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Abstract 
In this paper, we address the problem of the control of a fleet of unmanned aerial systems (UAVs) for cargo 
transportation systems. In the literature, several challenges must be solved for the service to be effective. In fact, 
in a fleet of UAVs, the main problem is to perform the control of the whole fleet motion by fusing the sensor 
information coming from individual UAVs. However, this approach induces a high cost as every UAV should have its 
advanced perception system.  As an alternative, this work proposes the use of a single perception system by a 
fleet composed of a set of elementary UAVs (workers) with primitive low-cost sensors and a leader carrying a 3D 
Perception source. The use of multiple similar UAVs generates an overlap of information obtained by their sensors, 
and such redundancy overcomes failures and improves the accuracy of the system. We propose a Quadral-Fuzzy 
approach to manage the multiple-agents motion maintaining the cooperative transport in the spatial environment, 
and assuring information exchange. We also develop a new way to compute potential fields based on the 
possibility of fuzzy (fuzziness) measures. The proposed intelligent and cooperative cargo transportation system 
encompasses four high-coupled intelligent controllers that respectively control the leader and worker's motion and 
implement obstacle and collision avoidance procedures.Simulation results using a fleet of four aerial drones are 
presented showing the approach potential for solving usual problems in aerial cargo delivery such as limited pay-
load, multi fusion sensors, and flyable collision-free path computation. 
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ABSTRACT This paper addresses the control of a �eet of unmanned aerial systems (UAVs), termed
as drones, for �ight formation problems. Getting drones to �y in formation is a relevant problem to be
solved when cooperative cargo transportation is desired. A general approach for this problem considers the
coordination of a �eet of UAVs, by fusing all information coming from several individual sensors posed on
each UAVs. However, this approach induces a high cost as every UAV should have its advanced perception
system. As an alternative, this paper proposes the use of a single perception system by a �eet composed
of several elementary drones (workers) with primitive low-cost sensors and a leader drone carrying a 3D
perception source. We propose a Quadral-Fuzzy approach to ensure that all drones �y in formation and
will not collide with each other or with environment obstacles. We also develop a new way to compute
potential �elds based on possibility fuzzy (fuzziness) measure with the focus of avoiding collisions between
the drones. The proposed approach encompasses four high-coupled intelligent controllers that respectively
control the leader and worker drones' motion and implement obstacle and collision avoidance procedures.
Simulation results using a �eet of four aerial drones are presented, showing the potential for solving usual
problems to �ights in formation, such as dodging obstacles, avoiding collisions between the drones, among
others.

INDEX TERMS Unmanned aerial vehicles (UAVs), multi-agent systems, distance-based formation,
�ight-formation control, autonomous �ight.

I. INTRODUCTION
Nowadays, unmanned aerial vehicles (UAVs) are used in
several applications from military and civilian domains such
as forest �re monitoring, surveillance, terrain mapping, and
surveying, tracking, disaster management, blood or medical
equipment delivery, and others [1]�[5]. Aerial drones are
fast, �exible, lightweight, low-cost, and easy to use UAV
with the potential to reduce the cost and time in the logistic
�eld. An extensive survey of aerial drones for civilian appli-
cations is given in [6]. From this survey, one of the most

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongping Pan.

promising applications of aerial drones is for autonomous
cargo transport and delivery by e-commerce retailers and
also for express delivery of perishable goods such as food
or medicines. However, several challenges must be solved
for the service to be effective [6]�[8]: (1) Limited payload:
in general, goods must not weigh more than 2 kg; (2) Inte-
gration of low-cost sensors and positioning system, that is,
several sensors like gyroscope, accelerometer, among others,
can be used to create the odometry. The sensor fusion with
accurate high location sensors, such as Real Time Kine-
matic GPS [9], allows to obtain the drone position in a
global reference system; (3) Avoid obstacles and collisions:
it is necessary to establish a �yable collision-free path in a
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dynamic environment; (4) Communication and connectivity:
communication links with the ground control station are need
to receive instructions; (5) Landing at speci�ed locations
or the use of a parachute to delivery goods, (6) Limited
�ight range due to energy requirement (battery duration): the
traveled distance depends on power transfer ef�ciency for
motor, cruising velocity and power consumption of electron-
ics, (7) Other concerning including government regulation
and public acceptation.

This paper addressed challenges 1 to 3 above mentioned.
The problem of the limited payload can be circumvented by
the use of multiples drones that cooperatively transport the
product. However, the use of a �eet of drones introduces new
problems such as �ight formation, drones communication
issues, the need for a distributed system for collision, and
obstacles avoidance. In this paper, collision avoidance refers
to a drone trying to avoid another drone, while obstacle
avoidance means that the drones try to avoid obstacles from
the environment.

This work aims to present a novel intelligent and coop-
erative strategy of load transportation using multiple drones
through aquadral-fuzzyapproach. The added value of this
work is the use of a prede�ned formation for navigation, for
a �eet of drones composed of a leader drone equipped with
precise 3D perception system and worker drones equipped
with low-cost positioning systems [10], [11]. The mul-
tiple drones system can autonomously de�ect obstacles,
thus avoiding collisions and possible damage to load and
agents.

Concerning challenge 2, the proposed approach has as
the prerogative the use of a unique perception system, with
resolution and amplitude to supervise the whole group and
environment. The �eet leader computes the goal locations of
worker drones based on its perception of the situation at every
instant of time, based on the distance to the nearest obstacle.
Workers know their locations in the environment using sensor
fusion (e.g., accelerometer, gyroscope, and GPS) to estimate
the position of the drone in the environment. The goal is to
use a single 3D perception sensor in the leader to reduce the
cost of the system and avoid overlapping information from
multiple 3D sensors.

Based on such sensor data, the �eet leader can compute
the �yable collision-free path to the entire formation (chal-
lenge 3). Moreover, each worker drone is also equipped with
a collision-avoidance system based on potential �eld [12].

