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Abstract 
As our dependence on automated systems grows, so does the need for guaranteeing their safety, cybersecurity, 
and privacy (SCP). Dedicated methods for verification and validation (V&V) must be used to this end and it is 
necessary that the methods and their characteristics can be clearly differentiated. This can be achieved via 
method classifications. However, we have experienced that existing classifications are not suitable to categorise 
V&V methods for SCP of automated systems. They do not pay enough attention to the distinguishing 
characteristics of this system type and of these quality concerns. As a solution, we present a new classification 
developed in the scope of a large-scale industry-academia project. The classification considers both the method 
type, e.g., testing, and the concern addressed, e.g., safety. Over 70 people have successfully used the 
classification on 53 methods. We argue that the classification is a more suitable means to categorise V&V 
methods for SCP of automated systems and that it can help other researchers and practitioners. 
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Abstract. As our dependence on automated systems grows, so does the need for 
guaranteeing their safety, cybersecurity, and privacy (SCP). Dedicated methods 
for verification and validation (V&V) must be used to this end and it is necessary 
that the methods and their characteristics can be clearly differentiated. This can 
be achieved via method classifications. However, we have experienced that 
existing classifications are not suitable to categorise V&V methods for SCP of 
automated systems. The classifications do not pay enough attention to the 
distinguishing characteristics of this system type and of these quality concerns. 
As a solution, we present a new classification developed in the scope of a large-
scale industry-academia project. The classification considers both the method 
type, e.g. testing, and the concern addressed, e.g. safety. Over 70 people have 
successfully used the classification on 53 methods. We argue that the 
classification is a more suitable means to categorise V&V methods for SCP of 
automated systems and that it can help other researchers and practitioners. 

Keywords: Verification and Validation, V&V, method, classification, safety, 
cybersecurity, privacy, automated system. 

1 Introduction 

Automated systems such as industrial robots and advanced driving systems play an 
increasingly important role in society. They support many daily-life activities and we 
strongly depend on them. On the other hand, as the use and complexity of these systems 
are growing, system manufacturers and component suppliers require methods that help 
them to confirm that safety, cybersecurity, and privacy (SCP) requirements are satisfied 



[Ref]. This is necessary so that the systems can be deemed dependable. From a general 
perspective, a method corresponds to a particular procedure for accomplishing or 
approaching something, especially a systematic or established one [Ref]; in the scope 
of this paper, for verification and validation (V&V) of automated systems. Examples 
of these methods are fault injection [Ref] and model-based testing [Ref]. 

The features of the new generation of automated systems require that dedicated 
V&V methods (usually a combination of methods) are applied to them [Ref]. The 
methods must consider how to cope with the scale and complexity of the systems, the 
aspects that make them cyber-physical, and their specific quality needs, among other 
issues. For example, the use of software-focused V&V methods alone is often not 
sufficient. This also implies that manufacturers and suppliers need to clearly distinguish 
among different V&V methods and their characteristics to be able to select the most 
adequate ones during a system’s lifecycle. Method classifications can aid in this task. 

However, when involved in the analysis and characterisation of V&V methods for 
SCP of automated systems, we have experienced that existing classifications are not 
suitable. Among the issues identified, the classifications do not pay enough attention to 
specific aspects such as the need for analysing possible faults and attacks at early 
development stages or for ascertaining what SCP aspect a given V&V method deals 
with. The descriptions of existing classification are also usually not clear enough to 
help users to decide upon how to best classify a V&V method and to select the most 
suitable method for a given V&V need. If these problems arise, then the selection and 
use of V&V methods for SCP of automated systems can be less effective, ultimately 
impacting the cost and dependability of a system. 

We aim to address these issues by proposing a new classification of V&V methods. 
We have created it in the scope of VALU3S [Ref], a large-scale industry-academia 
project in which 41 partners from ten countries are cooperating towards improving how 
automated systems are verified and validated with respect to SCP requirements. Among 
the activities of the project, we identify, analyse, and classify methods that could 
improve V&V of specific industrial use cases from the automotive, agriculture, railway, 
healthcare, aerospace, and industrial automation domains. 

