

A New Approach for Limited Preemptive
Scheduling in Systems with Preemption
Overhead

Conference Paper

CISTER-TR-160504

Mitra Nasri

Geoffrey Nelissen

Gerhard Fohler

Conference Paper CISTER-TR-160504 A New Approach for Limited Preemptive Scheduling in Systems ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

A New Approach for Limited Preemptive Scheduling in Systems with Preemption
Overhead

Mitra Nasri, Geoffrey Nelissen, Gerhard Fohler

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

This paper considers the problem of reducing the number of preemptions in a system with periodic tasks and
preemption overhead. The proposed solution is based on the key observation that for periodic task sets, the task
with the smallest period plays an important role in determining the maximum interval of time during which a lower
priority task can be executed without being preempted. We use this property to build a new limited preemptive
scheduling algorithm, named RSLP, based on fixed-priority scheduling. In RS-LP, the length of each task’s non-
preemptive region is varying during the system execution so as to keep the preemptions aligned with the releases
of the highest priority task. This simple mechanism allows us to reduce the overall number of preemptions. The
proposed algorithm, decides whether or not to preempt the currently executing task based on the maximum
blocking tolerance of the higher priority tasks. In any case, the preemptions are authorized only at release instants
of the task with the smallest period, there by limiting the maximum number of preemptions to the number of
releases of the highest priority task. Moreover, in this paper, we provide two different preemption overhead aware
schedulability tests for periodic and loose-harmonic task sets (i.e., where each period is an integer multiple of the
smallest period), together with a lower bound on the maximum number of preemptions. To conclude, extensive
experiments comparing RS-LP with the state of the art limited preemptive scheduling algorithms are finally
presented.

A New Approach for Limited Preemptive

Scheduling in Systems with Preemption Overhead

Mitra Nasri1, Geoffrey Nelissen2, Gerhard Fohler1

1 Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany
2 CISTER/INESC-TEC, ISEP, Porto, Portugal,

Emails: {nasri,fohler}@eit.uni-kl.de, grrpn@isep.ipp.pt

Abstract—This paper considers the problem of reducing the
number of preemptions in a system with periodic tasks and
preemption overhead. The proposed solution is based on the key
observation that for periodic task sets, the task with the smallest
period plays an important role in determining the maximum
interval of time during which a lower priority task can be
executed without being preempted. We use this property to
build a new limited preemptive scheduling algorithm, named RS-
LP, based on fixed-priority scheduling. In RS-LP, the length of
each task’s non-preemptive region is varying during the system
execution so as to keep the preemptions aligned with the releases
of the highest priority task. This simple mechanism allows us
to reduce the overall number of preemptions. The proposed
algorithm, decides whether or not to preempt the currently
executing task based on the maximum blocking tolerance of the
higher priority tasks. In any case, the preemptions are authorized
only at release instants of the task with the smallest period,
thereby limiting the maximum number of preemptions to the
number of releases of the highest priority task. Moreover, in
this paper, we provide two different preemption overhead aware
schedulability tests for periodic and loose-harmonic task sets
(i.e., where each period is an integer multiple of the smallest
period), together with a lower bound on the maximum number
of preemptions. To conclude, extensive experiments comparing
RS-LP with the state of the art limited preemptive scheduling
algorithms are finally presented.

I. INTRODUCTION

Preemptive scheduling is used in most real-time systems
because it allows the operating system to allocate the processor
to the incoming tasks with urgent timing requirements, and
hence, increases the overall schedulability [1]. For example, the
preemptive earliest deadline first (EDF) scheduling algorithm
is able to schedule a system up to 100% utilization if: i)
tasks are periodic with implicit deadlines, ii) there is no
shared resource or dependency among the tasks, and iii) the
preemption overhead is negligible [2]. In reality, however, the
preemption overhead is not negligible [3]. It has been shown
that it can be as large as 40% of the worst-case execution time
(WCET) of the task measured in isolation [4].

The preemption overhead has different sources. In cache-
enabled real-time systems, cache related preemption delays
(CRPD) happen when a task preempts another and evicts some
cache blocks which have been used and will later be reused by
the preempted task [3]. Preemption overhead can also happen
in the context of networked systems where messages must be
segmented in order to not cause a long blockage for messages
with higher frequency and shorter deadline. In such conditions,
a header will be added to each segment of the message which

in turn, increases the total transmitted data, and hence, de-
creases the throughput. In reservation based scheduling, which
are commonly used in hypervisors [5] or integrated modular
avionics (IMA) systems [6], preemption overheads can be
significant too. For instance, according to the ARINC 653
avionics standard, real-time applications run within a partition
server which is the basic execution environment of software
applications [6]. Since IMA supports the temporal and spatial
isolation of the partition servers from one another, the various
real-time avionics functions (having various safety-assurance
levels) can be developed independently. However, in order to
preserve the isolation between the partition servers, overheads
for partition server context-switch (save of the data transmitted
by the preempted partition to other partitions, load of the data
received by the preempting partition, switching of execution
stack and processor registers, cache flushes implemented to
enforce the space partitioning, etc) must be considered [7].

There have been different approaches to cope with pre-
emption overhead. One of them is to provide schedulability
analysis for the scheduling algorithms such as rate monotonic
(RM) and EDF which are implemented in many real-time
operating systems [8]. However, RM and EDF have a relatively
large number of preemptions. In order to reduce the number
of preemptions, several scheduling algorithms have been de-
veloped including: fixed-priority scheduling with floating non-
preemptive regions (FP-NPR) [9], fixed-priority scheduling
fixed-preemption points (FP-FPP) [9], preemption threshold
(PT) approaches [10], [11], and limited preemption EDF (LP-
EDF) [12], [13].

FP-NPR and LP-EDF defer the preemption of a low
priority job if a high priority job is released. In both algorithms,
the maximum length of the non-preemptive region (NPR) is
calculated at design time in the way that the schedulability
is guaranteed. In LP-EDF, the length of NPR is a function
of the remaining time to the deadline of the executing job
while in FP-NPR it is a constant value for all jobs of a task.
In our paper, we show that the maximum length of the NPR
obtained in [1], [9] and [12], [13] is valid only for sporadic
tasks, not for periodic tasks. In FP-FPP, a preemption can
only happen at the preemption points of the executing task.
The maximum length of NPR between every two preemption
points has been calculated in [1], [9] using the same method as
for FP-NPR. Therefore, FP-FPP has the same problem as FP-
NPR with periodic tasks. In the preemption threshold approach
[10], a low priority task can disable the preemption up to
a certain priority level, called preemption threshold. In most
cases, however, the low priority tasks are not allowed to have

preemption threshold 1, because otherwise, they will not let
the highest priority task (denoted by τ1) be scheduled. As a
result, every release of τ1 causes a preemption, which in many
cases, could be postponed as we will show later.

