

A Domain Specific Language for Automotive
Systems Integration

Conference Paper

CISTER-TR-190806

2019/10/14

Renato Oliveira

David Pereira

Cláudio Maia

Pedro José Santos

Conference Paper CISTER-TR-190806 A Domain Specific Language for Automotive Systems ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

A Domain Specific Language for Automotive Systems Integration

Renato Oliveira, David Pereira, Cláudio Maia, Pedro José Santos

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: prmol@isep.ipp.pt, drp@isep.ipp.pt, clrrm@isep.ipp.pt, pjsol@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Developing complex safe and secure Cyber-Physical Systems(CPS)applications for the automotive domain is
typically a complex task, due to the criticality inherent to this domain. Considering such known complexity of the
development process, we propose a novel solution that aims to provide a quasi automatic integration process
between the different components of such CPS systems via the support of a Domain Speci?c Language (DSL) that
provides several views of the system, abstracting away the more technical implementation details, while imposing
system properties and rest rictions that have the potential to be formally veri?ed (either statically or at run-time)
during design, and facilitates the process of customization and quasi-automatic build and deployment processes.
In this paper, we brie?y analyze the tools that are available and that cover partially the characteristics of our
envisioned DSL, describe its building blocks, and show how it can be applied in a small, yet suf?ciently complex
CPS application whose architecture is very close to what we may expect for the modern and future generation of
CPS application in the automotive domain.

A Domain Specific Language for Automotive Systems Integration

Renato Oliveira, David Pereira, Cláudio Maia, Pedro Santos

CISTER Research Centre – ISEP, P.Porto, Porto, Portugal

{prmol, drp, clrrm, pjsol}@isep.ipp.pt

Abstract—Developing complex safe and secure Cyber-Physical
Systems (CPS) applications for the automotive domain is typically
a complex task, due to the criticality inherent to this domain.
Considering such known complexity of the development process,
we propose a novel solution that aims to provide a quasi-
automatic1 integration process between the different components
of such CPS systems via the support of a Domain Specific
Language (DSL) that provides several views of the system,
abstracting away the more technical implementation details,
while imposing system properties and restrictions that have the
potential to be formally verified (either statically or at run-time)
during design, and facilitates the process of customization and
quasi-automatic build and deployment processes. In this paper,
we briefly analyze the tools that are available and that cover
partially the characteristics of our envisioned DSL, describe its
building blocks, and show how it can be applied in a small,
yet sufficiently complex CPS application whose architecture is
very close to what we may expect for the modern and future
generation of CPS application in the automotive domain.

Index Terms—system verification, CPS application develop-
ment, system integration, domain specific languages

I. INTRODUCTION

Developing complex CPS applications for the automotive

domain is a complex task, due to the criticality inherent to this

domain and the need for increased functionality, safety, and

security. A considerable part of the development effort relies

on the integration of third-party and vendor specific software

components, thus involving the usage of plethora of different

technologies, typically developed in isolation (and by different

entities) and, later in the process, integration and verification

efforts that delay the time to market of new solutions, and

higher production costs. The different technologies typically

involved in the development of automotive applications range

from distinct modeling frameworks, code editors and program-

ming languages, development frameworks, operating systems,

COTS platforms, support for virtualization via hypervisors,

among others. Such diversity of technologies leads to an

integration that can be very complex, tedious, error prone, and

time-, money- and effort-consuming [1].

As the complexity of these CPSs increases, our inability

to rigorously capture the interactions between the physical

and the computation components paves the way to software

errors that can lead to serious vulnerabilities during operations.

Ultimately, systems become unsafe, with disastrous failures

that could not have been properly identified during the several

stages of the application’s development cycle [2].

