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Abstract 

Forecasting is a task with many concerns, such as the size, quality, and behavior of the data, the computing power 
to do it, etc. This paper proposes the Dynamic Mode Decomposition as a tool to predict the annual air 
temperature and the sales of a stores 19 chain. The Dynamic Mode Decomposition decomposes the data into its 
principal modes, which are estimated from a training data set. It is assumed that the data is generated by a linear 
time-invariant high order autonomous system. These modes are useful to find the way the system behaves and to 
predict its future states, without using all the available data, even in a noisy environment. The Hankel block allows 
the estimation of hiddenoscillatory modes, by increasing the order of the underlying dynamical system. The 
proposed method was tested in a case study consisting of the long term prediction of the weekly sales of a chain 
of stores. The performance assessment was based on the Best Fit Percentage Index. The proposed method is 
compared with three Neural Network Based predictors. 
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A Dynamic Mode Decomposition Approach With

Hankel Blocks to Forecast Multi-Channel Temporal

Series
Enio Vasconcelos Filho, Paulo Lopes dos Santos, Member, IEEE

Abstract—Forecasting is a task with many concerns, such as
the size, quality, and behavior of the data, the computing power to
do it, etc. This paper proposes the Dynamic Mode Decomposition
as a tool to predict the annual air temperature and the sales of a
stores’ chain. The Dynamic Mode Decomposition decomposes the
data into its principal modes, which are estimated from a training
data set. It is assumed that the data is generated by a linear
time-invariant high order autonomous system. These modes are
useful to find the way the system behaves and to predict its
future states, without using all the available data, even in a noisy
environment. The Hankel block allows the estimation of hidden
oscillatory modes, by increasing the order of the underlying
dynamical system. The proposed method was tested in a case
study consisting of the long term prediction of the weekly sales
of a chain of stores. The performance assessment was based on
the Best Fit Percentage Index. The proposed method is compared
with three Neural Network Based predictors.

Index Terms—Dynamic Mode Decomposition, Hankel Matrix,
Prediction, System Identification.

I. INTRODUCTION

FORECASTING is a task with many concerns such as

the size, quality and how to find the behavior of the

data, the computational power, etc. Since time-series can

be of distinct nature and have different behaviors, there are

several approaches to model and predict them. For example,

temperature, and sales can have completely different modes

and behaviors, even if they are measured in the same place at

the same time interval.

Many different approaches can be used to predict time-

series, such as fuzzy Evolving Methods [1], regression [2],

state space and Auto-regressive Integrated Moving Average

(ARIMA) [3], moving average [4] and Neural Networks [5].

Yet, most of these approaches require a large amount of

training data [6] and are subjected to many optimization

problems, like the difficulty to define the best parameters to

achieve the best results [7].

This paper addresses the problem of long term forecasting

time-series with a periodical or quasi-periodical behaviour.

The Dynamic Mode Decomposition (DMD) is proposed to

estimate the system principal modes and to predict its fu-

ture behaviour. The DMD is a powerful analysis tool that
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reveals spatial coherent structures associated with temporal

spectral components [8]. Although it was originally proposed

to analyse fluid flow data [9] it can also be used to model

and predict temporal series [10]. It is a data-driven method

that decomposes a set of signals into principal modes. As it

exploits the low-dimensional structure of the data it spends

low computational resources [11]. The DMD assumes multi-

channel time-series being generated by autonomous linear

time-invariant systems where each channel is a state variable.

If these state-variables do not span the time-series principal

modes, DMD fails. In this paper, signal observations are

arranged in a block Hankel matrix before performing DMD,

creating new shifted in time state-variables for the underlying

autonomous system. This strategy increases the system’s order

enabling the DMD to capture more signal modes. The DMD

with Hankel matrix was also used in [12] to develop an

alternative view of Koopman analysis. This approach was

called the Hankel alternative view of Koopman (HAVOK)

and enables the estimation of linear models that capture the

periodic or almost periodic dynamics of nonlinear systems

in a nearly perfect way. Some other authors also proposed

the DMD with the Hankel matrix [13], [14], [15], [16].In

[13], the Hankel matrix is referred but not tested. In [14]

