

A Framework for Programming Sensor
Networks with Scheduling and Resource-
Sharing Optimizations

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110605

Version:

Date: 06-29-2011

Vikram Gupta

Eduardo Tovar

Karthik Lakshmanan

Ragunathan (Raj) Rajkumar

Technical Report HURRAY-TR-110605 A Framework for Programming Sensor Networks with Scheduling

 and Resource-Sharing Optimizations

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

A Framework for Programming Sensor Networks with Scheduling and
Resource-Sharing Optimizations
Vikram Gupta, Eduardo Tovar, Karthik Lakshmanan, Ragunathan (Raj) Rajkumar

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Several projects in the recent past have aimedat promoting Wireless Sensor Networks as an infrastruc-ture technology,
where several independent users can submitapplications that execute concurrently across the network.Concurrent
multiple applications cause significant energy-usage overhead on sensor nodes, that cannot be eliminated bytraditional
schemes optimized for single-application scenarios.In this paper, we outline two main optimization techniquesfor
reducing power consumption across applications. First,we describe a compiler based approach that identifies re-dundant
sensing requests across applications and eliminatesthose. Second, we cluster the radio transmissions together
byconcatenating packets from independent applications based onRate-Harmonized Scheduling.

A Framework for Programming Sensor Networks with Scheduling and
Resource-Sharing Optimizations

(Invited Paper)

Vikram Gupta†‡, Eduardo Tovar†, Karthik Lakshmanan‡, Ragunathan (Raj) Rajkumar‡
†CISTER Research Center, ISEP, Polytechnic Institute of Porto, Portugal

‡Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
vikramg@ece.cmu.edu, emt@isep.ipp.pt, {klakshma, raj}@ece.cmu.edu

Abstract—Several projects in the recent past have aimed
at promoting Wireless Sensor Networks as an infrastruc-
ture technology, where several independent users can submit
applications that execute concurrently across the network.
Concurrent multiple applications cause significant energy-
usage overhead on sensor nodes, that cannot be eliminated by
traditional schemes optimized for single-application scenarios.
In this paper, we outline two main optimization techniques
for reducing power consumption across applications. First,
we describe a compiler based approach that identifies re-
dundant sensing requests across applications and eliminates
those. Second, we cluster the radio transmissions together by
concatenating packets from independent applications based on
Rate-Harmonized Scheduling.

Keywords-Wireless Sensor Networks; Scheduling; Optimiza-
tion; Programming

I. INTRODUCTION

Wireless Sensor Networks are increasingly gaining pop-
ularity in many research communities, and various deploy-
ments have been put in place for developing varied tech-
nologies (such as [1] [2], [3]). Most of these deployments
are, however, only limited to be used by computer-scientists
or the network administrators. In order to allow general
acceptance of sensor networking as an infrastructure tech-
nology, suitable programming support should be provided
so that non-experts can write simple applications easily and
collect data from a sensor network. Hence, we identify
two main requirements for enabling sensor networks as an
infrastructure:

R1: The users should be able to write sensor network-
ing applications through in-network programming,
and

R2: The network should provide upport for multiple
concurrent network-level applications.

Several research projects in the past (e.g. [4] [5] [6] [7])
have focussed on developing support for simultaneous appli-
cations. These works, however, do not focus on optimizing
the power consumption overhead resulting from independent
applications on a sensor network.

Sensor Nodes are typically resource-constrained both in
battery energy and computation power; therefore, it is im-
portant to optimize their consumption not only for individual

applications but across applications as well. Application de-
velopers and operating system designers have long focused
on saving energy on a sensor node, but multiple applications
on a sensor node add extra overhead that may not be elim-
inated with traditional optimization approaches. Concurrent
applications may force frequent turning On/Off of the pro-
cessor and the radio leading to more power consumption. In
addition to the radio power consumption, frequent sampling
of the onboard sensors by independent applications can in-
troduce redundant workload. Sensor networking applications
are typically designed with very low duty-cycles, and On
periods of radio and processor may not align across multiple
applications. This adds non-proportional overhead because
of frequent radio initialization and switching of the processor
from sleep to active states.

