

case execution time of task i in isolation (without suffering

any kind of interference) is given by the sum of the execution

times of each phase: ei = ea
i
+ ee

i
+ er

i
. It is important to note

that for the model to work each phase must finish within its

allocated amount of time. This aspect should be enforced so

that predictability is not jeopardized.

Each task is characterized further by a period Ti, and a

constrained-deadline Di ≤ Ti. For schedulability, the work-

load of each task should be no greater than its corresponding

deadline: Ci ≤ Di. The utilization of task τi is given by

Ui

def
= Ci

Ti

and the total utilization of the task set τ is

Uτ

def
=

∑n

i=1
Ui. Core utilization should not exceed 100% and

consequently, the total system utilization should be no greater

than the number of cores in the system: Uτ ≤ m.

Within a schedule, the release pattern of tasks repeats itself

in intervals of time named major cycles, denoted by Γ, which

are equal to the least common multiple of all the tasks in the

task set.

IV. PROPOSED HEURISTICS

To the best of our knowledge there is no method that can be

used to evaluate the schedulability of tasks that comply with

the AER task model. Without having a schedulability test,

one possible way to test the schedulability of a task set is to

generate the actual schedule over the hyper-period interval of

the task set under consideration and validate if some deadline

miss occurs at a particular time instant within this interval. In

order to circumvent this limitation and still make it possible to

study the behaviour of the AER tasks we have implemented a

simulator that generates schedules considering the task model

described in Section III.

The authors in [3] formalize the scheduling problem as a

constraint programming problem to which they provide as

inputs the application timing requirements and the platform

model, and as outputs the solver returns a static mapping of

tasks to cores. Opposed to the work done by these authors,

our simulator considers a dynamic scheduling approach (the

next task to execute is selected among the tasks that are in the

ready task queue) instead of a static one.

Multi-core scheduling is proven to be a NP-hard prob-

lem [12] and therefore without testing all the possible com-

binations of task orderings, there is no possibility of know-

ing which ordering leads to a schedule where all tasks are

schedulable and the length of the schedule is minimized.

Nevertheless, heuristic approaches can be used in order to try

to obtain a feasible solution to the problem in a reasonable

amount of time.

One of the goals of using our simulator is to study the

behaviour of AER tasks when scheduled under different pri-

ority assignment rules. This study includes the exploration

of different task allocations in order to observe if any rule

performs better than the others. The supported assignment

rules are the following:

• Priority: The priority of each task in the task set is given

by the period T in ascending order, that is tasks with

smaller periods have higher priorities in a similar fashion

to the behaviour of the Rate Monotonic algorithm [13].

• Minimum Acquisition: The priority of each task is given

by the length of the Acquisition phase of a task where

the task with the smaller Acquisition execution value is

the one selected for execution.



• Maximum Acquisition: Similar to the previous rule but

in this case the priority is given to the task with the largest

Acquisition value.

• Minimum Restitution: This rule considers the tasks

according to the size of their Restitution phases where

the priority is given to the task with smaller Restitution

value among all tasks in the ready queue.

• Maximum Restitution: Similar to the previous rule but

in this case the priority is given to the task with the largest

Restitution value.

In order to understand how the above-mentioned rules

compare to an approach that is not interference-free we also

have added to the simulator an implementation of global

Earliest Deadline First (EDF) algorithm. Standard EDF algo-

rithm gives priority to the job that has the earliest absolute

deadline among all the jobs in the ready queue. Global (as

opposed to partitioned scheduling) in this context means that

the scheduling algorithm allows any job to execute in any core

of the system.
Our implementation of global EDF works with a copy of

an AER task set where, instead of having each task composed

of three distinct phases, each task in the set is converted into

a traditional task in which all phases are merged together and,

in this study, its WCET reduced by a certain amount. The

motivation for this reduction in WCET relies on the fact that

the AER model requires traditional tasks to be modified in

order to accommodate the code necessary for the decoupling of

communication phases from execution phases (decoupling the

phases allow us to achieve an interference-free deployment as

explained previously). Intuitively, by transforming a traditional

task into an AER task there is an increase in the WCET

of each AER task due to the extra code needed for phase

decoupling. Therefore, for fairness in comparison of both task

models (AER tasks and traditional tasks) we apply a reduction

to the WCET when converting the AER task into a traditional

task to be tested under global EDF.
The reduction factor is an input parameter of the simulator