Our main contribution lies in the design and development
of a highly-coupledquadral-fuzzyapproach to managing
the multiple-agent motion applied to cooperative transport.
A fuzzy controller is developed to control the leader motion,
considering the current position of the drone and its desired
position, as well as the environment perception information
to deviate from obstacles. Worker drones act with a similar
fuzzy controller, but without the obstacle deviation skill,
i.e., their position is de�ned by the leader. Another fuzzy sys-
tem performs obstacle deviation for the whole formation and
ensures the optimal con�guration for cargo transportation.

A fuzzy self-preservation strategy is adopted to prevent col-
lisions, assuring a safe �ight to drones and cargo.

This work is divided into �ve sections. Section 2 brings
some related works. Section 3 describes in detail the proposed
quadral-fuzzyapproach. Section 4 discusses the approach
evaluation based on some experiments results. At last,
section 5 presents the work conclusions.

II. RELATED WORKS
Several studies have contributed to making cargo delivery by
drone a reality [6]. The researches are looking for improv-
ing navigation capabilities such sensing ability [13], [14],
intelligent control [15]�[19] and obstacle and collision avoid-
ance [12], [20], [21].

The integration of visual sensing techniques in drone
applications is a trend for researches on position-attitude
control, pose estimation and mapping, obstacle detection as
well as target tracking [13], [22]. Following this trending,
we use a 3D perception source providing a cloud of points
(or PointClouds), which can collect spatial information from
the environment that is combined with information from
low-cost sensors (multi-fusion sensor), allowing run proce-
dures for collision and obstacle avoidance and also for path
planning.

Nowadays, fuzzy systems have been successfully used for
navigation, guidance, and control of autonomous vehicles and
mobile robots [23]�[25]. This extensive use is explained by
the simple control structure and also the natural and practical
design of fuzzy systems [26]. A survey of nonlinear and adap-
tive intelligent control techniques for a quadcopter drone,
as the drones used in this paper, is given in [15] in which
the use of fuzzy control is highlighted. For example, the work
in [27] develops an autonomous drone, able to follow planned
trajectories by using a robust fuzzy controller based on a
precise dynamic and kinematic models of the drone. Dif-
ferent from [27] but similar to some works cited in [15],
the proposedquadral-fuzzyapproach developed herein does
not require any model and can adapt to unforeseen situa-
tions, providing excellent coverage of wide-ranging operating
conditions.

Formation control is an essential issue for the development
of collective and collaborative behaviors in multi-agents sys-
tems. Potential �eld and leader-follower are the two main
approaches for formation control [12]. Hybrid approaches,
combining both theories, are often used to build and move
formations because they are effective, robust, and easy to
handle [28]�[31]. In this paper, besides the use of fuzzy the-
ory to develop intelligent controllers for drones motion and
obstacle avoidance as usual in literature [15], [20], we com-
bine potential �eld and leader-follower approaches to develop
a fuzzy system to avoid the collisions in formation. This
fuzzy self-preservation system is based on a fuzzy possibil-
ity map in which the potential �eld re�ects the fuzziness
of each direction vector in the �eld. This fuzzy potential
�eld computation is a contribution of this work. Finally, all
fuzzy controllers in this paper are modeled as recommended
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by [32], using centroid defuzzi�cation, conjunction in min-
imum, disjunction in maximum, activation in minimum and
accumulation in maximum.

It is worthwhile to note that the main contribution of this
work is an original solution (quadral-fuzzyapproach) for the
multiple drones �ight formation. Cargo transportation has
been only cited as a motivating example for �ight formation
problems.

III. THE PROPOSEDquadral-fuzzy APPROACH
In this section, we propose a multi-drone formation �ight
strategy for cooperative cargo transportation. We consider
two main safety requirements in the design of the systemV

� all drones must maintain formation (position and orien-
tation);

� all drones must avoid collision among them and with the
environment's obstacles to assure their integrity.

For this purpose, the proposed approach adopts a
leader-workers con�guration developed through four sub-
systems: leader control, worker control, self-preservation,
and formation maintenance. In this con�guration, the leader
drone can perceive the environment and presents an
active/reactive behavior while workers exhibit only reactive
behavior. Each subsystem is an independent fuzzy system
that models the corresponding individual (leader/workers)
or collective (team) behavior. All subsystems run in
a highly-coupled way composing the newquadral-fuzzy
approach for cooperative cargo transportation, as shown
in Figure1.

FIGURE 1. schematic of the complete proposed system for multi-drone
formation flight ( quadral-Fuzzy approach).

In this Figure, the �rst block is related to theleader con-
trol subsystem that generates the position and orientation
control for the leader drone, including obstacle avoidance
skill. The obstacle deviation maneuvers should not affect the
other drones in the formation; thus, only linear deviations
are allowed. The second block refers to theworker control
subsystem that controls the worker drones' position, assuring

a global formation stabilization. Each worker is endowed with
the worker controlsubsystem. The third fuzzy system con-
cerns theself-preservationability, where a knowledge-based
method is developed to avoid collisions inside formation that
can damage the drones. All �eet members are endowed with
this security system. Finally, the block calledformation is
responsible for establishing the �ying formation rules assur-
ing cargo transportation safety. This module computes the
positions of workers around the leader and develops an intel-
ligent strategy for detecting and avoiding external obstacles.
This subsystem manages the entire �eet.

In the proposedquadral-fuzzyapproach, all fuzzy subsys-
tems correspond to fuzzy non-linear functionsg(x) that map
fuzzy input variables (x 2 Ux � < n) to fuzzy output variables
(y D g(x) 2 Uy � < ). The universe of discourse is de�ned as
U D [0; lim] or U D [� lim; lim], according to the mapped
variables. The membership functions describing the fuzzy
setsWx D f (x; � A(x)jx 2 UxgandWy D f (y; � A(x)jx 2 Uxg
are pseudo-trapezoid ones de�ned in< , and given by Eq. (1),
where[a; d] 2 < ; a � b � c � d anda < d ( [32]).

� A .xI a; b; c; d/ D

8
>>>>>><

>>>>>>:

x � a
b � a

; if x 2 [a; b/

1; if x 2 [b; c]
x � d
c � d

; if x 2 .c; d]

0; if x 2 < � .a; d/

(1)

All fuzzy controllers are based on product inference engine
with center average defuzzi�er.