The classification distinguishes between two main facets of a V&V method: the 
general method type and the concern addressed. For example, penetration testing [Ref] 
is a testing method for cybersecurity. Thanks to the classification, we have managed to 
classify tens of V&V methods and differentiate among them more precisely. Our initial 
aim in VALU3S was to reuse some existing classification, but we found issues such as 
insufficient consideration of automated system SCP needs and insufficient clarity to 
know how to best classify a method. Nonetheless, relationships can be established 
between our classification and others.  

We consider that the classification can be useful for both researchers and 
practitioners. A more precise classification of V&V methods for SCP of automated 
systems can help others to better determine the circumstances under which a given 
method should be used, possible improvements and extensions on the methods, 
methods that can combined to jointly cover a wider V&V scope, and areas in which 
new methods could be needed. 

The rest of the paper is organised as follows. Section 2 reviews related work. 
Sections 3 and 4 present the classification and its application, respectively. Section 5 
discusses the classification. Finally, Section 6 summarises our main conclusions. 



2 Related Work 

As part of the work done in the VALU3S project to determine how to best classify 
V&V methods for SCP of automated systems, we searched for and analysed existing 
method classifications to analyse their adoption in the project. In this section, we review 
the main method classifications identified. 

Nair et al. [Ref] identified evidence types for certification of safety-critical systems 
and created a taxonomy. Results of V&V methods was one of the evidence types. This 
type was refined into tool-supported V&V results and manual V&V results. The former 
was divided into testing results (13 basic types classified as objective-based testing, 
environment-based testing, or target-based testing), simulation, and formal verification 
results (three basic types). Similar V&V method types are referred to in engineering 
standards for safety-critical systems, e.g. EN 50128 [Ref] for railway software. The 
main issues with the classification by Nair et al. are that it focuses on safety, thus 
cybersecurity and privacy aspects are not sufficiently covered, and that it pays a much 
larger attention to testing than to other method types. This results in an unbalanced 
classification for our purpose. 

The Amalthea project [Ref] worked on the development of an open-source tool 
platform for engineering embedded multi-and many-core software systems. To this 
end, V&V methods were reviewed and divided into Informal methods, Static methods, 
Dynamic methods, Formal methods, Testing, Simulation, and Product line analysis. 
The main issue that we found in this classification was that it was not clear how some 
methods should be classified, e.g., dynamic methods vs. formal methods or testing, as 
defined by the project. SCP requirements are also not explicitly addressed. 

We identified the same issues mentioned above with several other classifications, 
e.g. one proposed by US Department of Defense [Ref]. This classification distinguishes 
four main method types: Informal V&V methods, Static V&V methods, Dynamic V&V 
methods, and Formal V&V methods. These classification types are commonly used. 
However, we consider that it is necessary to distinguish among informal, semi-formal, 
and formal methods, as well as explicitly among different types of dynamic methods 
such as testing and simulation because of their differences. This distinction is typical in 
engineering standards such as IEC 61508 [Ref], thus it is a relevant aspect for systems 
in regulated application domains. 

There also exist classifications that specify the V&V methods that could be used in 
the different system lifecycle activities [Ref, Ref]. We regard these classifications in 
isolation as less useful because they do not represent well the reasons to use a method, 
how formal it is, or the type of requirements addressed. 
 

3 Classification for V&V Methods for SCP of Automated Systems 

This section presents the classification that we propose for V&V methods. It is the 
result of an effort in the VALU3S projects to decide upon how to best categorise V&V 
methods that we identified as relevant for evaluation of SCP of automated systems. We 
also analysed the methods [Ref]. The current structure of the classification is the result 
of several iterations and has been discussed among VALU3S partners. 



The classification is based on two main facets of the V&V methods: the general 
method type and the concern addressed. When categorising a method, a user of the 
classification must choose (1) one or several general method types and (2) one or 
several concerns. This is justified in the next paragraphs. 