As applications are assumed to be submitted indepen-
dently by users to a sensor networking infrastructure, it
may not be possible for an application-level optimization
to reduce the global resource usage. Hence, a programming
framework is required that incorporates inter-application re-
source optimizations. In our previous work [8], we proposed
a framework to support multiple concurrent applications
with radio-packet transmission scheduling based on Rate-
Harmonized Scheduling (RHS) [9]. Such a framework has
a global view of the network allowing optimization across
all the applications. In such a framework, the users create
applications using a higher-level or a macro-programming
language, the programs are then compiled to executable
byte-code that is delivered to the nodes in the network. We
present a two-fold approach where we reduce redundancy
across application using a compile-time approach and apply
Rate-Harmonized Scheduling (RHS) for aligning packet
transmissions from different tasks1.

We describe the design and architecture of our framework
and approaches for optimizing the resource usage on a
sensor node. The paper is organized as follows: in the
next section we provide the motivation and scope of energy
optimizations in case of multiple applications. In Section III

1In this paper, we refer to the user-created network-level programs as
applications, and the jobs that execute on individual sensor nodes as tasks.
In other words, tasks are node-level executables based on the applications.

we provide details of the framework along with the design
of the compiler for eliminating redundancies across applica-
tions. We then describe our approach of radio-transmission
clustering using Rate-Harmonized Scheduling in Section IV.
In the concluding section, we provide the Discussion and
Future Work.

II. MOTIVATION

Multiple applications cause frequent triggering on/off of
processor and radio, and the overhead associated with the
start-up of various components can add to non-proportional
consumption on energy. As an example, Table I shows
various timing parameters for CC2420 radio transceiver
chip [10] associated with the initialization of its crystal
oscillator, phase-locked loop, and voltage regulator. It can
be seen from the table that each time the radio chip shifts
from a power down mode to active mode, up to 33% extra
time-overhead is added with respect to the time required for
transmission of one packet. A packet of 128 Bytes takes
4 ms for transmission using a 250 kbps radio.

Table I
TIMING OVERHEAD PARAMETERS FOR CC2420 RADIO CHIP,

COMMONLY USED IN SENSOR NODES. THE PERCENTAGE OF EACH
TIMING PARAMETER WITH RESPECT TO RADIO USAGE FOR A PACKET

TRANSMISSION IS ALSO PROVIDED.

Parameter Time Percentage
Crystal Oscillator 0.86 ms 21.5%
Start-up Time
PLL Lock Time 192 µs 4%
Voltage Regulator 0.3 ms 7.5%
Start-up Time

Similarly, sampling a sensor involves using the Analog-
to-Digital Converter (ADC), and such an instruction can take
about 2-3 orders of magnitude more time than a simple
processor instruction. A sampling instruction is of the form:

temp_val = sample_sensor(TEMP);

The variable assignment instruction is similar to a copy
instruction like the following:

temp_val_copy = temp_val;

A comparison of the time taken by a sampling instruc-
tion versus a variable assignment instruction is shown in
Figure 1. This comparison is obtained by toggling a GPIO
pin just before and after the execution of a sensor sampling
instruction (shown by the Trace 1) and copying of a 16
bit value into a register (Trace 2). The former takes about
500 microseconds but the latter instruction takes only 10
microseconds. Please note that this time comparison also
includes the time taken for toggling the I/O pins. As the
Atmel ATMEGA1281 (8MHz) processor typically used on
the sensor node has on-chip memory, a load instruction takes
a maximum of 3 cycles that corresponds to 375 nanoseconds.
A majority of the time consumed in the case of Trace 2

!"#$%&'&

!"#$%&(&

Figure 1. Oscilloscope screenshot showing two traces. Traces 1 (Yellow
trace) shows the time taken to acquire one sample reading of the light
sensor on the Firefly sensor platform running Nano-RK, and Trace 2 (blue)
shows the time taken for executing a simple variable asignment instruction.

is because of the pin toggling. Hence, a sensor sampling
instruction consumes up to (500−10)×10−6

375×10−9 = 1306 times
more power. This factor, which we refer to as time-factor, is
specific to the platform and the operating system. However,
the order of magnitude of the time-factor can be assumed
to be similar over most of the common sensing systems.