The aerial vehicles modeled in this paper is a quadcopter
drone with six degrees of freedom corresponding to the linear
and angular velocities aboutX, Y, andZ axis in a 3D environ-
ment. Such degrees of freedom are labeled asVx, Vy andVz
for linear motion andWx, Wy andWz for angular movement
(roll, pitch, and yaw) as shown in Figure2.A.

The position and orientation of the drone are determined
by inertial sensors (i.e., IMU, Gyroscope, GPS). When using
multiples drones, all positions must be given in the same
coordinate system. Figure2.Cshows an example in which the
positions of four drones are converted to the same reference
frame. Thus, linear and angular transformations based on
rotation and translation matrices are used to convert data
captured by a sensor to any reference point by the use of
transformation trees [33]�[35]. As a result, data from mul-
tiples sensors placed on several drones can be translated and
processed to the same coordinate system.

In this paper, the coordinates of each drone are transformed
into a coordinate in the global frame, that is used as a ref-
erence frame for all the drones positioning. Furthermore,
homogeneous transformation matrices translate the sensor
data to a unique reference point, such as the center of
the drone, for example, supporting data processing at the
same coordinate system, independent of drone and type of
sensor used to data capture. All systems composing the
quadral-fuzzyapproach in Figure1 are detailed in the next
sections.
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FIGURE 2. Overview of used aerial vehicles (drones). (A) Degrees of
freedom of an aerial vehicle (drone). (B) Differences between leader and
work drones. (C) Representation of all drones in the same coordinate
system.

A. LEADER's CONTROL SYSTEM
A leader drone composes the �eet considered in this paper.
This drone can perceive the environment and other drones and
also it can estimate their displacement. The leader drone is
endowed with a source of 3D perception, and the other drones
are considered worker drones, as illustrated in Figure2.B.

The 3D perception source embedded in the leader drone
delivers a cloud of points at a resolution of 176 by 144 points
with a viewing angle of 69� (h) x 56� (v). This source can
operate up to 10 meters away, and the simulated sensor is
based on the Mesa SR4000 3D ToF sensor [36]. This per-
ception source allows detecting the environment's obstacles
by the leader drone. All drones (leader and workers) are
identical, but only the leader has a source of perception.

The leader control systemaims to ensure a safe �ight
for the leader drone. It consists of two fuzzy subsystems,
as shown in Figure3. TheFuzzy position controlis the motion
controller driving the drone to reach the desired position
while the Fuzzy avoid obstaclesblock determines leader

FIGURE 3. Representation of the leader drone position control system.
The two Fuzzy controls (Fuzzy position control and Fuzzy avoid obstacles)
compete for drone leader speed control, where selection takes place by
the distance of identified obstacles.

maneuvers to avoid obstacles while trying to achieve the
desired point. Moreover, the block calledswitch turns off
the motion controller in the presence of imminent collision,
leaving the leader free to carry out obstacle detour, under
Fuzzy avoid obstaclescontrol.

1) FUZZY POSITION CONTROL SUBSYSTEM
The fuzzy subsystem for position control of the leader drone
implements three fuzzy mappings to calculate leader veloci-
ties in direction to the desired point that is de�ned as the goal
for the leader, considering the current position of the drone,
Rp, and the desired position,Dp. Given in the 3D reference
coordinate frame, three measurement distances among these
positions are used as input (input1 in Figure 3) for this
fuzzy subsystem: (1) the Euclidean distance in meters (� e)
between the position of the drone and the desired point, (2) the
angular distance over z-axis that corresponds to the angular
orientation error in degrees (� a) and (3) linear distance over
z-axis computing the linear position error in meters (� z).
These measured distances are computed by equations2and3.

� e D
q

(Rp(x)� Dp(x))2C(Rp(y)� Dp(y))2C(Rp(z)� Dp(z))2

(2)

� z D (Dp(z) � Rp(z)) (3)

The � a calculation considers the drone's current position
as well as its angular orientation. This input provides the
necessary angular rotation so that the drone has pointed to the
desired angle. The computational procedure used to obtain� a
is given by Algorithm1.

The fuzzy setsAi(x) are de�ned for each input vari-
ables (x D [� e; � a; � z]T ) over their universe of discourse
(� e 2 [0; 20], � a 2 [� 180; 180] and� z 2 [� 20; 20]).
These fuzzy sets and their correspondent membership func-
tions � Ai (xI a; b; c; d) are given in Table1. Based on these
fuzzy sets, the fuzzy values of the euclidean distance� e are
combined with the other two input variables (� a; � z) to �re
three rule bases generating the output of position controller.

The outputs of the leader's control subsystem are the
speeds that will be directly applied to the leader. Although the
leader drone is omnidirectional, this control subsystem only
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TABLE 1. Input variables of position control: fuzzy sets Ai (x ) and membership functions � Ai
(x I a; b; c; d ).

Algorithm 1 Compute� a

1 angleDifference 
antan2(Dp(Vy) � Rp(Vy); Dp(Vx) � Rp(Vx));

2 if angleDifference< 0 then
3 angleDifference � C (� � abs(angleDifference));

4 � a  angleDifference� Rp(Wz);
5 if abs(� a) > � then
6 � a D 2 � � � abs(� a);
7 if Rp(Wz) < angleDifferencethen
8 deltaa  deltaa � � 1;

9 return � a;

promotes linear motion overx � zplan, preventing sideways
sliding. Thus, the three outputs are the linear velocities over
the axisx (vx) and over the axisz (vz), given in meters
per second (m/s), and the angular velocity (! z) in radians
per second (rad/s). Since decision block (switch) in Figure3,
only chooses if the leader's control system output (output)
comes fromFuzzy position controlor Fuzzy avoid obstacles
subsystems, such velocities are also the output variables of
position controller. The fuzzy setsAi(y) de�ned for each out-
put variables and their correspondent membership functions
� Ai (yI a; b; c; d) are given in Table2.