and the user can modifiy it to increase or decrease the tradi-

tional task execution time under global EDF, dependending

on the system under study and/or the task transformation

technique applied.
Moreover, we assume that when a task executes under

global EDF the task executes in an interference-prone plat-

form. This assumption intends to model task execution in

current multi-core COTS platforms where tasks suffer inter-

ference whenever concurrent accesses are made to shared re-

sources. To represent the lack of temporal and spatial isolation

that exists in COTS platforms and in traditional task models,

we artificially slowdown task execution by a slowdown factor

under global EDF whenever tasks execute in parallel with

other tasks in the system.
There are other important aspects that should be mentioned

about the behaviour of our simulator/model. Specifically, the

scheduler is omniscient in the sense that it knows the state of

every core at a given time instant t when it needs to allocate

a task.

For any given priority assignment rule (except global EDF),

the next task to execute is selected from the ready queue and

it is assigned to the first idle core that the scheduler finds as

long as no other core is executing a memory phase (A or R

phases). Task phases start their execution as soon as possible

and execute non-preemptively until the end of the phase. Each

execution phase (E) starts executing as soon as the preceding

A phase completes its execution and it may execute in parallel

with any other task’s phase of other tasks. Moreover, E phases

do not suffer any kind of direct interference or blocking1

in the sense that while an A phase can suffer interference

and subsequently an E phase can also suffer interference,

an E phase never waits to execute once it becomes ready.

Interference and blocking need to be considered in our model

not only in a single core but also across all cores in the system

due to the non-preemptive execution of phases. For instance,

there are cases when a memory phase of a task is ready to

execute in a core but it cannot due to a task that is executing

a memory phase somewhere in another core of the platform

(this can happen either with a higher or lower priority task

than the ready task).

Moreover, once a task is assigned to a core it remains

executing exclusively on that core until all phases complete

their execution. The intuition behind this behaviour lies on

the fact that the memory phases fetch/store data from the

main memory and once they do it a core can execute without

suffer/induce interference on the shared resources. Having a

task moving from a core to another would improve system

utilization but at the same time would break the principle of

avoiding interference and cause additional overheads due to

the task migration between cores. The same reasoning applies

if preemptions were allowed after a task started its execution.

Our implementation of global EDF considers traditional

tasks (as described above) and therefore there are no distinct

phases within a task. Moreover, the m higher priority tasks are

the ones executing in the platform and as it typically occurs

in global EDF, preemptions are allowed due to the arrival of

a higher priority task into the system. In our simulator we

do not consider any overhead related to such preemptions.

Higher priority tasks may interfere with lower priority tasks

but a lower priority task may never block a higher priority

task.

V. EXPERIMENTAL SETTINGS

Our tool allows us to better study the behaviour of AER

tasks with respect to a certain number of metrics while varying

several parameters. In this section we describe the most

important parameters that the simulator accepts and provide

the reasoning behind the values’ selection.

As input parameters the simulator accepts the number of

cores m, the number of tasks n that the user wants to use per

1Interference occurs whenever a phase of task is ready to execute but it
cannot execute due to the execution of other higher priority tasks in the system.
Blocking occurs whenever a higher priority task is ready to execute but it
cannot execute due to the execution of a phase of a lower priority task in the
system.



iteration of the simulation, the minimum and maximum values

for the execution times of the phases of an AER task and an

array with slowdown values that will be applied when testing

the global EDF schedulability of a task set, among others.

The task generation in the simulator works as follows.

Each (outer) iteration starts with a task set with n tasks and

then a new task set is created from the previous one by

iteratively adding a new task into it (in an inner iteration).