the DMD is used with the well know subspace identification

algorithm N4SID. In [15], the authors propose a learning

method where the ”lags” of the Hankel Matrix are defined by

an Artificial Neural Network. But, one of the most important

contributions is in [16], where the Birkhoff’s ergodic theorem

is used to show that the DMD with an Hankel matrix yields

the true Koopman eigenfunctions and eigenvalues. One of the

contributions of this work is to use an autonomous LTI system

modal analysis approach to prove the benefits of the use of the

Hankel matrix in the DMD. These benefits are illustrated in

a real case study presented in the next section where the use

of the Hankel matrix significantly improved the DMD based

long term predictions.

The performance of the proposed method is illustrated in a

case study consisting in the weekly sales data of a chain of

stores. Each store is a time-series channel. Despite the large

number of channels (2659), the block Hankel matrix almost

doubled the number of estimated modes, significantly improv-

ing the prediction accuracy. The DMD was also compared with

three artificial neural network (ANN) predictors.

The paper is organized as follows: After Section I, this intro-

ductory section, Section II describes the DMD and introduces

the use of the Hankel block matrix. Section III presents the
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case study, discusses the results of the DMD with and without

a block Hankel matrix and compares the DMD with the ANN

predictors. Finally, the main conclusions are drawn and some

future work directions are indicated in Section IV.

II. DYNAMIC MODE DECOMPOSITION WITH A HANKEL

BLOCK MATRIX

A. The Dynamic Mode Decomposition Algorithm

In this section, the DMD algorithm is briefly reviewed.

More details can be found in [17], [9] and [18]. It is assumed

that data is generated by an autonomous dynamic system

described by the set of differential equations ẋ = f(x, t),
where x(t) ∈ R

n is the state at time t. The discrete-time

representation is xk+1 = F(xk) where xk = x(k∆t). The

DMD algorithm works with temporal series, and, in its earlier

versions, assumed a constant sampling period Ts = ∆t,

such that the measured state-values are snapshots in a Krylov

subspace. However, in [11] a modern definition is proposed,

where the algorithm can work with sparse spatial and temporal

collections of data. The initial condition can be defined as

x(0) = x0. The function F(·) defines the governing equations

of the system. It is non-linear and unknown. The initial

conditions and the state measurements are the only available

information. The state is represented by x. So, x is an

n-dimensional vector with (nx >> 1). The DMD allows

the construction of an approximate locally linear dynamical

system ẋ = Ax. A solution with x(0) 6= 0 is [19]:

x(t) =
n
∑

j=1

bjφj exp (ωjt), (1)

where Φj and ωj , are the eigenvectors and eigenvalues of A,

bj , j = 1, . . . , n the coordinates of x(0) in the base defined

by the eigenvectors, and exp (ωjt), the system modes, all for

j = 1, . . . , n,. An eigenvalue with positive real part generates

a growing mode. The opposite happens if the real part is

negative. If the real part is zero, i.e., if the eigenvalue is in the

imaginary axis, the mode is oscillatory. If x(t) is uniformly

sampled, the solution (1) at the sampling instants, tk = kTs

is
x(k) =

n
∑

j=1

φjλ
k
j bj = ΦΛkb, (2)

where λj , j = 1, . . . , n, are the eigenvalues of Ad =
exp (ATs), the state-matrix of the discrete-time map xk+1 =
Adxk+1, Φ =

[

φ1 · · · φn

]

, Λ = diag(λj), and b =
[

b1 · · · bn
]T

. Using the DMD, it is possible to carry out

a spatio-temporal decomposition of the data into a set of

dynamic modes coming from measurements (or snapshots)

equally spaced in time. Those modes have temporal frequen-

cies associated with the imaginary parts of the eigenvalues

ωj [20]. The data collection is arranged in a n × m matrix

where n is the number of state-variables and m is the number

of observations (snapshots). The matrix takes the form X =
[

x1 · · · xm

]

. Splitting the data in two matrices delayed in

time gives:

X1 =
[

x1 · · · xm−1

]

(3)

X2 =
[

x2 · · · xm

]

(4)

and X2 can be expressed as

X2 = AdX1 (5)

because the operator Ad maps xi into xi+1. The DMD uses

the eigenvalues λj of the best-fit linear operator Ad relating

X2 and X1. The eigenvalues of A are

ωj = ln(λj)/Ts, j = 1, ..., n. (6)

The eigenvectors φj and the system modes, exp (ωjt), are

extracted from a low-rank structure. To find them, xm can be

expressed as a linear combination of the x previous values,

xm =
∑m−1

i=1 aixi + v, where v is the residual vector. X2

is related with X1 by

X2 = X1S + vem−1, (7)

where S is the companion matrix [21]

S =











0 · · · 0 a1
1 · · · 0 a2
...

. . .
... . . .

0 . . . 1 am−1











,

and e(m−1) is the (m − 1)th column of the m-dimensional

identity matrix. The coefficients ai, i = 1, . . . ,m− 1, can be

computed by solving a least squares problem, which minimizes

the overall residual. Using (5) and (7), it is possible to see

that X2 = AdX1
∼= X1S. So, the eigenvalues of Ad are

approximately those of S. The estimation of S can be replaced

by a Singular Value Decomposition (SVD) [22] approach that

yields a projection Ã of Ad into the subspace spanned by the

eigenvectors of its dominant modes [23]. The advantage of

this approach is the power of the reduced SVD to attenuate

the noise in the data and to compensate numerical truncation

issues. Ã is found from the SVD of X1, X1 = UΣV ∗,

where U ∈ Cn×r, Σ ∈ Cr×r and V ∈ Cm×r. If the rank

of X1 is approximated by r, then X1 ≈ UrΣrV
∗
r is the

reduced SVD approximation of X1, where Σr is a diagonal

matrix containing the first r singular values of X1, and Ur

and Vr are orthonormal matrices with its first r left and right

singular vectors. Ad is estimated in the least squares sense

by Ad = X2X
†
1 = X2VrΣ

−1
r U∗

r , where X†
1 = VrΣ

−1
r U∗

r

is the pseudoinverse of X1. Ã is an r × r matrix given by

Ã = U∗
rAdUr = U∗

rX2VrΣ
−1
r . It defines a low dimensional

system x̃k+1 = Ãx̃k and the high dimensional state can be

reconstructed from xk = Urx̃k. The eigendecomposition of

Ã is ÃW = WΛ, where Λ is a diagonal matrix with the

eigenvalues and the columns of W are the eigenvectors. The

eigendecomposition of Ad is reconstructed from W and Λ. Λ
contains the dominant eigenvalues of Ad and the columns of

Φ = X2VrΣ
−1
r W contain its dominant (DMD) eigenvectors,

which are also dominant eigenvectors of A. Using (6) to

convert the DMD discrete-time eigenvalues to continuous-

time, the future behavior of the system can be predicted by:

x(t) ≈
r

∑

j=1

φj exp (ωjt)bj = Φ exp (Ωt)b (8)

where Φ is the matrix with the DMD eigenvectors, bj is

coordinate of the initial value in the direction of φj , and

Ω = diag(ω) is a diagonal matrix with the eigenvalues ωj . To

compute the initial values bj take the initial sate, x(0), equal to

the initial sample, x1. Equation (8) becomes x1 = Φb. Then,

it is possible to find b from b = Φ†x1.
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B. Adjusting the DMD with an Hankel matrix