The three non-linear maps (one for each output velocity),
generated by the rule bases of fuzzy position control subsys-
tem are shown in Figure4. As discussed above, the Euclidean
distance that corresponds to the 3D position error affects
all velocities (angular and linear). It is worthwhile to note
that the x-axis linear velocity (vx) decreases when angular
error (deltaa) grows-up (see the upper surface in Figure4).
This behavior indicates that the drone must �rst correct its
orientation angle before proceeding to the desired point.

As soon as a goal position is set to the leader drone,
the fuzzy position control subsystem continuously computes
linear and angular speed that should be applied to the drone's
motors according to the decision taken byswitchblock. This
decision takes into account the proximity of obstacles, as will
be explained in the next section.

2) FUZZY OBSTACLES AVOIDANCE SUBSYSTEM
This subsystem aims to prevent collisions with external obsta-
cles. In this paper, any object that is not identi�ed by the
leader as a worker drone is considered as obstacles and
the formation must deviate it. For this, the cloud of points

FIGURE 4. Lead drone Position Control - Velocity maps generated by
fuzzy position control system. ( A) Map of the linear velocity in the X-axis,
about the linear error (Euclidean distance) and angular error (angular
difference) between the drone position and the desired position. ( B) Map
of the angular velocity in the Z-axis, about the linear error (Euclidean
distance) and angular error (angular difference) between the drone
position and the desired position. ( C) Map of the linear velocity in the
Z-axis, about the linear error (Euclidean distance) and linear Z-axis error
(height difference) between the drone position and the desired position.

obtained by 3D perception sensor is processed to detect
objects in front of the leader drone, as proposed in [14].
Thus, the closest object is identi�ed, and three distance mea-
surements, in meters, among this object and the leader are
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TABLE 2. Output velocities of position control: fuzzy sets Ai (y ) and membership functions � Ai
(y I a; b; c; d ).

FIGURE 5. Lead drone avoid obstacles control system - Velocity maps
generated by fuzzy position control system. ( A) Obstacle detection and
measured distances to the drone. ( B) Map of the linear velocity in the
Z-axis, about the linear error (Euclidean distance) and linear error in
Z-axis (Z-axis difference) between the drone position and obstacle
detected. ( C) Map of the linear velocity in the Y-axis, about the linear
error (Euclidean distance) and linear error in Y-axis (Y-axis difference)
between the drone position and obstacle detected.

computed and used as input (input2 in Figure 3) to this
subsystem: Euclidean distance (� e), the linear distance over
the y-axis (� y) and the linear distance over the z-axis (� z).
Figure 5.A illustrates these measured distances, where the
green dot represents the obstacle closest to the drone.

Some linguistic predicates are used to de�ne input fuzzy
sets. ConcerningEuclidean Distance(� e), the object can be
closeto, far or so far from the leader. The object position
over z-axis (� z) can bein front of, aboveor belowthe drone.
The object position over y-axis (� y) can bein face, to the
right or to the leftof the leader drone. Therefore, the fuzzy
set forFuzzy obstacles avoidancesubsystem and their cor-
respondent membership functions� (xI a; b; c; d) are given
in Table3.

Similar to the position control subsystem, the outputs of
this block are speeds in meters per second (m/s) that will be
directly applied to the leader drone. The adopted strategy only
implements obstacle detour maneuvers in the z - y plan. Thus
the leader drone linearly moves along these two axes. Any
angular actions are carried out to de�ect obstacles; that is,
the leader drone is ever oriented to the goal position.

The fuzzy setsAi(y) and their correspondent membership
functions� Ai (yI a; b; c; d) for both output variables (linear
velocities vy andvz) are the same and they are given in Table3.
The fuzzy non-linear function (derived from the rule bases)
used to compute both velocities are given in Figure5. Both
functions are smooth surfaces, assuring that the leader drone
maneuvers to obstacle avoidance do not cause bumps in the
cargo.

As the position controller, the obstacle avoidance sub-
system is always active; that is, it is always sending speed
information to the leader drone. However, the decision about
which velocities signals should act on the motors, whether
they are the outputs of the position controller, or they come
from the obstacle avoidance subsystem, is taken by theswitch
block in Figure3. For this decision, a simple threshold test
is carried out. If the Euclidean distance among the closest
obstacles and the leader drone is less than a threshold, then
the leader's control system output (outputin Figure3) comes
from obstacle avoidance subsystem otherwise they are the
velocities computed by fuzzy position control subsystem.

B. WORKER CONTROL SYSTEM
The worker drones have only position sensors. Thus, these
drones only know their current position relative to their initial
position. Moreover, the only worker drone goal is to maintain
the formation, and for this, it has a position controller a little
simpler than the one described above for the leader. A worker
drone safety �ight is assured by theSelf-preservationsystem
that will be described in next sectionIII-C

The worker drone control system can be seen in Figure6.
Its inputs are the same measured distances (� e; � a; � z) of the
leader's position controller. However, in this case, the desired
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TABLE 3. Fuzzy variables of Obstacles avoidance block.

FIGURE 6. Representation of the workers drone position control system.

position corresponds to the position that the worker drone
should occupy in the formation. The system outputs also
are the same: the linear speeds (vx andvz), and the angular
velocity (! z). However, the position control of the worker
drone is organized into three independent fuzzy functions,
one for each velocity to be computed. Unlike the leader drone
who does not need agility but precision, the workers must
take quick actions to keep their place in the formation. Thus,
the use of 3 independent controllers provides agility enabling
better results in worker drones control.

As the leader and workers are the same kinds of drones,
the only difference among them is their embedded perception
system, the fuzzy sets and memberships functions for worker
drones input/output variables are the same given in Figure4.
However, the universe of discourse for such variables has
been expanded (vz; ! z 2 [� 4; 4]), narrowed (� e 2 [0; 1]
and � z 2 [� 5; 5]) or maintained (� a 2 [� 180; 180] and
(vx 2 [0; 1]) to assure the agility requirements.

The rule base developed to drive the worker drone along
x-axis contains rules modeling heuristic knowledge such as

� if the worker drone is very close (� e 2 A1) to desired
position then the speed is very slow (vx 2 A1).