The general method types considered are: 
• Injection, when some phenomenon is introduced in a system to analyse its 

response. 
• Simulation, when the behaviour of a model of a system is studied. 
• Testing, when system execution under certain conditions is checked before 

operation. 
• Runtime verification, when system execution is evaluated during operation. 
• Formal analysis, for V&V methods with a mathematical basis. 
• Semi-formal analysis, for V&V methods that exploit some structured means 

but without a full mathematical basis. 
• Informal analysis, for V&V methods that do not follow any predefined 

structure or have mathematical basis. 
We have identified five main concerns that SCP V&V methods for automated 

systems might have to address: 
• Safety, as the ability of a system to avoid injury, serious injury, or death. 
• Cybersecurity, as the ability of a system to avoid unauthorised access, use, or 

modification. 
• Privacy, as the ability of a system to avoid disclosure of sensitive data. 
• General, when a V&V method analyses a general characteristic of a system that 

does not directly contribute to SCP, but indirectly, e.g. traceability. 
• System-type-focused, when a V&V method focuses on specific and 

distinguishing characteristics of a system type, e.g. a method for CPUs. 
Among the characteristics that differentiate the classification and its use, we believe 

that considering injection as a separate independent general method type is very 
important for automated systems. Injection-based V&V methods focus on SCP 
evaluation, are essential for early system V&V, and can cope well with V&V of specific 
characteristics of cyber-physical systems, addressing injection from the software, 
hardware, network, mechanical, and real-world environment perspectives. 

We also treat methods in a way that allows a user of the classification to consider 
very specific methods or broader ones. This is inspired by how engineering standards 
[Ref, Ref] present methods and it is also in line with how VALU3S industrial partner 
distinguish V&V methods. For example, the standards can refer both to general 
methods and categories such as performance testing and to specialisations such as stress 
testing and response time analysis. Therefore, the classification needs to be flexible 
regarding the abstraction level of the methods. This also implies that the classification 
of broader methods, for which specialised ones or sub-methods could be distinguished, 
might not be mapped to a single general method type and concern, but to several. For 
example, failure detection and diagnosis in robotic systems can be mapped to 
simulation and runtime monitoring as general method type and to safety and 
cybersecurity as concerns. This is shown in more detail in Section 4. 

The following sub-sections present each general method type and how specific 
methods can be mapped to them, also considering the different concerns. 



3.1 Injection 

This group of methods focuses on introducing certain characteristics in a system, 
providing a certain type of input, or triggering certain events, to confirm that the system 
behaves suitably under the corresponding conditions. Two types of injection are 
considered: fault injection and attack injection. 

Fault injection consists of the deliberate insertion of artificial (yet realistic) faults in 
a computer system or component in order to assess its behaviour in the presence of 
faults and allow the characterization of specific dependability measures and/or fault 
tolerant mechanisms available in the system. According to the well-known concepts 
and terminology proposed by Avizienis [Ref], a fault is the “adjudged or hypothesized 
cause of an error”, and an “error is the part of the total state of the system that may lead 
to its subsequent service failure”. In other words, the faults injected may lead to errors 
that, subsequently, may cause erroneous behaviour of the target component. These 
errors may propagate in the system and may cause failures in other components or even 
system failures. Fault injection can be seen as an approach to accelerate the occurrence 
of faults in order to help in the verification and validation of fault handling mechanisms 
available in the system under evaluation. 

Avizienis et al. [Ref] define an attack as a special type of fault which is human made, 
deliberate and malicious, affecting (or breaching) hardware or software from external 
system boundaries and occurring during the operational phase. The system breach 
exploits the vulnerabilities in a system and could result into a compromised system. 
The compromised system could result in a system failure such as, software or hardware 
complete failure or degraded performance. Thus, attack injection in a system is 
analogous to fault injection. However, the aim is to evaluate the impact of cybersecurity 
attacks on the overall security of a system. 

