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Abstract 

Very dense networks offer a better resolution of the physical world and therefore a better capability of detecting 

the occurrence of an event; this is of paramount importance for a number of industrial applications. However, the 

scale of such systems poses huge challenges in terms of interconnectivity andtimely data processing. In this paper 

we will look at efficient scalable data acquisition methods for such densely instrumented cyber-physical systems. 

Previous research works have proposed approaches for obtaining an interpolation of sensor readings from 

different sensor nodes. Those approaches are based ondominance protocols, presenting therefore excellent 

scalability properties for dense instrumented systems. In this paper we propose an important advance to the 

state-of-the-art. Our novel approach not only incorporates a physical model to enable more accurate approximate 

interpolations but it also detects and self-adapts to changes in the physical model. 
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Abstract— Very dense networks offer a better resolution of 
the physical world and therefore a better capability of detecting 
the occurrence of an event; this is of paramount importance for a 
number of industrial applications. However, the scale of such 
systems poses huge challenges in terms of interconnectivity and 
timely data processing. In this paper we will look at efficient 
scalable data acquisition methods for such densely instrumented 
cyber-physical systems. Previous research works have proposed 
approaches for obtaining an interpolation of sensor readings 
from different sensor nodes. Those approaches are based on 
dominance protocols, presenting therefore excellent scalability 
properties for dense instrumented systems. In this paper we 
propose an important advance to the state-of-the-art. Our novel 
approach not only incorporates a physical model to enable more 
accurate approximate interpolations but it also detects and self-
adapts to changes in the physical model. 

Keywords— Sensor Networks; Data Acquisition; Aggregate 
Quantities; Dominance-based MAC Protocols 

 

I. INTRODUCTION  
Although the information technology transformation of the 

20th century appeared revolutionary, a bigger change is in 
progress. The term Cyber-Physical Systems (CPS) has come to 
describe the research and technological efforts that will 
ultimately allow the interlinking of the real-world physical 
objects and the cyberspace efficiently [1]. The integration of 
physical processes and computing is not new. Embedded 
systems have been in place for a long time and these systems 
often combine physical processes with computing. The 
revolution is coming from massively deploying networked 
embedded computing devices allowing instrumenting the 
physical world with pervasive networks of sensor-rich 
embedded computation. As Moore’s law continues, the cost of 
a single embedded computer equipped with sensing, processing 
and communication capabilities drops toward zero. This makes 
it economically feasible to densely deploy networks with very 
large quantities of such nodes. 

Accordingly, it is possible to take a very large number of 
sensor readings from the physical world, compute quantities 
and take decisions out of them. Very dense networks offer a 
better resolution of the physical world and therefore a better 
capability of detecting the occurrence of an event; this is of 
paramount importance for a number of applications where 
high-spatial sensing (and actuation) resolution is needed. 

Structural health monitoring (SHM) of physical 
infrastructures (bridges, aircrafts, etc.) is an example of CPS 

applications where high-spatial resolution sensing is 
required [2]. Other examples are the ongoing efforts within the 
aircraft industry to respond to environmental concerns by 
developing technologies that will allow sustained air travel 
growth while minimizing overall carbon footprint [3]. 

Let us elaborate a bit further on an Active Flow Control 
(AFC) application for drag reduction in aircraft. 

 

II. INTERCONNECT CHALLENGES IN AFC 
The drag breakdown of a commercial aircraft shows that 

the skin friction drag and the lift-induced drag constitute the 
two main sources of drag, approximately one half and one third 
of the total drag for a typical long range aircraft at cruise 
conditions [4]. 

Skin friction drag is therefore the main component of the 
aerodynamic drag. Skin friction arises from the friction of air 
against the skin of the aircraft moving through it. The primary 
source of skin friction drag during the flight is boundary layer 
separation. The boundary layer is the layer of air moving 
smoothly in the immediate vicinity of the aircraft (wing, 
fuselage, tail). The smooth flow (laminar flow) is disturbed by 
the boundary layer separating from the surface creating a low 
pressure region and, ultimately, increasing the skin friction 
drag (turbulent flow). Fig. 1 illustrates these. 

There are various approaches to reduce the turbulent skin 
friction, involving different mechanisms, such as: reducing 
turbulent friction drag through riblets; deformable active skin 
using smart materials (compliant walls), or by (locally) 
postponing the boundary layer separation using vortex 
generators such as dimples or Synthetic Jet Actuators - SJAs. 
In this latter case, suction from the surface of the wing can be 
used to remove the low-energy air directly from the boundary 
layer. Along with this method, additional momentum can be 

978-1-4799-0658-1/13/$31.00 © 2013 IEEE 

Fig. 1.  Boundary layer separation exemplified with the wing. 
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achieved by generating streamwise vortices near the edge of 
the boundary layer that reenergize the boundary layer flow. 

We aim at designing, validating and demonstrating a novel 
cyber-physical system able of performing an efficient 
suppression of the turbulent flow by using a dense sensing 
deployment to detect the low pressure region and a similarly 
dense deployment of actuators to manage the turbulent flow. 
With this concept, only the actuators in the vicinity of a 
separation layer are activated, minimizing power consumption 
and also the induced drag. 

A recent research work [5] uses SJAs running at key 
positions on the wing to continuously energize the boundary 
layer and thus delay its separation. However, that approach 
does not use sensors to detect and trace the separation, and is 
therefore static and not proactive in nature. It results that the 
efficiency of active flow control (AFC) is compromised and 
energy resources are wasted when there is no boundary layer 
separation or when it lies outside the actuators’ optimal control 
field. 