� if the worker drone is far (� e 2 A3) from desired position
then speed is fast (vx 2 A3).

Similarly, the rules driving movements along z-axis are for
example,

� if the vertical distance among the worker drone and the
desired position is very down (� z 2 A1) then the speed
is positive and very fast (vz 2 A5).

� if the worker drone is in the face of (� z 2 A3) the desired
position, then the speed is near zero (vz 2 A3).

As a result of rules �ring, if the output of theLinear Z
Position controlsubsystem in Figure6 is negative, the drone
descends, and if the linear velocity� z is positive, the drone

goes up. TheLinear Z Position controlgoal is vertically to
keep the drone as close as possible to its desired position in
the formation.

Furthermore, theAngular Z Position controlsubsystem is
always looking to keep the worker drone pointed to its desired
position in the formation. For this, it computes drone rotation
speed (! z) around the z-axis in radians per second (rad/s)
according to rules such as

� if the angular error among the worker drone and the
desired position is very high and positive (� z 2 A5) then
rotation speed to the right is very fast (! z 2 A1).

� if the worker drone is aligned to (� z 2 A3) the desired
position, then the rotation speed is near zero (! z 2 A3).

C. SELF-PRESERVATION SYSTEM
A self-preservation strategy is developed to prevent collisions
between the drones during �ight. This strategy adopts for
each drone, a security cube centered at the drone. If any object
(another worker drone) is detected over this cube surface, then
the drone must perform a detour maneuver. This maneuver is
based on the drone's expectation to move towards the obstacle
positionP(x; y; z). Thus a possibility map is built describing
all directions that a drone can take. A direction is represented
by a vector linking the drone center to a positionP(x; y; z)
over the cube's surface. In addition, a fuzzy system is used to
infer the degree of possibility (fuzziness) associated to each
direction in this map [32], considering drones angular and
linear velocities, as well as the Euclidean distance among
the drone in the center of the cube and the positionP(x; y; z)
de�ning the direction. During �ight, positions with angular
errors into the interval [� 90� ; 90� ] are in front of the drone,
on the contrary these points are behind the drone (� a 2
[� 180� ; � 90� ] [ [90� ; 180� ]). In the same way, if the linear
drone velocity is positive (vx > 0), the drone is approaching
the position; otherwise it is �ying away from the position
(vx < 0).

The �rst step to build such maps is to generate a vector �eld
around each drone to assign all possible directions (vectors)
for drone displacement, as shown in Figure7.A. Each vector
Pv[i] , associated with a direction, is uniquely determined
by its positionP(x; y; z) and fuzziness, corresponding to a
degree of possibility of the drone moving in this direction.
This degree of fuzziness is computed based on drone position
and velocity information by a fuzzy system composed of two
modules, as shown in Figure7.B: linear motion and angular
motion.
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FIGURE 7. Self-preservation system overview. ( A) Possibility vector [Vp]
scattered around the drone's. ( B) Self-preservation system strategy to
apply degree of possibility to each possibility vector [Vp].

The �rst one assigns a fuzziness degree due to the drone's
linear velocity uncertainty, weighting forward, or backward
drone movements (upper vector �eld in Figure7.A). The sec-
ond fuzzy system considers the angular velocity uncertainty,
and it weights turn left or right actions (lower vector �eld
in Figure7.A). The output of both systems is the degree of
possibility of the drone moving in the direction of the vector
Pv[i] . The s-norm algebraic sum is used to combine these
two fuzzy variables giving the �nal possibility degree of each
vectorPv[i] [32].

The input variables for both fuzzy systems are the
Euclidean (� e from equation2) and angular (� a from algo-
rithm 1) distances among the drone and the desired position
P(x; y; z) of aPv[i] vector. A third input variable for the fuzzy
linear motion system is the linear velocity (vx 2 [� 1; 1]) over
x axis that indicates forward or backward motion. The angular
velocity (! z 2 [� 1; 1]) that indicates the left or right rotation
is the third input for the fuzzy angular motion system. The
input membership sets are the same given above for these
variables: euclidean distance and linear velocity are given
in Figure5.D, angular distance, and angular velocity are given
in Figure4.

The output of both fuzzy systems re�ects the possibility
for the drone to carry out the linear and angular motion in
each directionPv[i] . This degree of possibility can be very
low (VL), low (L), high (H) or very high (VH), in a range
from 0 to 1.

For the sake of clarity, the fuzzy surface of both systems
is displayed in two graphs combining inputs two by two.
For fuzzy linear motion, the rule base has generated the two
graphs in Figure8. From these graphs, when the drone is
moving forward, for example, and there are points in the face
of it having a low angular difference, that is a small angular
error, there is an excellent possibility to the drone reach these
points. On the other hand, the fuzzy angular motion system
is developed to predict the future position of the drones when
performing an angular rotation. ThusPv[i] with a high left
angular error, for example, has a higher degree of possibility
if the angular velocity is high on the left. The two surfaces
in Figure8model such inference resulting from fuzzy angular
motion rule base.

An example of the two vector �elds resulting from both
fuzzy linear and angular motion inferences is shown in
Figure9. In this Figure, a high degree of possible results
in a light color vector, otherwise a dark vector indicates a
direction with a low degree of possibility. The combination
(by s-norm algebraic sum) of both �elds in Figure9generates
the �nal vector �eld, re�ecting the possibilities of the drone
moving in each direction.

Finally, a heuristic procedure is developed to prevent col-
lisions based on the vector �eld computed by a fuzzy motion
system. The cube volume around the drone is divided into
four quadrants, from 0 to 90 degrees, from 90� to 180� , from
� 180� to � 90� and from� 90� to 0� . When another drone is
detected in one of these areas, a diversion maneuver is carried
out, causing the drone to slide to the opposite side, according
to a repulsive force. The degree of probability of the drone
moving in a particular direction is used to assign the force of
the deviation to be executed in case of another drone has been
detected in such direction. All directionsPv's that meet the
surface of the detected (blue) drone, as shown in Figure9.A,
are identi�ed, de�ning an interception area. The degree of
possibility for all vectors in the interception area is averaged,
generating the repulsive force. This deviation maneuver uses
the linear velocities on the x and y-axis, weighted by the
repulsive force, to move the drone into directions of 45, 135,
� 135, and� 45 degrees from the area containing the detected
drone.