III. RESOURCE OPTIMIZATION AT COMPILE-TIME

We assume that the users develop network-level sensing
applications using a programming framework such as Nano-
CF [8]. The application code written by the users can
either be abstract network-level using a macro-programming
language or node-specific virtual-machines (for example
Matè [11]). In both the cases, the underlying framework
creates node-level intermediate code based on the applica-
tion logic specified by the user. In this paper, we describe
our approach based on a machine-language like intermediate
code, generally referred to as bytecode. The architecture of
such a complete system is shown in Figure 2, where the user
applications are converted into bytecode by a parser, such
that each output instruction is either an indivisible subex-
pression or a special function for accessing the hardware
(including sensing, GPIO access or packet transmission).
Bytecode corresponding to each application is converted
to a monolithic code by the Redundancy Eliminator with
Implicit Scheduler (REIS) module. This monolithic code,
which we call REIS-bytecode and ρ-code in short, is a
merged sequence of all the applications but the redundancies
are eliminated according to temporal overlap of sensing
requests. REIS-bytecode is then sent over the wireless net-
work to each sensor node where the applications are to be
executed. A bytecode interpreter at the sensor node executes

!"#$%&'(%)"'
!"#$%&'(%)"'

!
"
#
$
%
&
'
()

!"#$%
&''()*+,-."%

*+&$"&'

/01#*-2#%

,")-#)+#./'01234'
5267'83912.26'
!.7")-12#:'

;2&"1"$$'
("65%&<'

&''()*+,-.%
31-$+4#%

,08!'
=/6".%)"'

!"#$%&'(%)"'

,%->#:'

=/6".%)"'
8#6"&9&"6"&'

5#16-$7%
8+.+4#$%

Figure 2. Overview of the approach for redundancy elimination among
independent applications along with compiler-assisted scheduling.

the received REIS-bytecode. Further details of this compiler-
assisted approach is provided in [12].

The approach assumes that a data link-layer and a suitable
routing layer is already implemented on the sensor node
and our solution is transparent to it as long as end-to-end
packet delivery is supported. A network manager module
handles the responsibility of dynamically updating the rout-
ing tables, and maintaining network topology information.
As users issue applications to the system independently, our
approach requires an application storage database to store
application bytecode and merge them using the REIS module
whenever a new application is submitted. The logic of the
user applications is interleaved inside the REIS-bytecode to
provide maximum sharing of sensing requests and radio
transmissions. Bytecode from different applications share
non-overlapping variable and address space, which removes
any need for context switching between applications, and
the interleaving of bytecode provides an implicit schedule
of execution.

IV. RATE-HARMONIZED SCHEDULING

Each application deployed on the network has an as-
sociated period of execution that is specified by the user.
Several tasks on sensor node with mismatching periods can
create several shorter intervals of sleep duration instead of
a longer one even in case where each task a small duty-
cycle. Rate-Harmonized Scheduling clusters periodic tasks
such that all task executions are grouped together in time
to accumulate idle time durations in the processor schedule.
This accumulation helps processor to go into the deep sleep
state. This property can also be applied to packet transmis-
sions, and sending bigger concatenated packets consumes
less energy than sending multiple smaller packets more
frequently. An example scenario where sensing requests and
packet transmissions can be aligned across periodic tasks is
shown in Figure 3.

The framework supports delaying the packet transmission
and hence combining the packets together, which yeilds

A1

A2

A3

P1

P2

P3

!"#$%#&'(")*"$+' ,-./*+01-#' 230#$.%+'

(a) Three tasks on a sensor node with different periods and non-aligned
Sensing and Transmission Sections

P1

P2

P3

A1

A2

A3

(b) Sensing and Transmission aligned across tasks

Figure 3. Aligning Sensing and Transmission requests from different tasks
on a sensor node

significant power savings by using the radio transceiver for
shorter durations at low duty cycles. This effect is shown in
Figure 4. The plot in the figure is obtained by estimating
relative power savings for randomly generated packets with
varying maximum packet size from 1 byte to 100 bytes.
Every data-point shows average after 50 iterations. When
3 applications are used, the energy consumption related to
packet delivery can be saved up to 35%. In addition, if we
use 5 applications, the amount of energy saving is increased
up to 50%. As the maximum packet size increases, the
effect of saving energy is decreasing. It happens because
large packets may not be merged anymore. In addition,
we can obtain opportunities to save more energy due to
high possibilty of clustering packets from more number of
applications. Aggregating packets together helps in reducing
the number of packets transmitted in the network, which in
turn reduces the channel contention and packet loss due to
collision.