1By quasi-automatic we envision a scenario where consistency checking is
mostly made by the solution itself, automatizing the integration process

In order to properly address the complexity of the design

and development process, we propose the development of a

DSL that aims to provide a quasi-automatic integration process

between the different entities or components of a CPS appli-

cation, abstracting away technical details of these components

and enable rigorous methods of verification, customization,

and deployment. To this end, the DSL provides different views

of the system, where properties or constraints imposed in a

view propagate to other views, increasing the set of system-

wide properties that need to be ensured correct in order for

the system to be considered safe. By providing distinct views,

our envisioned solution allows different system intervenients to

seamlessly interact during the development process, simultane-

ously ensuring that the underlying infrastructure used for this

interaction is verified, and that CPS applications and systems

can be easily built, customized and deployed.

This paper is organized as follows: in Section II we briefly

review languages that have common features to the DSL we

are proposing; in Section III we analyze the development

environments that facilitate the efforts to implement a new

DSL; in Section IV we introduce our DSL and show how

it can be used in the development of a CPS application with

complex structure and involving different types of components

(system-wide); finally, in Section V we draw some conclusions

and point to future work.

II. RELATED WORK

There are a number of languages that help the development

of complex CPS applications by enabling the integration

between different components and systems. In this section we

briefly overview some of such languages.

A. SysML

One of such languages is the System Modelling Language

(SysML), which aims to provide cross-domain technology

and system integration. SysML addresses issues associated

with multi-view modeling [3] and offers a unifying language

between the various views of the system [3]. SysML is based

in the Unified Modelling Language (UML) and allows for the

creation of a plethora of diagrams that output models, which

can then be used to generate code.

SysML allows basic operation signatures to be defined

at interfaces, and pre- and post-conditions to be specified

textually [4]. This feature is tightly connected with the concept

of Design by Contract (DbC) [4]. Contract verification, in the

case of SysML, requires the translation of these contracts into

the formal notation of the COMPASS Modelling Language

(CML) [4]. As this is a somewhat manual process, and since it

relies on non-formal, natural language for a textual description

of the contracts, it does not enable the rigorous specification

of system properties or/and constraints that need to be verified

in order to ensure system correctness.

SysML cannot transform models into target code by itself,

which introduces other tool dependencies, like Enterprise

Architect [4]. Additionally, SysML is by design a diagram

oriented language, which is not always the more convenient

way of satisfying the ever increasing necessity of incorporating

different applications in a single solution that typically relies

on tweaking code to achieve such integration.

B. AADL

Another language that provides integration support among

different components of a system is the Architecture Analysis

and Design Language (AADL). AADL was designed for the

specification, analysis, integration and code generation, based

on requirements that refer to performance-critical systems.

AADL allows the analysis of CPS systems prior to their de-

velopment, supporting model driven development approaches

throughout the system life cycle. Due to its focus on the

embedded systems domain, it can be used to produce both

software and hardware, making it a very versatile tool for

designing systems.

AADL can be used to manage both system and software

aspects within the same model, offering a single notation

mechanism for both. The existence of a single model eases the

analysis because there is only one representation of the system,

eliminating possible ambiguous notions that may emerge.

Therefore, in order to properly produce a model, any AADL

user can extend the language by defining properties, which in

turn are system specific characteristics.

It is possible to extend the AADL language for a specific do-

main, via annexes. Language annexes enhance the core AADL

language in order to provide an enrichment to the architecture

description and definition. At the present time, there are four

defined annexes: the (1) behavior annex, which adds behavior

to components with state machines; the (2) errormodel annex

which specifies fault and propagation concerns; the (3) AR-

INC653 annex which defines modeling patterns for avionics

systems; and the (4) data-model annex which describes the

modeling of specific data constraints within AADL. With that

being said, it would be possible to design a DSL using the

annex definition capabilities of AADL. We chose not to pursue

this path due to its inherent focus on real-time performance-

critical (timing, safety, schedulability, fault tolerant, security,

etc.) systems. These properties, while useful in some domains,

might not fit the scope of the solution we are trying to envision.

Additionally, the reason for not using AADL stems from the

difficulty of representing different views using this language,

at least in the way we envision them.