Fault and attack injection can be used in different phases of the systems development 
to evaluate (or even predict) how systems and specific components behave in the 
presence of faults, or to assess dependability properties such as safety, security, 
availability or reliability. Typically, faults injected in models (structural or behaviour-
based models) are useful in the early stages of system development, while faults 
injected in prototypes or in real systems in controlled experiments allow the verification 
and validation of actual properties of deployed systems. 

Examples of V&V methods of this type for the different concerns include: 
• Safety: Model-implemented fault injection [Ref], to evaluate the safety aspects 

of the system’s design by injecting fault models directly into simulated system 
models (such as MATLAB Simulink models) in early product development 
phases. 

• Cybersecurity and Privacy: Vulnerability and attack injection in real systems 
or prototypes [Ref], to evaluate globally how the system copes with attacks and 
to assess specific security mechanisms in the target systems. 

• System-type-focused: Failure detection and diagnosis in robotic systems [Ref], 
to analyse failures and possible failures in robotic system components via fault 
injection. 



3.2 Simulation 

Simulation based V&V methods are known for enabling early verification and 
validation of the systems and sub-systems. Simulation in basis is defined as process of 
developing or using digital models which behaves or operates like real world systems 
or components and providing real-like behaviour and outputs. Simulation based V&V 
methods provide virtual validation in software-intense systems. Risks are related to 
automated system such as faults, vulnerabilities, and threats can be experimented 
through simulation-based V&V methods. 

Simulation-based V&V methods provide solutions for different challenges to 
efficiently enable early verification and validation. For example, simulation methods 
enable integration tests and behaviour tests without dealing expensive hardware or test 
equipment. Test scenarios can be created easier in most of real-world scenarios. 
Simulation based test solutions do not create risk for safety in the cases where human-
machine interaction is existed. However, development of simulation and test processes 
is known as front loading process. So, the system complexity and efficiency of 
simulation-based V&V processes should be considered early.  

Simulation based V&V, propose different approaches for tackling changes in V&V 
processes. an approach for the simulation-based V&V at early stages is coupling 
simulation models and simulators, existing code, and virtual hardware platforms. 
simulation-based fault injection is another approach for verification of robotic safety. 
Also, a proposed method several indexes on safety and efficiency of human-robot 
collaborations are considered. Another approach provide solution for Machine 
Learning-based systems which provides simulation environments for perception, 
planning and decision-making systems. Also, in collaborative tasks, simulation-based 
systems enable V&V of safety-critical systems via virtual & augmented reality 
technologies. 

As an overview of V&V methods, Simulation is related to many other V&V methods 
like simulation-based attack injection in security, simulation-based fault injection in 
safety. Moreover, simulation-based systems are parts of Semi-formal methods, System 
type focused and testing methods. Simulation-based robot verification has fault 
injection mechanism to test robot trajectory in case of safety in faulty situations. 
Simulation related methods provide V&V without producing any physical item and 
adding risk to the environment and environment can provide powerful monitoring. On 
the other hand, simulation-based applications mostly run-on hierarchical models. This 
narrows availability of both academic and industrial resources in development and 
Simulation tools can require much computational power and limit real-time 
applications. 

Examples of V&V methods of this type for the different concerns include: 
• Safety: Simulation-based robot verification [ref], to assure a robot’s trajectory 

safety and in turn to increase flexibility and robustness by maintaining the level 
of productivity. 

• Cybersecurity and Privacy: V&V of machine learning-based systems using 
simulators [ref], which aims to provide efficient and effective V&V of SCP 
requirements in simulated environments without endangering human safety. 



• General: Virtual and augmented reality-based user interaction V&V [ref], for 
human factors analysis and technology acceptance by end users using virtual or 
augmented reality technologies before the system is fully deployed. 

• System-type-focused: CPU verification [Ref], to ensure that a CPU delivers its 
functionality correctly and as intended, and which can exploit simulation to this 
end. 