In [14], an EDF-based approach has been introduced that
decides whether to preempt an executing job or not based
on the newly released high priority job. At design time, a
binary variable is assigned to each task which determines
whether jobs of that task has the right to preempt any other
job in the system or not. This approach has two disadvantages;
a) in order to assign the binary variables it is required to
iterate over all possible combinations of the variables and
for each combination, a pseudo-polynomial time schedulability
test must be evaluated, and b) since the binary variables are not
related to the jobs, but to the tasks, in many task sets, τ1 will
always be a preempting task, meaning that as soon as a job
of τ1 is released, it preempts the executing job. As a result,
similar to the preemption threshold approach, this approach
cannot take advantage of postponing τ1 to provide large non-
preemptive execution segment for the task.

A non-preemptive execution segments (NPS) is defined
as an interval of time during which a task is executed non-
preemptively after it became the task with the highest priority
ready to execute. As observed in [15], τ1 plays an important
role in the length of the NPS of other tasks in the system
because, in a periodic task set, τ1 has the highest release
frequency and the shortest deadline. Nasri et al., [15], [16]
have used this observation to build a non-work-conserving non-
preemptive scheduling algorithm based on RM that schedules
a task only if it does not cause a deadline miss for the next
instance of τ1, otherwise, it inserts an idle time until the
next release of τ1. However, this approach may reduce the
schedulability of highly utilized systems due to the inserted
idle times.

In order to reduce the number of preemptions, we propose
to dynamically compute the length of the NPS’ as a function
of the higher priority jobs that are being released rather than,
as currently done in most approaches of the state of the art,
statically maximizing the length of the NPR as a function of
the sole task about to be preempted.

In this paper, we present an online fixed-priority scheduling
algorithm which synchronizes the execution windows of the
low priority tasks with the releases of τ1. Therefore, it allows
the low priority tasks to be scheduled non-preemptively for
the largest feasible non-preemptive interval of time equal to
two times the slack of τ1. Yet, to cope with the situations
where the maximum tolerable blocking of a high priority
task is not as large as this window, we let a high priority
task with a low blocking tolerance force a preemption. That
additional preemption is however postponed until the next
release of τ1. In other words, our approach can be seen as
a limited preemption strategy with a varying length of the
non-preemptive region, which is determined with respect to
the parameters of the released tasks. Besides, due to the fact
that even if a preemption is required, we postpone it to the the
next release of τ1, we synchronize the execution segments of
the tasks with the releases of τ1 which in turn, gives them a
chance to maximize their next NPS.

Contributions. The contributions of our paper are listed as

follows: 1) showing that the existing approaches, i.e., RM,
EDF, FP-NPR, FP-FPP, and LP-EDF are not able to mini-
mize the number of preemptions, 2) introducing a scheduling
solution based on fixed-priority scheduling which is able to
increase the length of NPS, 4) providing schedulability tests
for periodic and loose-harmonic task sets that are aware of
the preemption overhead, 5) deriving the lower bound on the
number of preemptions and proposing a new feasibility test,
and 6) showing that verifying the feasibility of a task set which
must be scheduled with the minimum number of preemptions
obtained from our lower bound, is an NP-Hard problem.

Paper organization. The remainder of the paper is organized
as follows; Sect. II describes the system model and back-
grounds. In Sect. III we present some motivational examples
to show differences between the existing limited preemption
scheduling solutions. In Sect. IV we introduce our fixed
priority scheduling solution. Our two schedulability tests for
periodic and loose-harmonic task sets are presented in Sect. V.
In Sect. VI, we derive and discuss the lower bound on the
number of preemptions. Sect. VII presents the experimental
results, and the paper is concluded in Sect. VIII.

II. SYSTEM MODEL AND BACKGROUNDS

A. System Model

We consider a uniprocessor system executing a set of
independent hard real-time periodic tasks denoted by τ :
{τ1, τ2, . . . , τn}. Each task τi in the task set is identified by
τi : (Ci, Ti,∆i), where Ci ∈ R is the worst-case execution
time (WCET) of τi, Ti ∈ R is its period, and ∆i ∈ R is its
preemption overhead. ∆i can be calculated with one of the
several methods introduced in the state of the art (e.g., [17] or
[7]). In this paper, we assume that the deadlines are implicit
(i.e., the deadline of each task is equal to its period) and that
there is no release offsets, (i.e., all tasks are released at time
0). The task set is said to be schedulable by a given scheduling
algorithm if for all sequences of jobs generated by the tasks
from time 0 to ∞, no job misses its deadline when scheduled
with that algorithm. In the paper, we use term periodic to refer
to the periodic tasks with no release offset.

The system utilization is denoted by U =
∑n

i=1 ui where
ui = Ci/Ti is the utilization of task τi. The hyperperiod is
denoted by H and is the least common multiple of the periods.
Tasks are indexed according to their periods so that T1 < T2 ≤
. . . ≤ Tn. The period ratio of a task τi (1 < i ≤ n) is defined
as ki = Ti/Ti−1, ki ∈ R. A task set is harmonic iff ∀i, ki ∈ N,
and is loose-harmonic [16] iff ∀i, Ti/T1 ∈ N.

We use hpi to denote the set of tasks with higher priority
than τi, i.e., hpi = {τ1, τ2, . . . , τi−1} where tasks are indexed
according to their periods. Without loss of generality, we
assume that if there are several tasks with a period equal to
T1, then they are represented as a single task τ1 with a WCET
equal to

∑

{τi;Ti=T1}
Ci and a period equal to T1. All these

tasks are then executed sequentially.

B. Background

This subsection presents the state of the art approaches
to calculate the maximum NPR lengths of a set of tasks

2

scheduled with a fixed-priority scheduling algorithm. We more
particularly discuss two specific policies: FP-NPR and FP-FPP.

With FP-NPR, a task enters in a non-preemptive mode at
the release of a higher priority task. The length of the non-
preemptive region is calculated at design time according to the
maximum tolerable blocking time (denoted by βi) of each task
τi. In [9], βi is calculated using the following equation:

βi = max
Ci<t≤Ti

{t− rbfi(t)} (1)

where rbfi(t) is an upper bound on the execution request in
a time window of length t in which tasks in hpi ∪ τi execute.
rbfi(t) is defined as

rbfi(t) = Ci +

i−1
∑

j=1

⌈ t

Tj

⌉

Cj (2)

In [9], Equation (1) is solved by considering value of t
obtained from a set of time instants which was defined in
[18]. In [18] it has been shown that instead of considering all
possible t values from Ci to Di, it is enough to consider a
finite set of values for each task τi. This set is obtained with
the following recursive expression:

T S(τi)
.
= Pi−1(Di) (3)

Pj(t) =

{

{t} j = 0

Pj−1

(

⌊

t
Tj

⌋

Tj

)

∪ Pj−1(t) otherwise
(4)

After obtaining βi from Equation (1), the maximum NPR
length (denoted by Qi) of task τi is calculated the recursive
equation below (starting from Q1 =∞) [9]:

Qi = min{Qi−1, βi} (5)

With FP-FPP, Qi is used to assign preemption points
in the task, i.e., the maximum distance between every two
consecutive preemption points is Qi.