This iterative procedure stops when the new task set is deemed

unschedulable by all the heuristics under test including global

EDF, point at which a new outer iteration starts again.

The parameters’ values that we have used in the generation

of the tasks are the following. Each phase has an initial value

in the range [1, 3] which is multiplied by a factor in order

to test different configurations of phase sizes. The WCET for

the AER task is the sum of the individual phases’ execution

times as presented in Section III. The period of each task is

then generated by randomly choosing a factor value in the

range [2, 4] which is then multiplied by the generated WCET

in order to obtain the task period. The deadline for each task

is always equal to the task period.

The above described procedure works for the generation of

AER tasks. For global EDF tasks (for the sake of clarity let us

denote this tasks as traditional tasks), the simulator converts

each generated AER task into a traditional task in which the

respective AER WCET is reduced by a certain amount defined

as an input parameter. In our simulations we have chosen to

reduce the WCET of an AER task by 25%. As explained in

Section IV, this reduction intends to mimic the increase in

task execution time when a traditional task is converted into

an AER task due to the addition of the code needed to enforce

phase decoupling.

Another important aspect that should be considered is the

interference that may occur in a COTS platform due to the

usage of shared resources. In [7] the authors observed a

maximum slowdown of 5.1x in application execution when

multiple devices access network and memory concurrently in

a platform of m = 4 cores. In the same line of research,

the authors in [3] state that the slowdown that a task suffers

when moving from a single-core configuration to a multi-

core configuration is of 2.7x in a cached-based version of a

multi-core platform for m = 6. Therefore, in order to emulate

this behaviour when scheduling tasks under global EDF (AER

model is an interference free model therefore it does not need

to be considered under this scenario) we apply a slowdown

value to each traditional task that is dependent on the number

of tasks that execute in parallel in the same time unit.

Using the values reported in [3] as a reference, we have

computed the direct proportion of slowdown values up to

m = 4. That is, the slowdown value for m cores is given

by Sm = m·2.7

6
for m ≥ 2. Therefore, the input list of

slowdown values used is the following [1, 1, 1.35, 1.8] up to

m = 4. Each value in the list represents the factor of increase

in WCET that a traditional task will incur due to interference

when it executes in parallel with other tasks in the system

in a given time unit. For instance, when a task executes in

parallel with two other tasks the increase in its WCET will

be 1.35x per time unit. Thus, instead of taking 1 time unit

to execute, the considered task takes 1.35 time units due to

interference. A special remark must be made concerning the

first two values in the list: the first value represents the time

in isolation (without any interference); while the second value

should be 0.9 after applying the above formula which leads to

a speedup in execution instead of a slowdown. Our decision

was to round this value to the closest integer2. The slowdown

value is one of the parameters that we vary in our simulations

so that we can evaluate its impact on the schedulability of

tasks.

The parameters’ values used in the generation are smaller

due to the fact that we actually generate the schedules through-

out the hyperperiod of the task set in order to test their

schedulability. Thus, the larger the values of task periods

the larger the hyperperiod will be and therefore the longer

the simulator needs to execute in order to obtain the results.

We consider that this does not pose any limitation over the

collected data as the properties still hold for smaller values,

as for instance the relation between the lengths of each phase

(e.g., A phase size larger than R phase).

As output, the simulator generates a schedule for each of

the heuristics and global EDF, the average response-times and

maximum response-times for all the tested task sets, and a

graph with the number of schedulable task sets per heuristic

per utilization value.

VI. DISCUSSION

In this section we present the outcomes of the simulator

and a discussion of the results obtained for the scheduling

of randomly generated task sets under the different proposed

heuristics described in Section IV.

The simulator allows us to observe the average and maxi-

mum response-times of a given task set, as depicted in Figure 2

and Figure 3. In the figures it is possible to see a task set

composed of 4 tasks being executed in a platform with m = 4
cores and a slowdown value for global EDF of 2 times the

values in the slowdown list presented above. The average

response-time is computed by summing up the individual

values of response-times of each instance and then dividing

this value by the number of instances of each task.