3.3  Testing 

This group of methods focuses on validating a system by its execution in the frame of 
so-called test cases. At least, a test case contains two fundamental sets of information: 
input data to be provided to the System Under Test (SUT), and a description of the 
expected output or behaviour. In order to perform a test case, an environment is used 
that allows to feed the SUT with the input data in a controlled manner, as well as to 
monitor its reactions. This environment is sometimes called test harness. Further, 
usually a means is needed to judge whether the SUT’s reactions conform to 
expectations. Such means is sometimes referred to as test oracle. For testing, the SUT 
can be the final system as well as any artefact used during its development; i.e., models 
or specific hardware or software components.  

It is distinguished between black box testing – where only the interfaces of the SUT 
are considered, and its interior considered as black box; white box testing – where also 
the SUT’s interior, e.g. inner states, is monitored; and combinations of both, i.e. grey 
box testing. The scope of testing can be functional, i.e. assessing whether the SUT 
behaves as expected (fulfils its functions), and non-functional, i.e. assessing its 
performance, robustness, security etc. Therefore, testing can contribute significantly to 
establish SCP. However, it should be considered that testing is usually incomplete, i.e. 
even successful passing a large set of test cases (a test suite) is no guarantee for the 
SUT’s correctness. A test suite’s quality is correlated with two aspects: how good it 
covers the addressed issues (functionality, robustness, …), and how efficiently it 
achieves this. 

A technique to get high quality test cases is (automated) test case generation, which 
is used by most of the methods described in this clause. Further, various coverage 
criteria are addressed, e.g. scenarios, potential implementation faults, or potential 
impact of cybersecurity attacks on safety. Many of the V&V-methods address testing 
of non-functional issues such as safety, robustness, cyber-security, but also with novel 
properties of automated systems, e.g. machine learning. Some reviewed methods can 
also be used for functional testing. All types of components are considered, with a slight 
emphasis on models, in order to detect conceptual flaws as early as possible. Finally, 
black-box and white-box testing are supported. 

Examples of V&V methods of this type for the different concerns include: 
• Safety: Model-Based Robustness Testing [Ref], to derive unexpected or slightly 

out of specification stimuli in order to check the robustness of the system or 
component under test. 

• Cybersecurity: Assessment of cybersecurity-informed safety [Ref], to black-
box test security-informed safety of automated driving systems and in turn 
produce an understanding of the interplay between safety and security. 



• Privacy: TBD 
• General: Model-based testing [Ref], to derive tests from (semi-)formal 

behaviour models or test models. 
• System-type-focused: Penetration testing of industrial systems [Ref], to 

analyse sensor data and server-PLC communication for evaluation of system 
robustness in the case of sensor data manipulation and of effects of data 
manipulation in communication. 

3.4 Runtime Verification 

Runtime Verification denotes a subset of formal methods that trade the computationally 
costly approach adopted by exhaustive offline verification techniques by a lightweight 
and limited, but still rigorous and precise, runtime kind of verification [ref]. RV 
methods are usually applied to verify properties that are either impossible or 
computationally impractical to be verified statically with the SOTA exhaustive formal 
verification approaches [ref]. 

This section focuses on RV methods that use monitors to verify, during runtime, that 
a system's behavior correctly complies with its formal specification. In this context, 
behavior expresses how the system evolves concerning time and its states. To issue 
such verdicts, monitors collect and analyse data in the form of traces, using it to verify 
if the current system state, or a set of recorded system actions, comply with a given 
specification. Such formal specifications are typically described in various flavors of 
temporal logics, state machines, and regular expressions. 
Although RV solutions have a broad spectrum of applicability, embedded-safety 
critical systems seem to be the research field where it shines the most. Considering the 
high level of safety and security required by such systems, RV is becoming widespread 
given its ability to identify faulty behavior accurately and in a timely way, given its 
lightweight resource usage. 

 
given the complexity associated with the development of autonomous driving 

systems, exhaustive formal verification techniques commonly run into state explosion 
problems. As an alternative, RV techniques have been employed to analyse safety 
requirements of system components like Adaptive Cruise Controls and their respective 
various PID control parameters by using Signal Temporal Logic 

RV has been applied as a key technique against memory cyber-attacks. It consists of 
a continuous analysis and verification of a control flow graph that represents the target 
system to guarantee that no illegal transition happens between instruction segments 
(e.g., the program being erroneously/maliciously redirected to an undesired memory 
address). 