Note that preemption thresholds algorithms [11] use the
exact same concept of maximum tolerable blocking to compute
the length of the execution segments and their associated
preemption threshold.

III. MOTIVATIONAL EXAMPLES

In this section, we discuss the natural differences between
the state of the art methods for limited preemption scheduling,
in order to provide a better understanding about their advan-
tages and weaknesses. We show that in periodic task sets, the
maximum length of the non-preemptive execution segment, as
well as the maximum length of the NPR of a task can be
larger than what is provided by some of the state of the art
algorithms.

Fig. 1 shows a task set with 3 tasks τ1 : (1, 10), τ2 : (9, 35),
and τ3 : (52, 105) which is scheduled by RM, EDF, FP-FPP,
FP-NPR, LP-EDF and the algorithm which will be presented
in this paper. As it can be seen, as soon as a job of τ1 is
released both EDF and RM preempt the low priority job even
if the preemption can be postponed. For FP-FPP, shown in
Fig. 1-(b), we have used Equation (5) to calculate Qi (i.e., the

Fig. 1. A task set with 3 tasks τ1 : (1, 10), τ2 : (9, 35), and τ3 : (52, 105)
scheduled by EDF, RM, FP-FPP, FP-NPR, LP-EDF, and our scheduling
solution. The black color shows non-preemptive mode of execution. Using
(5), Q1 = ∞, Q2 = 9, and Q3 = 9 for FP-NPR and FP-FPP. In LP-EDF
schedule, τ3 stops its execution at time 44 while it could have continued to
execute until 49 without jeopardizing the schedulability of τ1 or τ2.

length of the NPR between every two preemption points). This
algorithm executes the tasks non-preemptively until it reaches
a preemption point. As can be seen, FP-FPP does not minimize
the number of preemption since in this algorithm, Qi is highly
affected by the slack of the first task.

The schedule provided by the floating point limited pre-
emption algorithms, e.g., LP-EDF and FP-NPR, is shown in
Fig. 1-(c). However, as one can see, since the non-preemptive
mode of a task is activated when any higher priority task is
released, these algorithms preempt τ3 at 44 while it could have
been executed for 5 more time units without jeopardizing the
schedulability of τ2 or τ1. The reason is that the maximum
length of the NPR (which will be activated at the releases of
high priority tasks) should in fact depend of the characteristics
of the released tasks. For example, at time 20 when τ1 is
released, the length of the NPR is 9, which will create a
non-preemptive execution segment [11, 29] for τ3. However,
when τ2 is released at 35, it is possible to have a larger non-
preemptive execution segment from 31 until 49 for τ3. At
49, the slack of the 5th job of τ1 becomes 0, and hence a
preemption is unavoidable. This solution has been shown in
Fig. 1-(d). We summarize these properties in the following
theorem.

Theorem 1. In periodic task sets, EDF, RM, LP-EDF, FP-
NPR, and FP-FPP neither minimize the number of preemptions
nor maximize the length of the non-preemptive execution

3

Fig. 2. An example with 4 periodic tasks τ1 : (1, 10), τ2 : (4, 18), τ3 :
(5, 45), and τ4 : (18, 90), to show that the maximum length of the non-
preemptive region can be larger than what is calculated in Equation (5).

segment of a task.

Proof: The proof is based on the counter example shown
in Fig. 1 with 3 periodic tasks τ1 : (1, 10), τ2 : (9, 35), and τ3 :
(52, 105) with no preemption overhead. As shown in Fig. 1-
(d), the largest execution segment is 18 units for τ3, and it can
be feasibly scheduled only with 2 preemptions.

Based on the intuition behind the example in Fig. 1, we
show that for periodic tasks, the method suggested by Yao et
al., [9] does not calculate the largest length of the NPR for
FP-NPR (and FP-FPP).

Theorem 2. The method suggested by Yao et al. in [9] (based
on Equation (5)) does not calculate the largest length of the
NPR in periodic task sets.

Proof: The proof is based on a counter example with 4
tasks τ1 : (1, 10), τ2 : (4, 18), τ3 : (5, 45), and τ4 : (18, 90)
shown in Fig. 2. In this task set, τ4 releases only one job in
the hyper-period. Moreover, it is possible to schedule that only
job of τ4 non-preemptively in the execution window [11, 29],
which means that the maximum NPR length for this task is
11 units, while according to Equation (5), this length should
not be larger than T1 − C1 = 9.

An interesting conclusion from Theorems 1 and 2 is that
the length of the last non-preemptive region of the task is
not the only factor that affects the number of preemptions.
As shown in Fig. 1-(d) and further analyzed in Section VII,
by synchronizing the preemptions generated by any task on
the releases of τ1, the overall number of preemptions can
be significatly reduced. Later, in Sect. VI, we derive a lower
bound on the number of preemptions for any feasible task set.
We show that in order to minimize the number of preemptions,
the length of the NPSs must be equal to two times the slack
of the highest priority task τ1 (i.e., 2× (T1 − C1)).

IV. A NEW SCHEDULING ALGORITHM

In this section, we introduce our new limited preemptive
scheduling algorithm referred to as release-sensitive limited
preemptive (RS-LP).

As stated in Section III, FP-NPR and LP-EDF activate the
non-preemptive region of a running task τi at the release of any
higher priority job regardless of the characteristics of that job.
The NPR completes after Qi time units and τi gets preempted.
This approach may generate a succession of short execution
segments for τi when their length could otherwise have been
larger. Indeed, if the released higher priority job has more slack
than Qi, there is no need to preempt τi after Qi.

Fig. 3. Three symbolic examples to explain how the RS-LP method works;
(a) shows the situation where Algorithm 1 is activated. In this situation, τi
starts its execution until anext

1
+ T1 − C1. (b) shows the situation where

Algorithm 2 is activated due to the release of τk . In this case, if βk < σi,
task τi must stop its execution at anext

1
. (c) shows a case where high priority

tasks τk and then τj are released. Since they cannot tolerate a blocking as
long as σi, task τi must be preempted at anext

1
.

Therefore, instead of having a fixed length for the non-
preemptive region as it is the case for PT, FP-NPR and FP-
FPP, we propose that whenever a high priority task is released,
the decision of whether or not to preempt the running task is
dynamically taken based on the maximum blocking tolerance
of the released job (and that job only).

As presented in Algorithm 1, when a new task must be
chosen for execution, RS-LP picks the task with the high-
est priority and starts an execution segment as long as the
remaining time until the next release of τ1 plus the whole
slack of the next job of τ1. That is, if τi starts executing
at time t, then its execution segment will span from t to
anext1 + (T1 − C1) where anext1 is the next release of τ1 after
time t. As illustrated in Fig. 3-(a), this scheduling decision
allows us to 1) maximize the length of the execution segment
of τi, and 2) push the completion of the job J1,p of τ1 released
at anext1 to coincide with the release of its next job J1,p+1

released at time anext1 +T1. Therefore, J1,p+1 will directly start
executing after the completion of J1,p and one preemption will
be avoided.