When there are two drones around the drone performing
the detour maneuver, it calculates the weights (repulsive
force) based on the directionsPv's connecting it with both
detected drones, and then the drones detour is carried out
relative to the detected drone with the highest possibility of
collision (highest repulsive force).

D. FORMATION MAINTENANCE SYSTEM
This section develops the technique of �ying in �eet forma-
tion proposed by this work. Firstly, the leader drone is set
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FIGURE 8. Self-preservation system - Degree of possibility maps generated by the Fuzzy linear system [( A), (B)] and Fuzzy angular system
[(C), (D)]. (A) Map of degree of possibility, about the linear error (Euclidean distance) and linear velocity (in m/s) between the drones positions.
(B)Map of degree of possibility, about the angular error and linear velocity (in m/s) between the drones positions. ( C) Map of degree of
possibility, about the linear error (Euclidean distance) and angular velocity between the drones positions. ( D) Map of degree of possibility,
about the angular error and angular velocity between the drones positions.

to reach point B from point A. During the �ight, all worker
drones must quickly reach speci�ed positions, set from a
leader's position, so that it is possible to assume and maintain
the formation. The worker drone positions are computed
by a formation function specifying the desired geometry
shape of the formation. The formation function inputs are
the leader position and information about obstacles that have
been detected by the 3D perception sensor. There are two
types of �ight formation: cruiser formation that corresponds
to an arbitrary geometrical shape de�ned according to cargo
transportation requirements and safe formation (line mode) to
be assumed in the presence of two or more external obstacles.

If the perception sensor identi�es only one obstacle in front
of the leader drone, the obstacle data is captured (� x, � z and
� a) and inputted to a deviation obstacles fuzzy system, com-
puting the necessary sliding maneuver to be carried out by the
worker drones around the leader. Thus the formation function
computes the new position of each drone in the �eet, assuring
that all drones can de�ect the obstacle while maintaining the

formation. If two or more obstacles are detected in the face
or both sides of the leader drone, and the euclidean distances
among them are less than 1 meter each, the formation assumes
the safe mode. In this safe formation, each drone lines up at
a prede�ned order, forming a shell. As before, the formation
function computes the new position of each drone in the �eet.

Both cruiser and safe formations take into account the posi-
tion of the leader drone to determine the worker's position.
During a �ight, these relative positions are always the same,
concerning the position and orientation of the leader. When
the leader drone bypasses a nearby obstacle, for example,
the deviation degree computed by the fuzzy system is added
to the preset position of each drone, causing it to spin around
the leader. Each worker drone tracks its desired position all
the time except when it slides to deviation from another drone
in the �eet, as explained in sectionIII-C. This proposed strat-
egy for formation maintenance is summarized in Figure10.

The formation is a unique entity, where each drone is part
and plays a role. Virtual markers inform the desired and
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FIGURE 9. Example of self-preservation strategy in operation.
(A) Representation of an intersection between two drones. ( B) Vectors of
possibility indicating that there is a possibility of drone collision in the
right side. ( C) Vectors of possibility indicating that there is a possibility of
drone collision in the front.

actual position of each drone, as well as de�ne the formation
limits. These markers are created from the actual position
of each drone, obtained through the position sensors and
transformation trees. The Figure11.A shows such markers.

Considering a 3D coordinate [x, y, z] system, the current
position of the leader is written asLp D [x; y; z]0 and the
actual position of the i-th worker drone isWp[i] D [x; y; z]0

(i also refers to the initial position of the drone in formation).
The desired position of the working drone to maintain forma-
tion isWdp[i] D [x; y; z]0.

1) CRUISER FORMATION
The �rst step to establishing the cruiser formation geomet-
rical shape is to choose all drones' relative positions. For
this, the initial leader's positionLp D [x; y; z]0 is set, and
the positions for each worker drone in the formation are

FIGURE 10. Diagram representing all strategy developed for formation
maintenance system.The strategy can be divided into 4 main parts,
namely predefined formation , perception source processing , obstacle
deviation and saved mode (predefine line formation).

established. Each drone must be at a speci�c angle and a par-
ticular distance from the leader, to assure pose maintenance.
A vectorVd[i] indicating the displacement of each drone in
each [x; y; z] - axis relative to the leader's positionLp is cre-
ated to save this geometrical shape. This vector can be added
to the leader's current position during the �ight, giving the
desired new position of each worker drone all the time. How-
ever, aVd[i] has always the same orientation, independent
of the leader drone has made an angular displacement. Thus,
an angular correction term must be introduced, allowing to
compute every time, the worker drone desired position

Wdp[i]:x D ((Vd[i]:x � cos(Lw:z))

� (Vd[i]:x � sin(Lo:z))) C Lp:x

Wdp[i]:y D ((Vd[i]:x � cos(Lw:z))

� (Vd[i]:x � sin(Lo:z))) C Lp:x

Wdp[i]:z D Lp:z; (4)

where we assumes for simplicity thatLp:x corresponds to
the values of x-coordinates of vectorLp D [x; y; z]0 andLw
represents the rotation of the drone leader (Figure2.A). The
same is valid for all vectors in the equation4.

In a �eet with four drones, an initial position of the cruiser
formation is represented in Figure12.A. During the �ight,
the obstacle deviation maneuvers are carried out to always
maintain the displacements (Vd[i]) according to this position,
revising only its orientation.
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FIGURE 11. The virtual representation of the formation flight, presenting the limits and positions imposed on each drone, as well as the
possible deviation maneuvers of the whole formation. ( A)Formation limits set by virtual markers, the control proposed by this paper aims
to ensure that each drone stays within specific limits. ( B) Deviation of all formation in linear Z-axis (when there are obstacles above or
below the formation). ( C) Deviation of all formation in linear Y-axis (when there are obstacles to the right or left of the formation).
(D) Deviation of all formation in the angular X-axis. ( E)Line formation (when there are obstacles on both sides).