the European General Data Protection Regulation (GDPR) describes guidelines on 
how citizens’ data should be handled by organizations. RV solutions have been used to 
identify violations of privacy and to evidentiate that systems have been complying with 
the guidelines. 

analog/mixed-signal systems models have been using RV solutions to guarantee 
their functional correctness instead of exhaustive simulation-based approaches given 
the reduced time to verify and validate that it offers 



RV solutions have been applied in the real-time domain to verify if the task 
activation patterns of a real-time system complies a formal model responsible for 
describing task-set time upper bounds   

 
Examples of V&V methods of this type for the different concerns include: 
• Safety: Dynamic analysis of concurrent programs [Ref], to find errors in 

synchronisation of concurrently executing threads, processes, or any other tasks 
executed concurrently. 

• Cybersecurity and Privacy: Test oracle observation at runtime [Ref], to 
dynamically assess the robustness of system behaviour during its runtime by 
measuring how far the system is from satisfying or violating a property 
expressed in a formal specification language. 

• General: Runtime verification based on formal specification [Ref], to formally 
specify properties of runtime observations and verify them using automatically 
generated monitors. 

• System-type-focused: Model-based formal specification and verification of 
robotic systems [Ref], to enable formal verification of robotic systems by 
developing models that cope with the intractable state space of complex robotic 
system software, improving the verification coverage and assurance by 
combining formal methods and runtime verification. 

3.5 Formal Verification 

Formal Verification denotes a set of methods intended to prove properties of a system 
with formal methods based on mathematical models of the system. Compared to 
previous methods, Formal Verification is not focused on single executions of the 
system, but on proving properties exhaustively on all executions based on some 
mathematical models. Although the name refers to verification only, it comprises both 
validation and verification methods: for verification, the properties formalize the 
system requirements specification, while for validation, the properties are used to check 
if the model is the right representation of the system (e.g., consistency checking, 
reachability of states,  vacuous satisfaction of requirements).  

Model checking [MCH1, MCH2, MCH3] represents a prominent class of Formal 
Verification methods. Model checking uses a variety of languages to write the system 
models, which range from finite-state to infinite-state machines, from discrete-time to 
timed or hybrid systems, from non-deterministic automata to stochastic models, from 
synchronous to asynchronous communicating programs. Given a formal semantics of 
the input language, model checking can also be applied to models defined for other 
purposes (architectural description or simulation) or directly to software or hardware 
source code. Also, for the property specification, there is a wide range of options, 
ranging from simple reachability or invariant properties, to temporal properties, from 
safety to liveness properties. Depending on the modelling language, temporal 
properties can be specified in various logics, either propositional or first-order, discrete 
or continuous or hybrid time, linear or branching or probabilistic or hyper-properties 
logic. The model checking problem is solved algorithmically by a procedure that 
decides if the model satisfies the property or finds a counterexample that shows how 



the model violates it. When the problem is undecidable (as for example for software), 
the model checking procedure may be incomplete. 

Another major class of Formal Verification methods is based on Deductive 
verification. Properties and systems are usually represented in first-order logic, higher-
order logics, or specific theories (arithmetic, sets, continuous functions) to allow 
modelling specific aspects of CPS. Deductive verification methods are based on the 
generation of proof obligations that encode the correctness of the system. Depending 
on the underlying logic, these proof obligations are discharged by interactive theorem 
provers (such as HOL, ACL2, Isabelle, or Coq), automatic theorem provers where the 
proof is extracted from the specification and additional annotations, and Satisfiability 
Modulo Theories (SMT) solvers (Z3, Yices, MathSAT5, Alt-Ergo, CVC3).  

 
In formal verification, “safety” refers to a class of properties that require some bad 

condition will not happen. In this sense, most formal verification techniques manage 
“safety” properties. However, here we refer to safety in the context of dependability as 
the absence of catastrophic consequence on user and environment. Safety is thus strictly 
connected to reliability and the ability of the system to continue functioning in the 
presence of faults. In this context, examples of formal verification for safety include 
model-based safety analysis techniques, which perform minimal cut set analysis to 
analyze the failure of the system in different combinations of faults. 