III. TOOLS FOR DSL DEVELOPMENT

In this section we will describe two candidate DSL devel-

opment tools, namely the Xtext tool and the Jetbrains Meta

Programming System (MPS).

A. Xtext

Xtext is a framework that allows one to quickly develop

tools for a textual language [5]. It can be used to develop

DSLs or General Purpose Languages (GPL). Additionally, it

has support for configuration files and requirement documents.

Xtext takes advantage of the Eclipse Modeling Framework

(EMF) and allows easy integration with tools from the Eclipse

Modeling ecosystem, such as Model-to-Model or Model-to-

Text transformation languages [5]. Starting with a grammar

definition, Xtext generates a parser, serializer and a smart

editor for the language. All these generated artifacts can be

configured or customized via dependency injection [5].

Unfortunately, considering the domain approached in the

context of this paper, a need for the validation of various

concerns emerges, those concerns being timing, safety, schedu-

lability, fault tolerance, security, etc. As such, the default

behaviour that Xtext provides does not meet the needs of

our envisioned solution, as we would need to customize this

behaviour to close this gap. In order to perform this cus-

tomization, some proficiency with Xtend is required 2. Xtend

is used to aid Xtext on processing models and expressions built

under the latter, and they are normally used together. With that

being said, we conclude that, although using a combination of

these tools is a possible strategy, it requires proficiency with

both of them, which possibly implies increased staff costs and

development time.

B. MPS

MPS is a metaprogramming system and also known a

language workbench that allows the development of DSLs,

simultaneously creating models for such DSLs, generating

code, perform model verification, define annotations and create

documentation. MPS relies on a projectional editor, meaning

that the Abstract Syntax Tree (AST) is changed after every

input instead of having a parser that transforms a character

sequence in that same tree. This brings some advantages,

namely, language modularity and flexible notation capabilities.

In the scope of the present work, we will use plugins

developed for the MBEDDR 3 project due to their focus in

embedded system development, even though the usage of C

as the only translated code is not the objective. Although this

is the case, MBEDDR can be used as a set of plugins of MPS,

which introduces features that bring value to our project, e.g.,

state machine definition, formal analysis capabilities, among

others.

The plugins that compose MBEDDR contain language

definitions, namely MBEDDR C and its extensions, which are

languages in terms of MPS, in addition to the many libraries,

utilities, views, editors, etc.

With that being said, it is pertinent to briefly describe

MBEDDR architecture4.

2Xtend is a flexible and expressive dialect of Java
3MBEDDR is an extensible C-based language and IDE for embedded

software development [6]
4http://mbeddr.com/userguide/images/concept/architecture.png

MBEDDRs structure is comprised of 5 layers: (1) user

extensions, which is where users can define languages and

other domain specific features; (2) default extensions, which

are the extensions already supported by MBEDDR; (3) core,

which contains the bulk of MBEDDRs features like the

C99 language standard, model checking features, requirement

specification, documentation, etc.; (4) platform, which is the

JetBrains MPS framework; (5) backend tool, which contains

the basis (independent tools) for the entire tool like the C

compiler, new symbolic model checker, etc.

Additionally, MBEDDRs architecture focuses on three dis-

tinct concerns, namely the implementation concern, the anal-

ysis concern and the process concern. The implementation

concern addresses the development of applications based on

C with the advantage that the user can extend the language

and any of the existing extensions.

The analysis concern contemplates static analysis (formal

verification) for some of the default extensions provided by the

implementation concern. These analysis (based on symbolic

model checking, SMT solving and C-level model checking)

are performed by external tools, integrated in MBEDDR.

The process concern focuses on the facilities of integrating

MBEDDR into development processes. These features apply

to default and user-defined C extensions. It contains features

such as requirements support which provides a language to

describe requirements; traces that can be attached to any

program element, additional arbitrary data that can be added

to a requirement, among other features.

IV. A NEW DSL FOR CPS DEVELOPMENT

In this section, we introduce the ideas supporting the novel

DSL that we are developing, and illustrate how it can be used

to support the development of a simplified CPS application

that contains the main characteristics one can expect in the

modern and future generation of automotive CPS applications.