FIGURE 12. Pre-established drone formation. ( A) Example of drones'
position in cruiser formation. ( B) Example of drones' position in safe
formation (line mode).

2) SAFE FORMATION
When there are obstacles on both sides of the leader drone,
at a distance of fewer than one meter on each leader side,
the formation must assume thesafe mode. It consists of a
prede�ned geometrical shape in which worker drones form
a shell behind the leader drone, causing all drones to pass

through the same space. This shape assures no drone will
hit off the charge, unlike what would happen if the forma-
tion rotated 90 degrees along the x-axis (roll rotationVx
in Figure2.A). The worker drones' relative position com-
putation is also given by Equation4, considering that the
distance vector (Vd) now corresponds to position for this safe
formation as presented in Figure12.B.

3) OBSTACLE DEVIATION
In the presence of an external obstacle, workers can slide
around the leader to maintain formation while avoiding
the obstacle. Rotation and translation matrices are used to
modify the desired position of each worker drone in order
to carry out the detour maneuver. The rotation movement
changes the position of the worker drone without drawing it
from the formation. In this way, the preset distance showed
in Figure12.A is always kept; only the corresponding vector
is rotated around the leader drone.

Therefore, the procedure for obstacle deviation by the
formation can be implemented into two steps. In the �rst one,
the deviation obstacles fuzzy system infers the angle needed
to execute the detour. In the second step, the desired position
of each drone is rotated by this angle, considering the leader
orientation.

The obstacle information used by the deviation obstacles
fuzzy system is the same input variables of the fuzzy obstacles
avoidance system in sectionIII-A.2 . They are� e, � y and� z.
Their universes of discourse, fuzzy sets, and associated mem-
bership functions are the same given in Figure5.D. � e refers
to the Euclidean distance in meters between the leader and

64376 VOLUME 8, 2020



M. A. S. Teixeiraet al.: Quadral-Fuzzy Control Approach to Flight Formation by a Fleet of UAVs

FIGURE 13. Surface graph of the Fuzzy system used for the diversion of
obstacles in formation. ( A) Degrees applied to the deviation in Yaw, about
the linear error (Euclidean distance) and linear error in Y-axis (Y-axis
difference) between the leader drone position and obstacle detected.
(B) Degrees applied to the deviation in Pitch, about the linear error
(Euclidean distance) and linear error in Z-axis (Z-axis difference) between
the leader drone position and obstacle detected.

the closest detected obstacle.� y refers to the orientation of
the obstacle, considering the leader drone current position,
whether it is on the right or the left of the leader, and how
many meters.� z refers to the obstacle orientation related to
the leader drone, whether it is above or below the leader
drone, in meters.

The proposed fuzzy system to de�ne the angular deviation
of the formation has two outputs: the yaw angle (� yaw) around
the Z-axis and the pitch angle (� pitch) around Y-axis (Vz andVy
rotation in Figure2.A). Both outputs are de�ned over the
same universe of discourse� yaw; � pitch 2 [� 150� ; 150� ] and
their fuzzy sets have �ve triangular membership functions,
equally spaced over this universe. Yaw deviation angle (� yaw)
provides an angular value that will be added to the formation
calculation so that all the worker drones rotate around the
leading drone. If� yaw is positive, the drones will advance to
the right; if it is negative, they will move to the left. In the
same way, if� pitch is positive, the workers move up above
the leader's position, if it is negative, the movement is to the
bottom.

Figure13 presents the surface graphs of both fuzzy sub-
systems. It is possible to observe that closer the obstacle is,
the higher the angular deviation. These computed angular
deviations are summed up to the initial positions of the cruiser
formation discussed in sectionIII-D.1. Then the rotation and
translation matrices are applied to compute the news positions

to be assumed by all working drones so that the formation
always maintains the distance between all the drones, thus
preserving the original formation geometrical shape.

Figure11illustrates the possible motions for the formation,
where! z refers to the rotation around the leader drone on
the Z-axis. This rotation is given by the output� yaw of the
fuzzy system added to leader drone actual orientation relative
to z-axisLw:z. A similar motion is carried out in the y-axis
where the rotation! y of the working drones around the leader
is established from the output� pitch of the fuzzy system added
to leader drone actual angleLw:y relative to the y-axis. The
rotation ! x concerns the ability of the working drones to
rotate around the leader drone along the x-axis. This rotation,
also shown in Figure11.D, is only applied in safe formation
mode and corresponds to the roll angle� roll added to leader
drone actual orientation relative to z-axisLw:z.

The rotation values! x, ! z, and! y are applied in sequence,
considering the working drones' positionWdp, the leader
positionLp and the vectorVd. This last vector indicates the
displacement vector of each worker drone about the leader
drone characterizing the formation of geometrical shape
(cruiser or safe), as discussed above.

Equation5 computes the 3D coordinates position values
[x; y; z] for the worker drones considering a rotation along
x-axis (! x D � roll C Lw:x).

Wdp[i]:x D (Vd[i]:x)I

Wdp[i]:y D (Vd[i]:y � cos(� roll C Lw:x))

� (Vd[i]:z � sin(� roll C Lw:x))I

Wdp[i]:z D (Vd[i]:y � sin(� roll C Lw:x))

C(Vd[i]:z � cos(� roll C Lw:x))I (5)

After computing the! x rotation, it is possible to compute
rotation along z-axis (! z D � yawC Lw:z:) through equation6.
Note thatVd is no longer used; instead, we use nowWdp
computed by equation5 that corresponds to the new worker
drone position already rotated by! x.

Wdp[i]:x D (Wdp[i]:x � cos(� yaw C Lw:z))

� (Wdp[i]:z � sin(� yaw C Lw:z))I

Wdp[i]:y D Wdp[i]:yI

Wdp[i]:z D (Wdp[i]:x � sin(� yaw C Lw:z))

C(Wdp[i]:z � cos(� yaw C Lw:z))I (6)

Finally, the rotation along y axis can be computed by
Equation7 (! y D � pitch C Lw:y:), consideringWdpcompute
by equation6.