Examples of formal verification of cybersecurity include verification of 
cybersecurity protocols, which require modeling of attackers and the knowledge they 
gather from interacting with the protocols. 

It is sometimes hard to distinguish from cybersecurity, but we can list here formal 
verification techniques focused on data protection and thus information flow analysis. 

 
Examples of V&V methods of this type for the different concerns include: 
• Safety: Formal requirements validation [Ref], to confirm the validity of the 

specification of formal requirements in terms of consistency, compatibility with 
scenarios, vacuity, realizability, and other formal checks that contribute to 
system safety. 

• Cybersecurity and Privacy: Source code static analysis [Ref], to derive 
various runtime properties and find various kinds of errors in programs without 
executing them at all or at least not under their original semantics, and which 
can address cybersecurity and privacy considerations. 

• General: Source code static analysis [Ref], to derive various runtime properties 
and find various kinds of errors in programs without executing them at all or at 
least not under their original semantics. 

• System-type-focused: Reachability analysis-based verification for safety-
critical hybrid systems [Ref], to exhaustively explore a system’s evolution over 
time, given an initial input range. 

3.6 Semi-Formal Analysis 

This method type deals with system evaluation by using structured means whose 
application does not result in a mathematical proof. The methods enable that confidence 



in system dependability is developed in relation to characteristics of an automated 
system such as faults, vulnerabilities, and threats. The methods also contribute to the 
avoidance and identification of these issues, and the recovery from them. 

As a mathematically rigorous approach to the SCP V&V of complex systems is 
unfeasible in many cases, semi-formal techniques are used to complement formal 
V&V. System decomposition, abstraction, and specific models reduce SCP V&V to 
sub-problems of limited scope that may be addressed using semi-formal methods and 
tools, which can rely on models, architectural principles, mathematical or probabilistic 
calculus, qualitative and quantitative analysis, and simulation, while addressing 
engineering and assurance standards [refs]. 

Semi-formal analysis also enables the evaluation of general characteristics of a 
system that contribute to SCP, e.g. about the traceability between system artefacts. 
These characteristics indirectly address automated system SCP by confirming the 
fulfilment of aspects that contribute to it. For instance, requirements traceability 
contributes to assuring that the correct and expected functionality has been 
implemented in a system. This in turn contributes to developing confidence in system 
reliability and consequently in SCP. In other words, if someone cannot confirm that the 
correct and expected functionality has been implemented in a system, it might not be 
possible to develop sufficient confidence in system SCP. 

Examples of V&V methods of this type for the different concerns include: 
• Safety: Model-based safety analysis [ref], is an approach in which the system 

and safety engineers share a common system model created using a model-
based development process by extending the system model with a fault model 
as well as relevant portions of the physical system to be controlled, automated 
support can be provided for much of the safety analysis. 

• Cybersecurity: Wireless interface network security assessment [Ref], which 
aims to analyse a system’s robustness against network security attacks carried 
out through wireless interfaces by evaluating CANBUS-based control network 
security and teleoperation and supervision network security. 

• Privacy: Model-based assurance and certification [Ref], to justify system 
dependability in compliance with privacy standards. 

• General: Knowledge-centric system artefact quality analysis [Ref], to 
quantitatively determine the suitability of system artefacts by exploiting 
ontologies and semantic information, and according to selected criteria such as 
correctness, consistency, and completeness. 

• System-type-focused: Model-based avionics software specification and 
verification [Ref], based on the modelling of the DO-178C standard. 

3.7 Informal Analysis 

Although in VALU3S we have not reviewed informal analysis methods, we include 
them in our classification for completeness. These methods are based on human 
reasoning and subjectivity, without a predefined underlying formalism or structure. 
Nonetheless, they are used in industry. 