The DMD extracts the dominant modes present in the

measured signals to predict its future behaviour. However,

this is only possible if the sets of linearly independent signals

containing the dominant modes have a cardinality greater or

equal than the number of these modes. i.e, if the measured

signals span the dominant modes. Otherwise the DMD fails

and gives inaccurate results. For instance, the signal

x(t) = A cos(ω0t) =
A

2
exp(jω0t) +

A

2
exp(−jω0t)

contains two modes: exp(jω0t) and exp(−jω0t). Hence, a

DMD using x(t) alone cannot extract them because it assumes

a first order underlying autonomous system with only one

mode. To extract both modes it needs at least a second order

system and this is only possible if the DMD

Let x(t) ∈ Rn be the output of an rth order autonomous

linear time invariant system with distinct eigenvalues. Then,

x(t) is a linear combination of the distinct modes dc,j(t) =
exp(ωjt), j = 1, . . . , r of the system, i.e, x(t) = Tdc(t),

where T ∈ Rn×r and dc(t) =
[

dc,1(t) · · · dc,n(t)
]T

. If

x(t) is uniformly sampled with a sampling period of Ts, then

at the sampling instants tk = kTs, x(t) is given by xk = Tdk
where

dk =
[

λk
1 · · · λk

n

]T
(9)

with λj = exp(ωjTs), j = 1, . . . , r. It is well known that dk is

the state of the discrete-time autonomous linear time-invariant

(LTI) system dk+1 = Λdk, with Λ = diag{λj}, j = 1, . . . , r.

The state-variables dk, and consequently, the modes dc,j(t) =
exp(ωjt), can be recovered from xk if and only if rank(T ) =
r. Under this condition, dk = T †xk, where T † ∈ R

r×n is

the pseudo inverse of T , also known as the Moore-Penrose

inverse. Hence xk+1 = Adxk with Ad = TΛT † ∈ R
n×n

and both dk and dc(t) may be found by the DMD. But if

rank(T ) < r it is not possible to recover dk from xk and the

DMD fails. Suppose now that x(t) ∈ R is a linear combination

of the modes dc,j = exp(ωjt), j = 1, . . . , r and is uniformly

sampled with a period Ts. From the discussion above it is not

possible to extract these modes from this signal alone. But,

xk and its n lagged copies xk+1, . . . , xk+n−1 are given by

xk+i = a1λ
k+i
1 + · · ·+ arλ

k+i
r , i = 0, . . . , n− 1,

where λj = exp(ωjTs). Rewriting this equation as

xk+1 = a1λ
i
1λ

k
1 + · · ·+ arλ

i
rλ

k
r , i = 0, . . . , n− 1

then, from (9),
[

xT
k xT

k+1 · · · xT
k+n−1

]

= Td(k), with

the entries i, j of T ∈ Rn×r given by ti,j = ajλ
i−1. As λj

are distinct, then, if n > r, rank(T ) = r and the signal modes

can be recovered with the DMD applied to this set of lagged

signals.

The DMD is supposed to work with low-rank matrices.

If n >> m, the matrix has a low rank and the DMD is

easily applied. In this case, the measured variables span all

dominant modes and the rank of T is equal to the number

these modes. However, in some data sets, there are linear

dependencies among the measured signals preventing them to

span all dominant modes.Hence, the rank of T is too low and

the DMD fails to correctly identify the system characteristics.

To solve this problem, the the rank of T is increased by adding

time lagged coordinates before applying the DMD. This is

done by rearranging the data set in the Hankel matrix:

X1 =











x1 x2 · · · xj

x2 x3 · · · xj+1

...
...

...
...

xi xi+1 · · · xj+i−1











(10)

This approach redesigns the input data of the system, creating

new state variables. Those variables allow to find the best low-

rank matrix, keeping the almost linear structure [24]. However,

the introduction of the new variables is made at the expense

of reducing the number of samples of the training data set.

Hence, the number of these new variables (number of rows

the Hankel matrix) a has to be a balance between the ability

to detect dominant modes and the accuracy of the estimated

model.

III. CASE STUDY

A. Data Set

The data set consists of the weekly sales of a company

with 2659 stores collected in a period of two and a half years

(143 weeks). The DMD is used to predict the weekly sales

in a period of 50 weeks ahead (about one year) in each store

based on the sales data of the previous 93 weeks.