It is crucial to mention that the DSL is still in a very

early development phase, which means it is still subject to

significant changes.

A. Example Application

With the ever growing demand for cars to be equipped

with more advanced, safe, and secure Advanced Driver-

Assistance Systems (ADAS), whose development costs and

time-to-market have reduced, we foresee that many CPS

applications will make use of high-performance computing

hardware platforms equipped with several, potentially hetero-

geneous computing cores, as well as with GPUs specially

tailored to improve the performance and energy efficiency of

advanced computation features, like neural networks or image

processing algorithms.

Also importantly, single OS solutions are also becoming

quite limited, as complex CPS applications for the automotive

sector clearly require higher degrees of isolation between com-

ponents of the system since these components have different

levels of criticality and security. Therefore, hypervisors that

are able to manage several OSs within the same platform

are gaining relevance, as they naturally enforce temporal

and spacial isolation among components, and thus allow

interference mitigation and provide a natural way to have

components executing in an OS environment that provides

support for predictable computation and operation over the

physical environment (e.g., real-time operating systems satis-

fying AUTOSAR requirements), and for these to send data for

being processed in standard Linux OSs where frameworks like

the Robot Operating System (ROS) are used for coordination

of components that are responsible for providing the ”intel-

ligence” required for vehicles with advanced ADAS features,

for example.

In the remainder of the paper, notably when we start

introducing the concepts associated with the novel DSL that

we are developing, we will use as working example an

abstract instance of a system with the characteristics that we

have described in the previous paragraph. In particular, we

consider a CPS application comprised of three partitions (each

corresponding to a guest operating system, two of which are

standard Linux and the remaining one hosting a RTOS), one

hypervisor managing those partitions, all of which running on

a high-performance computing platform Nvidia Jetson TX2.

One of the Linux partitions will serve as the interface with

the driver, the second Linux partition hosts ROS as its most

outstanding application, and the RTOS running in the third

partition is assumed to be in charge of managing the sensing

of, and the actuation over the physical instruments of the

vehicle. The high-level of this CPS system’s architecture is

illustrated in Figure 1.

Fig. 1. Example CPS application.

B. DSL characteristics and structure

From the architecture of the above described example CPS

application, we can immediately identify four different views

of that application: (1) a platform view (PV), where the

hardware platform is chosen and the set of resources that have

to be used in the application; a (ii) hypervisor view (HV),

where one needs to configure how many partitions have to

be defined and how they communicate with each other (if

they communicate at all); an (iii) operating system view (OV)

where the OS to be deployed in each partition is selected, and

customized to reduce resource usage and potential interference

with the applications that will be running on them; and an

(iv) application view (AV), where the actual computational

components responsible for the functionality of the system

are identified, their interactions are defined, and from which

verification conditions can be derived.

Each of these views contains specific information which

is necessary to be known by other views in order to establish

strict boundaries on the support that each view can have or can

provide to the other view to which it is directly connected.

For instance, the HV must provide information to the OV

indicating that only a subset of operating systems is supported,

which in turn impacts on the set of components that can be

deployed in each of the operating systems that may be chosen.

Next, we provide more details about the role of each view in

our idealized DSL, as well as the associated syntax of the

language while showing how it can be applied to capture the

properties of our running CPS application example.

(1) – PLATFORM VIEW. The scope of the PV is on defining the

hardware platform to be adopted in for the target application,

as well as specifying which of its resources are allowed

for usage in the upper-level views. In terms of syntax, this

represents a view block that is an instance of a Views

.Platform template. Since, in our working example, we

are assuming a NVidia Jetson TX2 as the target hardware

platform, we define a refine statement whose argument is the

name of this embedded board. In the general case, we assume

that in order to use some hardware platform, some previous

work on defining the corresponding stub must be done.