Furthermore, when a high priority task τk releases a
job during the execution of a low priority task τi, RS-LP
may decide to preempt the execution segment of τi before
its completion. Yet, in order to limit the total number of
preemptions, the preemption can only happen at the next
release of τ1. This technique has two advantages: 1) it allows
us to synchronize the execution of the execution segments
of the tasks with the release of τ1, and hence, increase the
chance that these tasks are scheduled using the largest possible
time interval between two consecutive execution of τ1; 2) by
deferring these preemptions and synchronizing the finishing
time of the execution segment of the low priority task τi
with the releases of τ1, we actually postpone several potential

4

Algorithm 1: Algorithm executed at the completion of a
job or an execution segment

Input: t: the current time

1 anext1 ← (⌊t/T1⌋+ 1)× T1 ; // next release of

τ1 after t
2 i← index of the highest priority task with a pending

job;
3 Schedule τi for anext1 + (T1 − C1)− t time units;

Algorithm 2: Algorithm executed at a job release

Input: t: the current time, τk: the released task

1 if the processor is idle then
2 Call Algorithm 1;
3 else
4 i← index of the task running on the processor;
5 σi ← remaining execution time of the current

execution segment of τi;
6 βk ← maximum blocking time of τk;
7 if τi has a lower priority than τk and βk < σi then
8 anext1 ← ⌈t/T1⌉ × T1; // next release

of τ1 at or after t
9 Schedule τi for (anext1 − t) time units;

10 else
11 Schedule τi for σi time units; // continue

executing τi
12 end
13 end

preemptions to a single time instant. Consequently, the only
task which preempts a low priority task will be τ1 (since τ1 will
be the task with the highest priority at the time τi is actually
preempted). Fig. 3-(c) shows a case where several high priority
tasks (τk and then τj) have been released during the execution
of τi. As shown in the figure, the preemption of both τk and
τj are postponed until anext1 . Using this simple technique, we
avoid a cascade of preemptions that may happen in RM or
EDF due to the consecutive releases of high priority tasks in
the reverse order of their priorities. As a result, with RS-LP,
the number of preemptions suffered by any task other than τ1
will be a function of the number of releases of τ1.

Algorithm 2 describes the procedure followed by RS-LP
whenever a new job is released. If the task τk which released a
job has a lower priority than the currently executing task τi or if
the maximum blocking tolerance of τk (i.e., βk), is larger than
or equal to the remaining length of the execution segment of τi
(denoted by σi), we continue executing τi until completion of
its execution segment (Line 11). Otherwise, if the maximum
blocking tolerance of τk, is not larger than the remaining length
of the execution segment of τi, then we reduce the size of
the execution segment of τi such that it finishes at the next
release of τ1 happening at anext1) (Lines 7 to 9). This situation
is illustrated in Fig. 3-(b).

Since finding the highest priority task with a pending
job can be done in a constant time [19], the computational
complexity of Algorithm 1 as well as the amortized complexity
of Algorithm 2 per released job is O(1).

As a property of Algorithms 1 and 2, one can easily derive
an upper bound for the maximum length of an execution
segment with the RS-LP algorithm.

Lemma 1. With RS-LP, the length of an execution segment of
any task τi such that i 6= 1, is at most 2(T1 − C1).

Proof: According to Line 3 in Algorithm 1, the execution
segment of any task τi is the longest if it starts executing at a
time t as far as possible from the next release anext1 of a job
of τ1. Since τ1 has the highest priority, the last release of τ1
before t must have completed its execution before τi becomes
eligible for execution. Hence, (anext1 − t) is upper bounded by
(T1 −C1). At Line 3 in Algorithm 1, the maximum length of
a non-preemptive execution segment of any task τi is given by
anext1 + (T1 − C1)− t ≤ 2(T1 − C1).

V. SCHEDULABILITY ANALYSIS

A. Schedulability Test for Periodic Tasks

In this section, we first derive an upper bound for the total
preemption cost during the execution of a task τi scheduled
with RS-LP (see Lemma 2 and Corollary 1). We then provide
an equation to compute the maximum blocking time βi tolera-
ble by τi (see Equation (9)) and an upper bound on the actual
blocking time suffered by τi during its execution (Lemma 3).
All that information is finally used in Theorem 3 to derive an
upper bound on the WCRT of a task τi scheduled with RS-LP.

Let Si be the set of tasks τk ∈ hpi \ τ1 with a maximum
tolerable blocking time βk (computed with Equation (9) below)
smaller than 2(T1 − C1).

Lemma 2. With RS-LP, in a time window of length t where
only tasks in hpi ∪ τi execute (i.e., tasks in {τ1, τ2, . . . , τi}),
the total number of preemptions is upper bounded by

P̂i(t) = min

{

⌈

t

T1

⌉

,

⌈

t

2T1

⌉

+
∑

τk∈Si

⌈

t

Tk

⌉

}

(6)

Proof: We first prove that the number of preemptions
is upper bounded by ⌈t/T1⌉ and then by ⌈t/(2T1)⌉ +
∑

τk∈Si
⌈t/Tk⌉. Since both expressions are upper bounds, the

total number of preemptions is upper bounded by the minimum
of those two, which then proves the claim.

1) According to Line 3 in Algorithm 1 and Line 9 in Algo-
rithm 2, the length of an execution segment is based on the
arrival time of the next job released by τ1. This means that only
jobs released by τ1 can preempt a running task. Since there
are at most ⌈t/T1⌉ jobs released by τ1 in a window of length
t, the number of preemptions is upper bounded by ⌈t/T1⌉.

2) According to Line 3 in Algorithm 1, the length of an
execution segment of a task τi that starts to execute at time t
is set to anext1 + (T1 − C1)− t (where anext1 is the release of
the next job J1,j by τ1 after t). Three situations may occur:

a) τi completes its execution before the end of the
segment, in which case no preemption happens and
Algorithm 1 is called again;

b) τi executes for anext1 +(T1−C1)−t and is preempted
by τ1 at time anext1 + (T1 − C1). Since τ1 executes
for C1 time units, it completes at time anext1 + T1,

5

which happens to be the release of a new job J1,j+1

by τ1. Since τ1 has the highest priority, this new
job J1,j+1 is elected by Algorithm 1 to be executed
right after the completion of the previous job J1,j of
τ1. Therefore, J1,j generates a preemption but J1,j+1

does not;
c) Another task τk releases a job before the end of

the execution segment of τi. Algorithm 2 is then
called. If τk has a higher priority than τi and its
maximum tolerable blocking time βk is smaller than
the remaining time σi until the end of the current
execution segment of τi, then the execution segment
of τi is shortened and one more preemption is gen-
erated. Note that by Lemma 1, σi is upper bounded
by 2(T1 − C1). Hence, only tasks in Si (i.e., higher
priority tasks such that βk < 2(T1 − C1)) can cause
such reschedule, and at most

∑

τk∈Si
⌈t/Tk⌉ jobs can

be released by the tasks in Si within a time interval
of length t. Consequently, the number of preemptions
initiated by other tasks than τ1 is upper bounded by
⌈t/(2T1)⌉+

∑

τk∈Si
⌈t/Tk⌉.