While the response-time is a useful metric for understanding

the specific properties of a given task set, it is not a good

metric for understanding how the heuristics behave, as it is

too dependent on the values of the task set. Therefore, another

metric that can be used for heuristic comparison is the number

of schedulable task sets that each heuristic can schedule from

a given number of randomly generated task sets. Therefore,

in the experiments presented in Figures 4, 5, 6, 7 , 8, and 9,

we evaluated the amount of schedulable task sets (y-axis) per

2Our simulator works with discrete time units which means that even though
the slowdown values are floating point, after computing the results the values
will be rounded to the closest integer value. We believe that this is a design
decision that mimics the real systems and that does not affect the analysis of
resulting data.



Fig. 2: Average response-time observed in a task set with 4

tasks in a platform with 4 cores and slowdown values of 2x

Fig. 3: Maximum response-time observed in a task set with 4

tasks in a platform with 4 cores and slowdown values of 2x

utilization value (x-axis) for 2000 randomly generated outer

iterations of the simulator using different settings.

Concerning the slowdown values used in these experiments,

we have chosen slowdown values of 1.5x and 2x the values in

the slowdown list presented above (the slowdown list values

become [1, 1.5, 2.03, 2.7] and [1, 2, 2.7, 3.6] for 1.5x and 2x

respectively).

For each value of m we varied the task parameters. For

m = 2 we used two settings: (1) a setting where R phases are

larger than A phases (Figure 4) while the E phase is larger

than both; (2) a setting where E phases are smaller than both

A/R phases (Figure 5). Both with a slowdown value of 1.5x.

For m = 4 we used four settings: (1) A phases are larger

than R phases while the E phase is larger than both with a

slowdown of 1.5x (Figure 6); (2) R phases are larger than A

phases while the E phase is larger than both with a slowdown

of 1.5x (Figure 8); (3) E phases are smaller when compared

to both A/R phases with a slowdown of 1.5x (Figure 7); (4)

A phases are larger than R phases while the E phase is larger

than both with a slowdown of 2x (Figure 9).

Our goal with these experiments is to observe the behaviour

of each of the heuristics when different configurations of phase

lengths of an AER task are used; observe how the global EDF

approach compares with the proposed heuristics and see how it

is affected by interference when the number of cores increases

and different slowdown values are applied.

Several observations can be made by looking into the

figures. In the figures one can see 6 lines, one for each of

the heuristics (namely, priority (PRIO), minimum A (MIN.A),

maximum A (MAX.A), minimum R (MIN.R), maximum R

(MAX.R), as detailed in section IV) and one for global EDF

(G-EDF).

First Observation, among the proposed heuristics the one

that uses the period as the priority assignment rule (PRIO

in the figures) dominates the other heuristics in terms of

schedulable task sets. This can be seen in all of the figures.

Second Observation, when A and R phases are similar in

length the heuristics that use the length of A or R phases as a

priority criterion (i.e., MIN.A, MIN.R, MAX.A and MAX.R)

schedule a similar amount of task sets. This can be seen in

Figure 5 and Figure 7 for two and four cores respectively.

Obviously, even though the heuristics use different criteria to

select the next task to schedule, as the phases have the same

length the outcome will be the same for the heuristics that

use either the minimum phase (MIN.A and MIN.R) or the

maximum phase (MAX.A and MAX.R) lengths.

Third Observation, in all of our experiments the heuristics

that use the minimum length of A or R schedule more task

sets than the ones that use the maximum length of A or R

phases. The most probable reason for this behaviour may be

related to the fact that selecting the tasks with larger A or R

phases first induces a larger amount of interference/blocking

on the other tasks in the ready queue when compared to the

heuristics that use the minimum length of A or R phases

(recall that ready A or R phases cannot execute until other

A or R phases complete their execution). This leads to larger

response-times in average and therefore to non-schedulability

of task sets when the maximum heuristics are applied due to

the response-times being larger than the task’s deadline.