In order to guarantee that the desired data is suitable to the

DMD, it was necessary to certify some periodicity. Thus, the

Power Spectral Density (PSD) of the total sales volume time-

series was compared for different time windows. Hence the

data was splitted into two halfs and the PSD was estimated

for each half and for the full data. The PSD estimates are

compared in Figure 1 where it can be seen that they do not

differ significantly. All estimates have a peak at a frequency

corresponding to a period of approximately 25 weeks. The

yearly periodicity corresponding to a frequency of 0.12 is also

noticeable in the PSD estimates but with smaller power, due

to the short widths of the time-domain data windows.

Fig. 1. Power Spectral Density of the Data.
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B. Forecast Quality Evaluation

The quality of the forecasts was assessed with the Best Fit

Percentage (BFT) index [25], that uses the Normalised Root

Mean Square Error (NRMSE), defined as

BFT =

(

1−
‖ At − Ff ‖

‖ At − Āt ‖

)

100% (11)

where Ft is the forecast, At is the actual value at instant t, Āt

is the mean value of At and ‖ indicates the 2-norm of a vector.

This index was calculated for each store and measures how

well the estimated model predicts the alternated component of

the signal. It is not biased by the sales mean values which is

very easy to predict because it remains almost stationary.

C. Sales forecasting

The DMD was firstly used with the raw data and then with

an Hankel block matrix. Table I summarizes the results with

both approaches. With raw data, the best BFT was achieved

with a rank of 16. Figure 2 shows the actual, the estimated

and the predicted total sales volume (sum of the sales of all

stores). In this scenario, the DMD is as a good predictor, but

it fails to follow some peaks and the last predictions converge

to the mean. The BFT of the total predicted sales was of 39%
as displayed in table I

TABLE I
SUMMARY OF FORECAST SALES WITH DMD

Data

Set

Number of

measured
signals

Length of

the training

set

Reduced

rank
BFT

Raw
data

2659 93 16 39%

Hankel
Matrix

63816 70 47 58%

Fig. 2. Estimated and predicted total sales volume of the DMD with raw-data
vs actual values.

These results were significantly improved by the use of a

block Hankel matrix. More dominant modes became spanned

by the augmented measured signals enabling the DMD to

estimate them. This is denoted in Figure 3 where the actual

values of the total sales volume is depicted in conjunction with

Fig. 3. Estimated and predicted total sales volume of the DMD with an
Hankel Block vs actual values

the estimated and predicted values of the DMD with an Hankel

block. It can be seen that both the estimates and the predictions

follow the original signal. The BFT of the predicted total sales

volume was increased to 58% (see Table I). Figure 4 shows

the prediction errors of the DMD with and without the Hankel

Matrix Block.

Fig. 4. Comparison between the Errors in the Data set with or without Hankel

Figure 5 displays the eigenvalues estimated by the DMD

without and with an Hankel block matrix. It is possible to see

Fig. 5. The discrete-time eigenvalues estimated by the DMD with raw-data
(LEFT) and using Hankel block matrix (RIGHT).
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that the eigenvalues estimated with the block Hankel matrix

(Figure 5 - RIGHT) are virtually on the unit circumference.

There is also a pair of eigenvalues close to 1 + j0, denoting

the existence of a double integrator. This indicates a ramp

profile in the data with a growing or descending tendency of

the sales. Due to their large number it is impossible to perform

detailed analysis of the sales of each store. Instead, histograms

of the prediction BFTs in all stores are shown in Figure 6. This

Fig. 6. Histograms of the BFTs of the Kernel predictor with raw-data and
with a Block Hankel Matrix.

figure confirms the significant improvements of the Hankel

Block matrix. In 43% of the stores, the predictions of the

DMD with an Hankel matrix had a BFT greater than 30%

while, without this matrix, only in 20% of the stores, the BFT

surpassed this limit. Moreover, also without the Hankel matrix,

the same BFTs were negative in 42% of the stores. With the

Hankel block it was negative only in 26%. Another important

conclusion drawn from the histograms is that, even with the

Hankel block, the DMD did not work well in all stores. But a

more detailed analysis revealed that those stores were the ones

with the lowest sales volume. Hence, their contribution to the

total sales is marginal. If the objective is only to estimate

and predict the total sales one can think that it is sufficient

to perform the DMD with the time-series of the total sales

volume. In fact, such a DMD, with only one signal, spends

much lower computational resources than a DMD with the

2659 signals from all stores. For this reason the DMD was

performed just considering the total volume of sales. The best

BFT was of 38% and was achieved with a 50 rows Hankel

matrix. It is significantly lower than the 58% obtained by

the full DMD (with all stores). Figure 7 compares estimated

and predicted sales with the actual values. Both follow the

measured signal reasonably but they are worse than full DMD

estimates and predictions depicted in figure 3.