Wdp[i]:x D (Wdp[i]:x � cos(� pitch C Lw:y))

� (Wdp[i]:y � sin(� pitch C Lw:y))I

Wdp[i]:y D (Wdp[i]:x � cos(� pitch C Lw:y))

C(Wdp[i]:y � sin(� pitch C Lw:y))I

Wdp[i]:z D Wdp[i]:zI (7)

All rotations, ! x, ! z, and ! y are computed based on
the displacement vector of each working drone and angular
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FIGURE 14. Graphical representation of the environment and path taken during navigation. ( A) Graph representing the path traveled by all
drones on the Y-axis. ( B) Graphical representation of the path traveled by the drones on the Y-axis. (V-rep simulator). ( C) Graph representing
the path traveled by all drones on the Z-axis. ( D) Graphical representation of the path traveled by the drones on the Z-axis. (V-rep simulator).

orientation of the leader drone. The resulting positionWdp
must be now translated, considering the actual position of the
leader drone, in order to maintain the formation. This motion
is carried out through Equation8, whereLp refers to the
actual position of the leader drone in 3D space.

Wdp[i]:x D Wdp[i]:x C Lp:xI

Wdp[i]:y D Wdp[i]:y C Lp:yI

Wdp[i]:z D Wdp[i]:zC Lp:zI (8)

However, as discussed in sectionIII-C, the position control
of the drone interleaves between avoiding collisions with
other drones or going to the desired position. The result of the
formation maintenance module only generates a new desired
point; the decision about to reach or not the desired position
depends on the self-preservation system.

IV. EXPERIMENTAL RESULTS
The proposedquadral-fuzzyapproach has been tested and
validated through simulated experiments using theVirtual

Robot Experimentation Platform(V-Rep) [37]. Firstly, each
module has been one to one tested, and �nally, the complete
system was validated.

This simulated experiment is carried out with a four drones
�eet. The cruiser formation has the leader in front of the
platoon and in the back line, a worker drone just behind the
leader, one on its left and the other on the right, as shown
in Figure12.A. The three workers drones in the backline keep
the same Euclidean distance from the leader.

A scene with several obstacles has been build to asses
quadral-fuzzyapproach performance. This scene is shown
in Figure14.B contains several obstacles that force the �eet
to perform deviation maneuvers in the three axes of the
3D space. The drones must traverse the whole scene without
colliding with any obstacle and with each other while main-
taining the formation.

The position of the four drones is monitored throughout
the course. Figure14) presents the complete traveled paths
by all drones during the simulation. The goal is to verify if
the formation is maintained during �ight navigation, even

64378 VOLUME 8, 2020



M. A. S. Teixeiraet al.: Quadral-Fuzzy Control Approach to Flight Formation by a Fleet of UAVs

FIGURE 15. Boxplot representing the results obtained during navigation.
(A) Distance from working drones to drone leader. ( B) Distance between
the drones in relation to the middle drone. ( C) Distance between the
drones in relation to the right drone. ( D) Distance between the drones in
relation to the left drone.

in the diversion of obstacles. An analysis of the distance
between the drones is carried out to show the ef�cacy of
the self-preservation system. Figures14) A and C show,
respectively, the paths developed by all drones in the X-Y
and X-Z plans. Figures14) B and D are respectively, the top
views of the trajectories in the X-Y plan and the side view

of the trajectories in the X-Z plan. From the latest �gures,
we can note that some of the drones have sometimes �own in
the loop (ellipses shape). This occurred when the leader drone
identi�ed an obstacle close to the worker drone that has been
forced to carry an evasive action to avoid collisions. After the
maneuver, the drone accomplishes a loop to resume its path.

During the simulation, the position of each drone was taken
in a rate of 0.2 seconds, when the Euclidean distance between
them was calculated. Those measurements are presented in
the boxplots at Figure15 having each drone as reference:
Figure 15.A shows the distances from the leader to all other
drones, while Figure15.B shows the Euclidean distance of
the middle worker drone to the others, and so on.

As discussed in previous sections, the goal is to keep
the distance between the drones throughout the navigation,
causing them to �y in formation and do not crash at any
moment. As shown in the results, this objective was reached,
showing that most of the time the distance between the drones
was preserved, with the exception of a few moments, where
the obstacle diversion action is performed, moving from a
maximum of 20 centimeters.

V. CONCLUSION
This work has presented aquadral-fuzzyapproach for �ight
formation using multiple drones. This approach can be
applied for several purposes, such as cooperative transport of
goods, or patrolling in multi-robot environments, for exam-
ple. The approach is composed of four central systems: leader
drone control, worker drones control, self-preservation, and
formation maintenance.

The leader drone commands the platoon since this drone
is equipped with a 3D sensor to map the environment. The
leader's �ight control is toggled between two subsystems:
position control and obstacle bypass control. The switching
between these two subsystems can determine a change in the
positions of worker drones in order to maintain formation.
The position control of worker drones is very simple. It only
receives a point to be reached and moves the drone towards
it. This desired position can be modi�ed at any time during a
�ight. The self-preservation system prevents collision among
the drones inside the formation. The deviation maneuvers are
based on the possibility (fuzziness) degree of a drone moving
in a particular direction. If two drones are detected inside a
path intersection area, a repulsive force proportional to their
fuzzinessdegree is applied moving away both drones.

The formation maintenance strategy consists in continually
assigning positions to the worker's drones based on actual
leader drone position and information about external obsta-
cles detected by the perception 3D sensor embedded in the
leader drone. In the presence of a detected obstacle, the for-
mation is rotated, causing all drones to deviate from it. If there
are several detected obstacles, the �eet can quit cruiser for-
mation, assuming an in-line safety formation until there are
no more obstacles. Simulation experiments have been car-
ried out, showing that the proposed approach provides safe
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navigation for multiple drones, avoiding collisions between
the drones and with obstacles presented in the environment.
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