Fourth Observation, one can easily see that as the values of

slowdown increase (Figure 6 and Figure 9) the number of task

sets that are schedulable by global EDF drastically decreases

as well as the utilization of the schedulable task sets (in the

best case it decreases from 2.1 in the 1.5x slowdown setting

to 1.6 in the 2x slowdown setting). Recall that increasing the

slowdown means that each task takes longer to execute due

to the amount of interference that it suffers when executing in

parallel with other tasks. This observation is important because

it shows that when the number of devices competing for shared

resources increase then the interference increases which leads

to larger execution times than what is estimated in isolation

and therefore to unschedulable task sets. This effect can also

be seen in Figure 2 and Figure 3 either in terms of average

and maximum response-times where tasks under global EDF

take longer to execute than the proposed heuristics.

Fifth Observation, for a smaller number of cores (m = 2)

global EDF behaves better than any of the proposed heuristics

even when considering a slowdown of 1.5x. Nevertheless,

when the number of cores increase global EDF will behave



Fig. 4: Number of schedulable task sets per utilization value

in a setting of m = 2 cores and slowdown values of 1.5x. Task

parameters: A = 1 · random(1, 3), E = 4 · random(1, 3), R =
2 · random(1, 3)3

Fig. 5: Number of schedulable task sets per utilization value

in a setting of m = 2 cores and slowdown values of 1.5x. Task

parameters: A = 2 · random(1, 3), E = 1 · random(1, 3), R =
2 · random(1, 3)

worst due to the interference increase when tasks execute in

parallel as explained in the previous observation.

Sixth Observation, when the execution phases are smaller

than memory phases as in Figure 5 and Figure 7 all the

proposed heuristics behave poorly because the tasks will not

benefit from any parallelism and in fact most of the phases

will execute in a sequential way in the majority of the time.

It can be seen from both figures that even if the number of

cores increase (from m = 2 to m = 4) the schedulability of

the task sets remains nearly the same.

3
x · random(1, 3) means that a factor x is multiplied by random value

generated in the range [1, 3]

Fig. 6: Number of schedulable task sets per utilization value

in a setting of m = 4 cores and slowdown values of 1.5x. Task

parameters: A = 2 · random(1, 3), E = 4 · random(1, 3), R =
1 · random(1, 3)

Fig. 7: Number of schedulable task sets per utilization value

in a setting of m = 4 cores and slowdown values of 1.5x. Task

parameters: A = 2 · random(1, 3), E = 1 · random(1, 3), R =
2 · random(1, 3)

VII. CONCLUSION

In this paper we empirically explored the AER model by

the means of a simulator in order to circumvent the lack of a

worst-case response-time schedulability test that allows one

to test the schedulability of a task set composed of tasks

following the AER model for multi-core systems.

Our simulator allows us to reason about the behaviour of

AER tasks with regards to a number of metrics such as average

response-time and maximum response-time and considering

different priority assignment heuristics. Moreover, we have

compared the allocation heuristics against a global scheduling

approach (global EDF) where interference is considered in



Fig. 8: Number of schedulable task sets per utilization value

in a setting of m = 4 cores and slowdown values of 1.5x. Task

parameters: A = 1 · random(1, 3), E = 4 · random(1, 3), R =
2 · random(1, 3)

Fig. 9: Number of schedulable task sets per utilization value

in a setting of m = 4 cores and slowdown values of 2x. Task

parameters: A = 2 · random(1, 3), E = 4 · random(1, 3), R =
1 · random(1, 3)

order to simulate the behaviour of tasks in a COTS system. Our

results show that a priority assignment heuristic which assigns

the priorities based on the tasks’ periods dominates all the

other proposed heuristics and that due to the interference it can

also schedule task sets which are not schedulable using global

EDF. These observations show that the simple version of the

AER model can be useful in today’s multi-core architectures,

and from a safety point of view this solution is actually

probably more viable than some other scheduling approaches

that are interference-prone as global EDF.

Concerning the future work, we would like to explore the

potential of the simulator to generate new metrics such as

average allocation per heuristic and study even further the

scalability of the approaches presented.
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