Next, we start to declare the platform resources that we

want to use, and those which we do not want to use. To

allow the usage of a resource, we use the statement allow

followed by the name of the resource (which is defined in

the corresponding stub, and is hidden from the developer. For

instance, in the example we are using, we allow the access to

the quad-core ARM A57 available in the Jetson TX2 board.

We also allow the usage of ethernet, wireless, serial interfaces

for communication, and hdmi support. Finally, we deny the

usage of all the remaining available resources via the statement

deny all, whose intended semantics is that of disallowing

access to any resource that was not marked as ”allowed” in

the view specification.

view DemoPV is Views.Platform {

Refines existing datasheet based

specification for Jetson TX2

refines JetsonTX2;

Allow ARM A57 cores

allow cores = [1, 2 ,3, 4];

Allow Ethernet and WLAN support

allow ethernet;

allow wlan;

Allow hdmi output

allow hdmi;

Allow serial connection

allow serial;

Block all the rest

deny other;

Define usable memory region for partitions

region 0x000000 .. 0xFFFFFF : main;

}

The relevance of the PV is that it can be used to fa-

cilitate the construction of hypervisor and OS distributions,

by deselecting drivers for whose corresponding resources are

denies of usage, as well as associated services, thus leading to

leaner distributions that occupies less memory space (which is

very useful when deploying in embedded hardware platforms,

which provide less computational resources when compared to

regular computers); also, this information can be used to check

unwanted access to memory regions that may map hardware

resources, for instance, by programmers.

(2) – HYPERVISOR VIEW. The goal of the HV is to allow the

selection of the hypervisor and establish its configuration in

terms of partitioning and sharing of resources, according to the

requirements of the target application. In the example below,

which is a view that implements the Views.Hypervisor

, we select the Jailhouse [7] hypervisor via the statement

refine Jailhouse. We then define three partitions using

the partition keyword, and to each of these partitions, we

specify which OS is expected to be deployed in it, what is the

memory region in which the OS will be mapped to execute,

and which resources each partition it will use. Since Jailhouse

is a strong partitioning hypervisor, i.e., each hardware resource

can be associated with just one partition, we can make use of

our view to verify isolation either in terms of memory regions

on also guarantee that resources are not wrongly shared among

partitions.

view DemoHyp is Views.Hypervisor {

Bring to scope the selected hw platform

and its usage constraints

import DemoPV;

Refine existing Jailhouse hypervisor

support

refines Jailhouse;

Specify partition details

partition LinuxHMI with {

OS Linux;

#Specify the main memory region of this

partition

region 0x000000 .. 0xAAAAA : main;

use cores[0], wlan, hdmi;

}

Specify partition details

partition LinuxROS with {

OS Linux;

region 0xBBBBBB .. 0xCCCCCC : main;

use cores[1..2], ethernet;

}

Specify partition details

partition RTOS with {

OS FreeRTOS;

region 0xDDDDDD .. 0xFFFFFF : main;

use cores[4], serial;

}

Finally, we set up a set of inter-

partition communication memory zones

channel inter_partition_1 with {

connect LinuxHMI and LinuxROS;

size 10MB;

mode read write to all;

protocol IVHSMEM;

}

channel inter_partition_2 with {

connect LinuxROS and RTOS;

size 10MB;

mode write to RTOS;

mode read to LinuxROS;

protocol IVHSMEM;

}

}

Another useful specification considered in the HV is that

of specifying communication mechanisms between partitions.

In the case of Jailhouse, that is possible via shared mem-

ory regions that the hypervisor manages. We specify those

communication facilities via channel blocks, which relate

partitions via the connect statement, after which we define

the size of that communication channel, and the read/write

modes associated with them. Also, we assume that there may

be more than one kind of protocol being used to govern the

inter-partition communication channel and for that we consider

the protocol statement, which in the case of Jailhouse is

IVHSMEM.