Therefore, by a) and b), only half of the jobs released by τ1
can generate a preemption, that is, ⌈0.5 ⌈t/T1⌉⌉. As shown
in [20], this ceiling operation can be simplified as ⌈t/(2T1)⌉.
Furthermore, by c), at most

∑

τk∈Si
⌈t/Tk⌉ jobs of other tasks

than τ1 can be the cause of one more preemption. Hence, the
total number of preemptions in a window of length t is upper
bounded by ⌈t/(2T1)⌉+

∑

τk∈Si
⌈t/Tk⌉.

Corollary 1. In a time window of length t where only tasks
in hpi ∪ τi execute, an upper bound on the total preemption
cost is given by

∆̂i(t) = P̂i(t)×
i

max
k=2

(∆k) (7)

Proof: Because τ1 has the highest priority, it cannot be
preempted. The maximum preemption cost caused by one
preemption is therefore upper bounded by maxik=2 (∆k). Since

by Lemma 2, there are at most P̂i(t) preemptions in such a
time window, the total preemption cost is upper bounded by

P̂i(t)×maxik=2 (∆k).

As explained in Sect. II-B, Yao et al. [9] have proposed a
lower bound βi on the maximum blocking time tolerable by τi
defined in Equation (1). In this equation, rbfi(t) is an upper
bound on the execution request in a time interval of length t
where tasks in hpi ∪ τi execute. Therefore, the total demand
rbfi(t) is given by the sum of: (i) the execution request of
each task in hpi ∪ τi, and (ii) the total preemption overhead
suffered in a window of length t. As shown in [21], the former
is upper bounded by

rbf∗
k (t) =

(⌈

t

Tk

⌉

− 1

)

Ck+min

{

Ck, t−

⌊

t

Tk

⌋

Tk

}

(8)

and by Corollary 1, the latter is upper bounded by Equation (7).
A lower bound on the maximum tolerable blocking time is thus
given by

βi = max
Ci<t≤Ti

{

t−
(

∆̂i(t) +
i

∑

k=1

rbf∗
k (t)

)

}

(9)

Using Equation (9) and Algorithm 2, one can now define
the maximum blocking time Bi suffered by any job Ji,j of
task τi due to a lower priority task already running on the
processor at Ji,j’s release.

Lemma 3. The maximum blocking time suffered by any job
released by τi due to lower priority tasks is upper bounded by

Bi =























0 if i = n

min

{

T1 − C1,
n

max
j=i+1

(Cj)

}

if βi < 2(T1 − C1)

min

{

2(T1 − C1),
n

max
j=i+1

(Cj)

}

otherwise

(10)

Proof: The first case is for τn which is the lowest priority
task, and hence, cannot be blocked by a lower priority task.
For the other tasks, we prove the three following properties:

1) Because Algorithm 1 always selects the highest priority task
to be scheduled when a job completes an execution segment,
at most one job of a lower priority task can block τi. For any
other tasks than τn, the blocking time is thus upper bounded

by
n

max
j=i+1

(Cj).

2) By Lemma 1, the maximum length of a non-preemptive
execution segment of any task τj with a smaller priority than
τi is 2(T1 − C1). Combining this fact with 1), we get that

Bi ≤ min

{

2(T1 − C1),
n

max
j=i+1

(Cj)

}

for any task τi. This

proves the third case of Equation (10).

3) According to Line 9 of Algorithm 2, if τk has a maxi-
mum tolerable blocking time βk smaller than the remaining
execution length σi of the current execution segment of the
lower priority running task τi, then the length of τi’s execution
segment is shorten to (anext1 − t). By Lemma 1, σi is upper
bounded by 2(T1 − C1), and (anext1 − t) is smaller than
or equal to (T1 − C1). Combining this with 1), we get
that for any task τi such that βi < 2(T1 − C1), there is

Bi ≤ min

{

T1 − C1,
n

max
j=i+1

(Cj)

}

. This proves the second

case of Equation (10).

We can now derive an upper bound on the WCRT of a task
τi under RS-LP.

Theorem 3. An upper bound on the WCRT of a task τi
scheduled with RS-LP is given by the smallest positive value
Ri such that

Ri = Bi + Ci +
i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj + ∆̂i(Ri) (11)

Proof: The WCRT of τi happens when (i) it executes for
its WCET, (ii) it suffers its maximum blocking time, (iii) it
suffers the maximum interference by higher priority tasks and
(iv) it suffers the maximum preemption cost.

(i) is given by Ci. (ii) is given by Equation (10) in
Lemma 3. (iv) is given by Equation (7) in Corollary 1. Only
(iii) must still be quantified. The maximum number of jobs
any higher priority task τj can release within a time window
of length Ri is ⌈Ri/Tj⌉. The maximum interference they can

6

therefore generate is ⌈Ri/Tj⌉Cj . (iii) is thus upper bounded

by
∑i−1

j=1 ⌈Ri/Tj⌉Cj .

Summing all those terms, we get Equation (11), which
proves the theorem.

Note that Equation (11) is recursive. It can be solved with
a fixed point iteration on Ri by initializing Ri to Bi + Ci.

B. Schedulability Test for Harmonic and Loose Harmonic
Tasks

In harmonic and loose harmonic task sets every release of
a job is synchronized to the releases of the jobs of the highest
priority task τ1. This simple fact introduces some interesting
properties in RS-LP that results in a reduced number of
preemptions in a time window of length t (see Lemma 4) and
limits the maximum blocking time that is actually suffered by
a task τi due to lower priority tasks delaying their preemptions
(see Lemma 5). This in turn allows us to reduce the pessimism
in the computation of the maximum tolerable blocking time βi

(see Equation 14) and the WCRT of task τi (see Theorem 4).

To avoid any confusion with the generic formulas of the
previous section, in this section, we append the superscript h

to each quantity (i.e., Si, P̂i, ∆̂i(t), βi, Bi and Ri) which is
related to harmonic (and loose harmonic) tasks.

Hence, we define Shi as the set of tasks τk ∈ hpi \ τ1
with a maximum blocking time βh

k (defined by Equation (14)
below) smaller than (T1−C1), i.e., βh

k < (T1−C1). Note that
Shi considers only the tasks with a tolerable blocking time
smaller than (T1 − C1). The set Si defined in the previous
section for generic periodic tasks, was however containing all
the tasks with a maximum tolerable blocking time smaller than
2(T1 − C1). This difference in their respective definitions is
important as it impact the computation of the total number of
preemptions and thus the total preemption cost as demonstrated
below.

Lemma 4. With RS-LP, in a time window of length t where
only loose harmonic tasks in hpi∪τi execute, the total number
of preemptions is upper bounded by

P̂h
i (t) = min







⌈

t

T1

⌉

,

⌈

t

2T1

⌉

+
∑

τk∈Sh
i

⌈

t

Tk

⌉







(12)

Proof: The only difference between Equation (6) and (12)
resides in the definition of Shi . The sum on the elements in Shi
is therefore the only term we will discuss in this proof. All

the other terms were already proven in point 1. (i.e., P̂h
i (t)

is upper bounded by ⌈t/T1⌉) and points 2.a. and 2.b. (i.e., at
most ⌈t/(2T1)⌉ preemptions are initiated by τ1) of the proof
of Lemma 2. However, point 2.c. of Lemma 2’s proof must be
revisited.