D. Comparison with RBF Neural Network

ANN predictors are widely used to forecast temporal series

[5]. Hence, several ANN were also designed to predict the

sales. But, due to the large number of stores, an ANN to

predict all sales demands too many computational resources.

Therefore the ANN was only designed for the total volume

of sales. As the DMD prediction horizon is of 50 weeks, a

50 steps ahead ANN (NN50) predictor was first set up. It

Fig. 7. Estimated and predicted total sales volume of the DMD with only
one signal

Fig. 8. ANN and DMD Estimator and Predictor.

had 1 input, and a hidden layer. It was tuned to optimize

the BFT index of the prediction error over the test data. The

others predictors have prediction horizons of 1 (NN1) to 10

(NN10) steps ahead. Figure 8 compares the forecasts of the

ANN predictors the DMD with the total volume of sales. The

DMD clearly outperforms the NN10 and NN50 and. This

is confirmed by the BFT indexes: BFT (DMD) = 38%,

BFT (ANN50) = 5% and BFT (ANN10) = 26%. The

ANN1 performed slightly better than the DMD. However, it

is not fair to compare these estimators because the AAN1 is

fed back by all past values while the DMD does not have

any feedback. Yet, the global DMD predictor, also without

feedback, achieved a better BFT than the ANN1. Perhaps the

1 step forecasts of the DMD would be better, or at least, won’t

be worst than the ANN1 predictions. A comparison between

these predictors is not shown because the reported results so

far illustrate the superiority of the DMD in this case study.

IV. CONCLUSIONS AND FUTURE WORK

The DMD is a recognized tool to capture spatial coherent

structures associated with temporal spectral components. It can

also be used to predict almost periodic temporal series from

the estimation of its principal modes. But it can only estimate
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modes spanned by the measured signals. If their number is

insufficient the DMD fails to estimate the temporal series

principal modes and the predictions are very inaccurate. The

number of measured signals can be artificially increased by

arranging them in a Block Hankel matrix. This increases the

dimension of the subspace spanned by these signal until it

contains all principal modes. Hence, the DMD becomes an

effective tool to forecast temporal series even for a small

number of channels. In this paper the DMD predictor is used

to forecast sales of big chain of stores. Although the number of

stores is very large, the DMD failed to estimate some principal

modes. The predictor accuracy increased significantly with

an Hankel block matrix, enabling The DMD to forecast the

total volume of sales for one year period with a BFT of 58%

which is a very good figure for such a long period. Even with

the Hankel matrix the DMD did not performed well in all

stores. But those stores were the ones with the lowest sales

volume. A DMD with only the total sales volume was also

performed. It spends much lower computational resources but

its estimates and predictions were less accurate than those

of the full DMD. This DMD predictor was also compared

with ANN1, ANN10 and ANN50, with predictions horizons

of 1, 10 and 50 weeks. The DMD outperformed the ANN10

and ANN50. It was slightly worse than the ANN1. But the

comparison of the ANN1 and DMD predictions were not

fair because the ANN1 was fed back by all past values and

the DMD worked without any feedback. Despite this the full

DMD, also without feedback, achieved a better BFT.

The accuracy of the principal modes of the DMD with

an Hankel block will addressed in a future work. In fact

sometimes the Hankel matrices are badly conditioned and

thus the DMD produces poor estimates. It will be studied

if orthogonal or almost orthogonal matrices extracted form

the Hankel block improve the DMD accuracy. It will be also

considered other approaches to time-series forecasting such as

Kernel based regressions.
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