V. DISCUSSION AND FUTURE WORK

We presented a brief description of our framework for pro-
gramming sensor networks that employs packet scheduling
optimizations and redundancy elimination at the compiler
level to save energy at each sensor node. These optimiza-
tions are enabled by the network-level programming support
provided to the users that not only abstracts away the
low-level complexities of application development but also
provides features for significant energy savings. The energy
consumed at each node, and the possible savings in those are
dependent on type of applications, and can significantly vary
based on the individuals workload of sensing, computation
and data-transmission. As radio is the single most power-

0 10 20 30 40 50 60 70 80 90 1000.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Maximum Packet Size (Bytes)

N
or

m
al

iz
ed

Po

w
er

 S
av

in
g

R
at

io

3 Applications
5 Applications

Figure 4. Applying RHS in packet delivery allows each sensor node save
the energy by reducing the number of packets to be sent.

expensive component on a sensor node, and sampling a
sensor can take 2-3 orders of magnitude more processor
time than a simple instruction execution, optimization of
a few transmission and sensing requests can achieve very
significant power savings. Please note that we do not take
into account the power usage because of the communication
and computation for maintaining the network-routing and
other basic technologies, as these are out of the scope of
this work.

As future work, we would like to design further opti-
mizations for a sensor network operating system. Tradi-
tional in-network programming approaches are designed as
a middleware on top of the sensor node operating system,
which generally acts as a virtual-machine interpreter. There
is a significant scope of improvement in both the memory
and computation resource usage by designing the operating
system from the network-level programming point-of-view
instead of other way around. As network-level programming
is important for sensor networks to gain popularity as an
infrastructure technology, we wish to design a hypervisor for
sensor networks that is optimized for supporting in-network
programming rather than for application development at the
node level. The overhead of an interpreter runnning on top
of an operating system can be significantly high, we aim
to merge the functionality of those together in a single
firmware.

ACKNOWLEDGEMENTS

This research is partially funded by Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) through Information and Communication
Technologies Institute (ICTI), under the Carnegie Mellon
Portugal Program.

REFERENCES

[1] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves
potatoes: experiences from a pilot sensor network deployment
in precision agriculture,” in Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International, april
2006, p. 8 pp.

[2] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh, “Fidelity and yield in a volcano monitoring
sensor network,” in Proceedings of the 7th symposium on
Operating systems design and implementation, ser. OSDI
’06. Seattle, Washington: USENIX Association, 2006, pp.
381–396. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1298455.1298491

[3] N. Ramanathan, T. Harmon, L. Balzano, D. Estrin,
M. Hansen, J. Jay, W. Kaiser, and G. Sukhatme, “Designing
wireless sensor networks as a shared resource for sustainable
development,” in Information and Communication Technolo-
gies and Development, 2006.

[4] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun,
“Supporting concurrent applications in wireless sensor
networks,” in Proceedings of the 4th international conference
on Embedded networked sensor systems, ser. SenSys ’06.
Boulder, Colorado, USA: ACM, 2006, pp. 139–152. [Online].
Available: http://doi.acm.org/10.1145/1182807.1182822

[5] S. Bhattacharya, A. Saifullah, C. Lu, and G.-C. Roman,
“Multi-application deployment in shared sensor networks
based on quality of monitoring,” Proceedings of Real-Time
and Embedded Technology and Applications Symposium,
IEEE, pp. 259–268, 2010.

[6] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann, “Towards
multi-purpose wireless sensor networks,” in Systems Commu-
nications, 2005. Proceedings, aug. 2005, pp. 336 – 341.

[7] A. Tavakoli, A. Kansal, and S. Nath, “On-line sensing task
optimization for shared sensors,” in IPSN ’10: Proceedings of
the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks. Stockholm, Sweden: ACM,
2010, pp. 47–57.

[8] V. Gupta, J. Kim, A. Pandya, K. Lakshamanan, R. Rajkumar,
and E. Tovar, “Nano-cf: A coordination framework for macro-
programming in wireless sensor networks,” in (to appear)
Proceedings of the 8th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), 2011, ser. SECON-VIII. IEEE,
2011.

[9] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-
harmonized scheduling for saving energy,” in RTSS ’08:
Proceedings of the 2008 Real-Time Systems Symposium.
Barcelona, Spain: IEEE Computer Society, 2008, pp. 113–
122.

[10] “Chipcon inc., chipcon cc2420 data sheet,” 2003.

[11] P. Levis and D. Culler, “Matè: a tiny virtual machine for
sensor networks,” in Proceedings of the 10th international
conference on Architectural support for programming
languages and operating systems, ser. ASPLOS-X. San
Jose, California: ACM, 2002, pp. 85–95. [Online]. Available:
http://doi.acm.org/10.1145/605397.605407

[12] V. Gupta, E. Tovar, K. Lakshmanan, and R. R. Rajkumar,
“Inter-application redundancy elimination in sensor networks
with compiler-assisted scheduling,” CISTER Tech Report.
[Online]. Available: http://www.cister.isep.ipp.pt/docs/