When a task τk releases a job before the end of the execu-
tion segment of a task τi already running on the processor,
Algorithm 2 is called. If τk has a higher priority than τi
and its maximum tolerable blocking time βh

k is smaller than
the remaining time σi until the end of the current execution
segment of τi, the execution segment of τi is shortened and
one more preemption is generated.

From Line 3 of Algorithm 1, the maximum length of an
execution segment of τi is anext1 + (T1 − C1) − t. Since the
releases of τk are synchronized on the releases of τ1, the
earliest time at which a job of τk can be released is anext1 .
It results that the maximum remaining time until the end of
the current execution segment of τi at anext1 (and thus at
the release of τk) is (T1 − C1). Hence, only tasks in Shi
(i.e., higher priority tasks such that βh

k < (T1 − C1)) can
cause a reschedule shortening the execution segment of τi.
At most

∑

τk∈Sh
i
⌈t/Tk⌉ jobs can be released by the tasks in

Shi within a window of length t. The number of preemptions
initiated by other tasks than τ1 is thus upper bounded by
⌈t/(2T1)⌉+

∑

τk∈Sh
i
⌈t/Tk⌉.

Combining this last result with the fact that at most
⌈t/(2T1)⌉ preemptions are initiated by τ1 (see points 2.a.
and 2.b. in the proof of Lemma 2), we get ⌈t/(2T1)⌉ +
∑

τk∈Sh
i
⌈t/Tk⌉ as an upper bound on P̂h

i (t). And because

it was already proven (point 1. of the proof of Lemma 2) that

⌈t/(T1)⌉ is also an upper bound on P̂h
i (t), the claim follows.

Corollary 2. In a time window of length t where only loose-
harmonic tasks in hpi ∪ τi execute , an upper bound on the
total preemption cost is given by

∆̂i(t) = P̂h
i (t)×

i
max
k=2

(∆k) (13)

Proof: Identical to the proof of Corollary 1.

Replacing the total preemption ∆̂i(t) by ∆̂h
i (t) in Equa-

tion (9), we get the following lower bound on the maximum
tolerable blocking time for loose harmonic tasks

βh
i = max

Ci<t≤Ti

{

t−
(

∆̂h
i (t) +

i
∑

k=1

rbf∗
k (t)

)

}

(14)

Using Equation (9) together with Algorithm 2, we now
quantify the maximum blocking time that is actually suffered
by a task τi scheduled with RS-LP when all tasks are loose
harmonic.

Lemma 5. In a loose-harmonic task set, the maximum block-
ing time suffered by any job released by τi due to lower priority
tasks, is upper bounded by

Bh
i =















0 if i = n or

βh
i < (T1 − C1)

min

{

(T1 − C1),
n

max
j=i+1

(Cj)

}

otherwise

(15)

Proof: Since τn is the lowest priority task, it cannot suffer
any blocking due to lower priority tasks. Therefore, we have
Bh

n = 0.

Furthermore, from Line 3 of Algorithm 1, the maximum
length of an execution segment is anext1 +(T1−C1)− t. Since
the releases of τi are synchronized on the releases of τ1, the
earliest time at which a job of τi can be released after a lower
priority task τj started running, is anext1 . It follows that the
maximum remaining time until the end of the current execution
segment of τj at anext1 (and thus at the release of τi) is (T1−

7

C1). Two cases must be considered: Case 1. βi < (T1 −C1).
In this case, Algorithm 2 preempts τj at time anext1 , which
happens to be the release time of τi. Therefore, τi never suffers
any blocking due to τj when βi < (T1−C1). This proves the
first case of Equation (15). Case 2. βi ≥ (T1 −C1), in which
τj keeps running and the maximum blocking time that τi can
suffer due to τj , is upper bounded by (T1 − C1).

Moreover, because Algorithm 1 always selects the high-
est priority task to be scheduled when a job completes an
execution segment, at most one job of a lower priority task
can block τi. For any other tasks than τn, the blocking

time is thus upper bounded by
n

max
j=i+1

(Cj). Combining this

with the conclusion of case 2 above, we get that Bh
i ≤

min

{

(T1 − C1),
n

max
j=i+1

(Cj)

}

which proves the second case

of Equation (15)

Theorem 4. In a loose harmonic task set, an upper bound on
the WCRT of a task τi scheduled with RS-LP is given by the
smallest value Rh

i larger than Ci such that

Rh
i = Bh

i + Ci +

i−1
∑

j=1

⌈

Rh
i

Tj

⌉

Cj + ∆̂h
i (R

h
i) (16)

Proof: The proof is identical to the proof of Theorem 3,

replacing Bi and ∆̂i(t) with Bh
i and ∆̂h

i (t), respectively.

VI. DISCUSSION ON THE NUMBER OF PREEMPTIONS

As mentioned in [15], [22] a necessary condition for the
schedulability of non-preemptive periodic tasks is

∀i, 1 < i ≤ n, Ci ≤ 2(T1 − C1) (17)

meaning that the WCET of any low priority task τi, 1 < i ≤ n
must not be larger than two times the slack of τ1. Based on
this observation, we derive the lower bound on the number of
preemptions of any scheduling algorithm which does not miss
a deadline as follows

Theorem 5. Let Ci,j be the actual execution time of a job
Ji,j of task τi (1 < i ≤ n). If all the jobs released by the tasks
in τ respect their deadlines, then the number of preemptions
suffered by Ji,j is lower bounded by

P (Ci,j) =

⌊

Ci,j

2(T1 − C1)

⌋

−

{

1 Ci,j/(2(T1 − C1)) ∈ N

0 otherwise
(18)

Proof: The proof is by contradiction; we show that if Ji,j
has a smaller number of preemptions than P (Ci,j), then at
least one task in the system will miss its deadline. Assume that
Ji,j suffers P ′

i < Pi preemptions (where Pi = P (Ci,j) and
P ′
i = P ′(Ci,j)). It means that it will have one non-preemptive

execution segment which has a length larger than 2(T1−C1),
i.e., that execution segment has length l = 2(T1−C1)+ǫ where
ǫ ∈ R

>0. Let us call that execution segment Si. Assume that
the last release of τ1 before the execution of Si was at t. Two
cases can happen: τ1 starts its execution before that execution
segment of τi, thus, τi can be scheduled from t+C1 and ends
at t + C1 + 2(T1 − C1) + ǫ. It means that the next job of τ1

released at t+T1 cannot meet its deadline. In the second case,
τ1 is not yet scheduled when Si starts. Even in the best-case
where Si start its execution at time t, the first instance of τ1
released at time t will miss its deadline because l > t + T1.
Thus, in both cases, at least one job will miss its deadline if
Ji,j has a non-preemptive execution segment with length l. As
a result, the assumption is not valid, and Ji,j cannot have a
smaller number of preemptions than P (Ci,j).