(3) – OPERATING SYSTEM VIEW. The OV allows us to choose

the concrete OS instances, according to the what has already

been specified in the HV. Not only the concrete OSs are

chosen, but also extra packages that need to be installed are

selected and the set of services that need to start during

boot time are defined. In the example below, we depict the

specification of the OS that shall be deployed in the LinuxROS

and RTOS partitions defined in the HV. Again, the advantages

of having the OV is that of having the possibility to generate

customized configuration and build scripts that lead to OS

instances with reduced size, discard applications and services

that are not needed, which consequently reduces the changes

of unwanted interference among applications packages in the

OS and the concrete applications we are targeting to deploy

in the final CPS application.

view LinuxROSImage extends Views.OV {

Clone a pre-existing Ubuntu distribution

with minimal software packages and

services

refines Linux.Ubuntu.Minimal;

State that is an instance for a particular

partition

deploys LinuxROS;

Set extra packages to be installed

install ros,. . .;
Set application to be started at boot time

boot { . . . }

}

view RTOSImage extends Views.OV {

refines RTOS.FreeRTOS;

deploys RTOS;

boot { . . . }

}

In the above example we specify two OS images that shall be

automatically built by the supporting tools of the DSL. The

first one states that a minimal Ubuntu Linux distribution shall

be the base, and that it will be deployed on the LinuxROS

partition, installing extra packages related to ROS, and boot a

set of services that are necessary. The second wrapper simply

states that the base OS is FreeRTOS and that it shall be

automatically built and deployed on the RTOS partition.

(4) – APPLICATION VIEW. The last view discussed in this

paper is the AV. The goal of this view is similar to that of

traditional development interfaces in model or DSL driven

development environments. This view provides a set of pre-

defined software components (or templates) to be refined

and customized to the CPS application under development.

Another aspect considered when specifying AVs is to estab-

lish verification conditions that need to be proved to ensure

system correctness. To illustrate this, let us first look at the

specification of two AVs which focus on a ROS component

that needs to be deployed in the LinuxROS partition, and a

task that shall be deployed in the RTOS partition. For the case

of the ROS based application, we specify an AV that defines

which topics are going to be used, and an AV that specifies

the ROS application using that node.

view DemoTopic extends Views.AV {

Clone the stub for ROS topics

refines ROS.Topics;

ROS bricks to be deployed on previously

specified LinuxROS image

deploys LinuxROS;

Specify the set of topics to be considered

topic T1 with {

path = "path_to_ROS_topic_spec_file" ;

type = float ;

}

}

view DemoNode extends Views.AV {

Clone the stub for ROS nodes

refines ROS.Nodes;

Set the target deployment OS

deploys LinuxROS;

Specify the nodes

node In_Node with {

body "path_to_ROS_node_source_code_file";

topics {

T1 mode read

};

}

}

In terms of specifying topics, that is performed via the

writing of topic blocks, where the body parameter defines

the source file that contains the actual code that will provide

the ROS specification, and the type is the type associated

with that topic. We can use these two fields together to

derive verification conditions that ensure that any access to

the topic is performed using the correct data structures (a sort

of static type checking at the DSL level). This is particularly

useful when several developers are implementing different

nodes accessing to common topics, and typing problems can

occur, so the DSL, when being processed, shall warn for

those inconsistencies and deny the overall CPS application

building process. In the case of the node specification, the

approach is very similar, with the exception that we enforce

reading/writing modes to associated topics, which can also be

verified during analysis or build times of the application, using

information already available in the topic’s specification.

For specifying a task in our DSL, the process is very

similar to the specification of ROS nodes and topics. The

difference relies on the refine argument, which in this case

is a refinement of a task in FreeRTOS, and its associated

scheduling parameters, which for now we consider only the

task’s priority and period. Like with the other AVs specified

above, that task specification must also point to the concrete

file where the code implementing its functional behavior is

written.

view DemoTask extends Views.AV {

Clone the stub for FreeRTOS task nodes

refines FreeRTOS.Tasks;

Set the target deployment OS

deploys RTOS;

Task specification

task ReadSensor {

body "path_to_source_code_file" ;

priority Pr;

period Per;