Walkthroughs are among the most common informal analysis methods. They 
correspond to the situation in which the producer of some system artefact presents the 



artefact to others for defect identification. A programmer performing a source code peer 
review is another example. In both cases, the application of the method could aim to 
detect SCP issues in a system or some system artefact, as well as target the analysis of 
some general or system-type-focused characteristic. 

4 Application of the Classification 

The proposed classification scheme has been defined by the joint effort of more than 
70 people who hold various positions, such as researchers, system engineering, and tool 
vendors, and the needs of 31 different entities, including big companies, small and 
medium-sized enterprises, and universities working in different fields. 

To give precise guidelines about how to apply the proposed classification, we 
consider a set of 53 reference methods for automated systems. This set contains 
commonly-used methods as well as methods that will be improved and new methods 
that will be created by combination of methods. The complete list of these methods 
with the related classification category and addressed concerns (Safety – Sa, 
Cybersecurity – C, Privacy – P, General – G, System-type-focused – Sy) is reported in 
the following: 
1. Injection: Fault Injection in FPGAs (Sa), Model-Implemented Fault Injection 

(Sa), Simulation-based fault injection at system-level (Sa), Software-implemented 
fault injection (Sa, G), Model-based fault injection for safety analysis (Sa, Sy), 
Model-Implemented Attack Injection (C), Simulation-based attack injection at 
system-level (C), Vulnerability and attack injection (C), Interface fault injection 
(G). 

2. Simulation: Simulation-based testing for human-robot collaboration (Sa), V&V 
of machine learning-based systems using simulators (Sa, C), Virtual & augmented 
reality-based user interaction V&V and technology acceptance (Sa, G), 
Simulation-based robot verification (Sa, Sy), Test optimization for simulation-
based testing of automated systems (Sa, Sy), Virtual architecture development and 
simulated evaluation of software concepts (Sa, Sy). 

3. Testing: Software component testing (Sa), Assessment of cybersecurity-informed 
safety (Sa, C), Machine learning model validation (Sa, Sy), Behaviour-driven 
model development and test-driven model review (Sy), Model-based mutation 
testing (Sy), Model-based robustness testing (Sy), Model-based testing (Sy), Risk-
based testing (Sy), Signal analysis and probing (Sy), System-type-focused (Sy), 
Test parallelization and automation (Sy). 

4. Runtime verification: Dynamic analysis of concurrent programs (Sa, Sy), 
Runtime verification based on formal specification (Sa, Sy), Test oracle 
observation at runtime (Sa, Sy). 

5. Formal Analysis: Deductive verification (Sa, Sy), Behaviour-driven formal model 
development (Sa, Sy), Formal requirements validation (Sa, Sy), Model checking 
(Sa, Sy), Reachability-analysis-based verification for safety-critical hybrid 
systems (Sa, Sy), Theorem proving and Satisfiability modulo theories solving (Sa, 
Sy), Source code static analysis (Sa, C, P, G, Sy). 

6. Semi-formal Analysis: Human interaction safety analysis (Sa), Traceability 
management of safety software (Sa), Code design and coding standard compliance 



checking (Sa), Risk analysis (Sa, C), Model-based safety analysis (Sa, C, Sy), 
Knowledge-centric system artefact quality analysis (Sa, G), Model-based design 
verification (Sa, Sy), Intrusion detection for wireless sensor networks based on 
Weak Model Processes state estimation (C), Kalman filter-based fault detector (C), 
Model-based threat analysis (C), Vulnerability analysis of cryptographic modules 
against hardware-based attacks (C), Wireless interface network security 
assessment (C), Knowledge-centric traceability management (Sa, C, P, G, Sy), 
Model-based assurance and certification (Sa, C, P, G, Sy). 

7. Informal Analysis: Model-based formal specification and verification of robotic 
systems (Sa, Sy), Failure detection and diagnosis in robotic systems (Sa, C, G), 
Central Processing Unit verification (Sa, C, G, Sy), Penetration testing of industrial 
systems (C). 

5 Discussion 

TBD 
TBD 

6 Conclusion 

TBD 
TBD 
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