If the preemption overhead is considered, the worst-case
execution time of the task when it suffers the minimum number
of preemptions is given by C ′

i such that

C ′
i = Ci + P (C ′

i)×∆i (19)

where C ′
i is the smallest value larger than Ci which satisfies

the equation. Equation (20) can be solved with a fixed point
iteration initiating C ′

i to Ci. The following two theorem
directly follow from that fact.

Theorem 6. If all the jobs released by the tasks in τ respect
their deadlines, then the number of preemptions suffered by τi
is lower bounded by P lb

i = P (C ′
i) where

C ′
i = Ci + P (C ′

i)×∆i (20)

Using Equation (20) we derive a necessary condition on the
feasibility of a task set τ composed of periodic (or sporadic)
tasks executing on a uniprocessor platform in the presence of
preemption overhead.

Theorem 7. Let ∆i be the preemption cost suffered by τi ∈ τ
whenever it is preempted by another task, then the task set τ
is feasible on a uniprocessor platform only if

n
∑

i=1

C ′
i

Ti

≤ 1 (21)

where C ′
i is obtained from Equation (20).

Proof: This claim follows directly from the feasibility
test proposed by Liu and Layland in [2] where instead of the
WCET in isolation, we use C ′

i which is the smallest worst-
case execution time in the presence of preemption overhead.

Although Theorem 7 provides a necessary feasibility condi-
tion with linear complexity, proving that there exists a feasible
schedule such that each job suffers its minimum number of
preemptions, is an intractable problem as proven below.

Theorem 8. Verifying the feasibility of a periodic task set τ
with implicit deadlines such that every job of every task τi
does not suffer more than P (C ′

i) preemptions, is a NP-hard
problem.

Proof: The proof is based on the fact that if Pi(C
′
i) = 0

for all tasks, each task must be scheduled non-preemptively.
And, as stated in [23], verifying the feasibility of a non-
preemptive periodic task set with implicit deadline is a NP-
hard problem.

8

Fig. 4. Schedulability ratio as a function of U and δ. In (a) and (b), the horizontal axis is U and δ is set to 0.15 while in (c) and (d) the horizontal axis is δ
and U is set to 0.75. Diagrams (a) and (c) are for periodic tasks while (b) and (d) are for loose-harmonic tasks.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
for different scheduling algorithms including RM, EDF, FP-
NPR, LP-EDF and RS-LP with randomly generated task sets.
The schedule of each task set is simulated over its hyper-period
to assess its schedulability. The schedulability ratio of each
algorithm, i.e., the number of schedulable task sets over the
total number of generated task sets, is then reported in Fig. 4.

In the presented graphs, we also include the schedulability
ratio of the existing schedulability tests for the studied schedul-
ing algorithms. For our algorithm, we use Theorem 4 as the
schedulability test for loose harmonic task sets and Theorem 3
for period task sets. For RM we use the test presented in [8],
for FP-NPR we use the test in [9], and for EDF we use the
utilization based test presented in [24].

It is worth noting that EDF and LP-EDF are in the class
of dynamic priority scheduling algorithms, which are known
to have better schedulability performance than fixed priority
scheduling algorithms; particularly if the preemption overhead
is negligible. However, we decided to include EDF and LP-
EDF in our comparisons so as to get an idea on the gap that
still exists between dynamic and fixed priority algorithms when
the preemption overhead is taken into account. Yet, one should
consider that the real opponents to RS-LP are FP-NPR and
RM.

In the conducted experiments, we consider the effect of

the task set utilization (denoted by U) and the maximum
preemption cost, which is computed as a percentage (denoted
by δ) of the WCET of the tasks. Due to space limitation, we
could not show the influence of the number of tasks n on the
schedulability ratio. However, according to our experiments,
the schedulability ratio did not vary much for values of n larger
than 4. Therefore, we decided to fix the number of tasks to 8.

We used uUniFast [18] to generate random task sets. We
produced n = 8 random values ui ∈ [0, 1] with a total
utilization U . For periodic task sets, periods have been selected
randomly in the interval [10, 500] following the same approach
suggested in [18]. Note that we only accepted task sets with
T2 ≥ 2T1 so as to increase the variability in the overall
schedule (i.e., on an hyper-period). For loose-harmonic task
sets, we first assigned a random period Ti ∈ [1, 10] to τ1, and
then generated n− 1 random values ki ∈ {2, 3, . . . , 500} with
a uniform distribution. Hence, we defined Ti as Ti = ki× T1.
Using ui and Ti, we computed Ci. Finally, we generated the
preemption cost ∆i by selecting a random value xi ∈ [0, δ],
and assigning ∆i = min{xi × Ci,∆} where ∆ is an upper-
bound on the time required to reload the whole cache content.
In the presented experiments, we have assumed ∆ = 50. For
each data point in the resulting diagrams, we generated 200
task sets.

Fig. 4 shows the schedulability ratios of the scheduling
algorithms and their respective schedulability tests for periodic
(left column), and loose-harmonic (right column) tasks as a

9

function of U (top row) and the preemption overhead (bottom
row). As expected, RM and EDF have considerably lower
schedulability ratios than limited preemptive approaches,
as they suffer large number of preemptions. Those results
are even worse with loose-harmonic tasks. This can be
explained by the fact that almost each release of τ1 during the
execution of a low priority job causes a preemption in RM
and EDF. However, most of those preemptions could have
been postponed until the end of the slack of τ1. As one can
see, the schedulability tests for RM and EDF perform poorly
as they over-estimate the number of preemptions. In some
cases, e.g., for U = 0.75, δ > 0.08 in Fig. 4-(c), RM’s test
accepts at most 15% out of 90% of the schedulable task sets.
If we compare the results of RM’s schedulability test with the
schedulability tests presented in Section V, we accept almost
2 times more task sets than RM. A more readable comparison
of the performances of the schedulability tests can be seen in
Fig. 5 for loose harmonic tasks (the parameter is δ and the
utilization is 0.75).

As one can see, in all experiments presented in Fig. 4, RS-
LP show a better schedulability ratio than FP-NPR, particularly
in loose harmonic task sets (Fig. 4-(b) and (d)). As explained
in Sect. IV and then in V-B, since in loose harmonic task sets,
RS-LP is able to fit the execution segments within the slack of
two consecutive jobs of τ1, it can efficiently create larger NPSs.
It directly affects the performance of the test in Theorem 4.
In loose harmonic task sets, tasks are released together with
the release of τ1, hence, the maximum non-preemptive region
obtained by Yao et al. [9] in Equation (5) is exact as long
as βi ≥ T1 − C1, since no counter example such as Fig. 2-
(a) can happen in loose harmonic task sets. As a result, we
expect that the schedulability of FP-NPR and RS-LP becomes
similar in loose harmonic task sets, however, we still see a clear
difference between their performance. This difference comes
from the situations where some tasks have βi ≤ T1−C1. If that
happens, the length of Qi in FP-NPR is reduced according to
Equation (5). However, since βi is calculated according to the
worst-case scenario, it is the minimum safe value of blocking
tolerance of the jobs of τi. In other words, the real blocking
tolerance for each job can be larger than βi as it depends on the
releases of other high priority jobs. FP-NPR ignores this fact
and preempts a job after Qi units of NPR, even if the job can
continue its execution without jeopardizing the schedulability
of the other jobs. As a result, it creates smaller execution
segments which are not synchronized with the releases of τ1
anymore.