}

}

Next, we turn to the specification of verification aspects

of the DSL. For that, we conceived the notion of an AV

whose internal components are check and monitor blocks,

where the former establishes formal specifications that shall

be verified statically, whereas the latter considers a mechanism

that generates monitors that will be coupled with the system

and verify its properties during run-time. What we idealized is

that the tools that will be built to support development of CPS

application with our DSL shall have specific blocks that allow

users to define formal specifications and these specifications

are checked against the associated verification tools. In the

example that follows, we assume some Linear Temporal Logic

(LTL) verification tool to check one property, and a Restricted

Metric Temporal Logic with Durations (RMTLD) monitor

generation framework that will build a monitor that has the

execution semantics of the formula specified. Intuitively, the

LTL specification states that it is always true that when the

ROS node In_Node reads from topic T1 it satisfies property

φ then, somewhere in the future it must write something to

the standard output that satisfies the property ϕ. Similarly, the

specification of the monitor block intuitively means that the

node In_Node reading from topic T1 cannot take more than

10 time units to finish.

view NodeVerification extends Views.AV {

Load all ROS verification stub

refines ROS.Verification.*;

Include nodes and topics

include DemoNode;

include DemoTopic;

Intra Node Verification (static)

check {

module LTL {

[G](if In_Node.Read.T1 sat φ
then [F](In_Node.Write.stdout sat ϕ));

}

}

Property monitoring

monitor {

module RMTLD {

Check that a message publication takes

no

more than 10 time units

[G_{<10}](In_Node.Read.T1 sat true);

}

}

V. CONCLUSIONS

In this paper we discussed current integration solutions and

our approach to develop a DSL to smoothen the integration

of different Cyber-Physical Systems into a single solution.

We’ve also shown some key concept realizations in an example

DSL definition, namely, inter and intra view communication

concepts, deployment configuration concepts and formal veri-

fication concepts. For future work, we intend to fully develop

and formally verify an integration tool using this approach,

targeting the automotive industry.

ACKNOWLEDGMENT

This work was partially supported by National Funds

through FCT/MCTES (Portuguese Foundation for Sci-

ence and Technology), within the CISTER Research Unit

(UID/CEC/04234); also by the Norte Portugal Regional Op-

erational Programme (NORTE 2020) under the Portugal 2020

Partnership Agreement, through the European Regional Devel-

opment Fund (ERDF) and also by national funds through the

FCT, within project NORTE-01-0145-FEDER-028550 (RE-

ASSURE).

REFERENCES

[1] R. Land and I. Crnkovic, “Software systems integration and architectural
analysis - a case study,” 10 2003, pp. 338– 347.

[2] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming dr.
frankenstein: Contract-based design for cyber-physical systems,” Euro-

pean journal of control, vol. 18, no. 3, pp. 217–238, 2012.
[3] A. A. Shah, D. Schaefer, and C. J. Paredis, “Enabling multi-view

modeling with sysml profiles and model transformations,” in International

Conference on Product Lifecycle Management. Citeseer, 2009, pp. 527–
538.

[4] J. Bryans, J. Fitzgerald, R. Payne, A. Miyazawa, and K. Kristensen,
“Sysml contracts for systems of systems,” in 2014 9th International

Conference on System of Systems Engineering (SOSE). IEEE, 2014,
pp. 73–78.

[5] M. Eysholdt and H. Behrens, “Xtext: implement your language faster than
the quick and dirty way,” in Proceedings of the ACM international con-

ference companion on Object oriented programming systems languages

and applications companion. ACM, 2010, pp. 307–309.
[6] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr: an extensible

c-based programming language and ide for embedded systems,” in
Proceedings of the 3rd annual conference on Systems, programming, and

applications: software for humanity. ACM, 2012, pp. 121–140.
[7] M. Baryshnikov, “Jailhouse hypervisor,” B.S. thesis, České vysoké učenı́

technické v Praze. Vypočetnı́ a informačnı́ centrum., 2016.