VIII. CONCLUSION

In this paper we have introduced a new limited preemp-
tive scheduling solution based on fixed priorities in order
to increase the schedulability of the systems which suffer
from preemption overheads. In the presented method, we try
to increase the maximum non-preemptive execution segment
length by fitting the execution segments in the continuous slack
of two consecutive releases of the task with the smallest period.
Consequently, the tasks can be executed with smaller number
of preemptions. Furthermore, whenever a higher priority task
is released, we decide wether to preempt the low priority task,
based on the maximum blocking tolerance of the high priority
task. Yet, even if we decide to preempt the running task, the

Fig. 5. Normalized schedulability ratio of the schedulability tests with respect
to RS-LP test (Theorem 4) as a function of δ for loose harmonic tasks.

preemption is postponed until the next release of the task with
the smallest period. Thus, we keep the execution segments
synchronized with the releases of the highest priority task, so
as to optimize the overall number of preemptions.

We have provided two schedulability tests one for periodic
and one for loose-harmonic task sets. We have derived a
feasibility condition based on a proven lower bound on the
number of preemptions, and shown that the exact feasibility
analysis to check the existence of a schedule which can
guarantee the minimum number of preemptions is a NP-Hard
problem.

Our experimental results show that our approach has higher
a schedulability ratio than the existing limited preemptive
fixed-priority scheduling algorithms including FP-NPR, which
is one of the most efficient methods in the class of fixed-
priority scheduling algorithms. Similarly, the schedulability
test for harmonic task sets shows very good performances
against its opponents. Yet, we plan to improve the performance
of our schedulability test for periodic tasks as future work.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and co-financed by ERDF (European Re-
gional Development Fund) under the PT2020 Partnership,
within project UID/CEC/04234/2013 (CISTER); also by
FCT/MEC and the EU ARTEMIS JU within projects
ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO)
and ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

REFERENCES

[1] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive schedul-
ing for real-time systems: A survey,” IEEE Transactions on Industrial

Informatics, vol. 9, no. 1, pp. 3–15, 2013.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[3] C.-G. Lee, J. Hahn, Y.-M. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee,
and C. Kim, “Analysis of cache-related preemption delay in fixed-
priority preemptive scheduling,” IEEE Transactions on Computers,
vol. 47, no. 6, pp. 700–713, 1998.

[4] R. Pellizzoni and M. Caccamo, “Toward the Predictable Integration of
Real-Time COTS Based Systems,” in Real-Time Systems Symposium (

RTSS), 2007, pp. 73–82.

10

[5] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned Embedded Archi-
tecture Based on Hypervisor: The XtratuM Approach,” in Dependable

Computing Conference (EDCC), 2010, pp. 67–72.

[6] “ARINC Specification 653-P1: Avionics Application Software
Standard Interface, Required Services,” 2015. [Online]. Available:
https://www.arinc.com/cf/store/index.cfm

[7] O. Sokolsky, M. Xu, J. Lee, L. T. X. Phan, and I. Lee, “Overhead-aware
Compositional Analysis of Real-time Systems,” in IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS). IEEE
Computer Society, 2013, pp. 237–246.

[8] S. Altmeyer, R. I. Davis, and C. Maiza, “Improved Cache Related Pre-
emption Delay Aware Response Time Analysis for Fixed Priority Pre-
emptive Systems,” Real-Time Systems, Springer, vol. 48, no. 5, pp. 499–
526, 2012.

[9] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis under
fixed priority scheduling with limited preemptions,” Real-Time Systems,
vol. 47, no. 3, pp. 198–223, 2011.

[10] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemp-
tion threshold,” in International Conference on Real-Time Computing

Systems and Applications (RTCSa), 1999, pp. 328–335.

[11] R. J. Bril, M. M. van den Heuvel, and J. J. Lukkien, “Improved
feasibility of fixed-priority scheduling with deferred preemption using
preemption thresholds for preemption points,” in International confer-

ence on Real-Time Networks and Systems (RTNS). ACM, 2013, pp.
255–264.

[12] S. Baruah, “the limited-preemption uniprocessor scheduling of spo-
radic task systems,” in Euromicro Conference on Real-Time Systems

(ECRTS), 2005, pp. 137–144.

[13] M. Bertogna and S. Baruah, “Limited Preemption EDF Scheduling of
Sporadic Task Systems,” IEEE Transactions on Industrial Informatics,
vol. 6, no. 4, pp. 579–591, 2010.

[14] J. Lee and K. Shin, “Preempt a Job or Not in EDF Scheduling of
Uniprocessor Systems,” IEEE Transactions onComputers, vol. 63, no. 5,
pp. 1197–1206, 2014.

[15] M. Nasri and M. Kargahi, “Precautious-RM: a predictable non-
preemptive scheduling algorithm for harmonic tasks,” Real-Time Sys-

tems, vol. 50, no. 4, pp. 548–584, 2014.

[16] M. Nasri and G. Fohler, “Non-Work-Conserving Scheduling of Non-
Preemptive Hard Real-Time Tasks Based on Fixed Priorities,” in In-

ternational Conference on Real-Time Networks and Systems (RTNS).
ACM, 2015.

[17] S. Altmeyer and C. Maiza, “Cache-related preemption delay via useful
cache blocks: Survey and redefinition,” Journal of Systems Architecture,
vol. 57, no. 7, pp. 707–719, 2011.

[18] E. Bini and G. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1462–1473, 2004.

[19] G. C. Buttazzo, “Rate monotonic vs. edf: Judgment day,” Lecture Notes

in Computer Science, vol. 2855, pp. 67–83, 2003.

[20] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A

Foundation for Computer Science, 2nd ed. Addison-Wesley Longman
Publishing Co., Inc., 1994.

[21] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds
for fixed priority multiprocessor scheduling,” in 30th IEEE Real-Time

Systems Symposium, (RTSS). IEEE Computer Society, 2009, pp. 387–
397.

[22] Y. Cai and M. C. Kong, “Nonpreemptive scheduling of periodic tasks
in uni- and multiprocessor systems,” Algorithmica, vol. 15, no. 6, pp.
572–599, 1996.

[23] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive
scheduling of period and sporadic tasks,” in IEEE Real-Time Systems

Symposium (RTSS), 1991, pp. 129–139.

[24] W. Lunniss, R. I. Davis, C. Maiza, and S. Altmeyer, “Integrating Cache
Related Pre-emption Delay Analysis into EDF Scheduling,” in IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS). IEEE Computer Society, 2013, pp. 75–84.

11