We aim a smarter use of the actuators for AFC, and the 
SmartSkin project [6] ongoing at CISTER-ISEP is one such 
effort. Implementing AFC through this smart skin approach 
implies a reliable, highly fault tolerant network of active skin 
friction reduction components. Importantly, given the 
characteristics of the physical quantities to be tracked, sensors 
(e.g., pressure sensors, vibration sensors) might need to be only 
a few centimetres apart.  

Therefore, even in the case of a medium-sized passenger 
aircraft, the sensor/actuator network will be composed of 
potentially hundreds of sensors, controllers and actuator 
systems (smart skin patches) that will be embedded across the 
aircraft wings and fuselage. Such densely instrumented active 
skin poses a huge challenge in terms of interconnectivity and 
timely data processing. We plan to develop novel 
sensor/actuator network paradigms and mechanisms able to 
deal efficiently with the large-scale processing requirements. 
Scalability will be a concern as well as timeliness. 

We have already proposed algorithms for obtaining an 
interpolation of sensor readings from different sensor nodes, 
and those algorithms present excellent scalability properties for 
dense instrumented systems [7, 8]. 

 

III. BACKGROUND AND RELATED WORK 
Applications of sensor and actuator (dense) networks 

behave typically as follows: 

 1: do forever 
 2:     each sensor node takes a new sensor reading; 
 3:     sensor nodes form a (potentially approximate)  
                representation of all sensor readings; 
 4:     the representation of sensor readings is used, for  
                example, to compute an actuation command. 

The execution of line 3 in the above pseudo code requires 
an algorithm that acquires a (potentially approximate) 
representation of all sensor readings. Ideally, this algorithm 

should offer a small deviation of the representation of sensor 
reading as compared to the physical world. 

A.  Quantity Aggregation 
Various interesting features of dominance-based protocols 

[9] (CAN [10] and WiDom [11, 12] are examples) can be 
exploited to obtain aggregate quantities in large scale dense 
networks, with a time-complexity that is very low and 
independent of the number of nodes. Such mechanisms are 
being used as a key building block in densely instrumented 
Cyber-Physical Systems as is discussed next. 

By associating the priorities of messages to physical 
quantities (such as temperature, acceleration, luminosity, etc.), 
several high-performance algorithms for data processing can be 
devised in which the time-complexity is independent of the 
number of nodes.  

For instance, if each node uses the value of its sensor 
reading instead of an arbitrary priority, the node winning the 
contention for the medium will be the one with the minimum 
(MIN) of the sensed values. In [8], it is demonstrated that 
CAN-enabled platforms can be used to compute various 
aggregate quantities, such as MIN (or MAX). 

B.  Approximate Interpolation 
Previous work [8] proposed an algorithm for obtaining an 

interpolation of detected signals. The interpolation is a function 
f(x, y) where x and y are space coordinates and the function 
f(x, y) approximates sensor readings throughout the area of 
interest.  The function f(x, y) is represented by a set of control 
points, denoted as S, where each control point qk∈S has three 
attributes xk, yk and vk, with the meaning that evaluating the 
interpolation at the location (xk,yk) should give the value vk. On 
locations where no control point exists, the function f(x, y) is 
defined as a weighted average of control points; this is called 
weighted-average interpolation (WAI). Formally, the function 
f(x, y) is defined as:  

f(x, y) = 

0                             ∧∑ · ,∑ ,                         (1) 

where weights, wk(x, y), are given by: 

wk(x, y)=      (2) 

Let Ni denote a sensor node. Let (xi,yi) denote the location of 
this sensor node and let vi denote the sensor reading of this 
sensor node. We let ei denote the error of the interpolation at 
sensor node Ni and we let e denote the maximum error over all 
sensor nodes. Formally, we express this as: | , |   (3)

 and max..  (4)

where m is the number of nodes. 



An algorithm for efficiently constructing S is proposed in 
[8] (we refer to it as Basic Interpolation Algorithm). The main 
idea is that initially the interpolation is zero on each location 
(this is represented by setting S to the empty set). Then, each 
sensor node evaluates the interpolation at its location and 
compares it with its sensor reading and the sensor node with 
the maximum error is granted the medium for transmitting its 
location and sensor reading, and this information is added to S. 
This is repeated k times (where the value of k is selected by the 
designer). Pseudo code for this algorithm is shown below (each 
sensor node executes the algorithm and a sensor node can read 
the variable i to obtain its identifier): 

 1: S  ∅ 
 2: for j  1 to k do 
 3:     calculate the interpolation function f(xi,yi) based on S 
 4:     calculate ej 
 5:     select a sensor node Nk with the maximum ek, that is 
              ek = e. This can  be achieved using the MAX (MIN)  
              computation mentioned in Section IIIA 
 6:  the location and the sensor reading of Nk forms a control 
               points; add this control point to S 
 7: end for 

Fig.  2 illustrates the operation of the interpolation scheme. 
Fig. 2(a) shows how a physical quantity varies as a function of 
space coordinates x and y. Fig. 2(b) shows an interpolation 
which is an approximate representation of this physical 
quantity; the lines indicate the location of control points in S. 

 
There are however some limitations in that algorithm. The 

basic interpolation algorithm does not consider the dynamics of 
the monitored signal. Therefore, when the speed of change in 
the monitored signal is much faster than the speed of execution 
of the interpolation algorithm, the first points taken into the set 
S become outdated and as result the approximate interpolation 
becomes inaccurate. Note that this problem is more acute when 
the monitored signal is more complex (the one shown in Fig. 2 
is relatively simple) and therefore requiring more control 
points to be added to the set S. 

To address this problem, in [7] the authors proposed to 
embed a model of dynamics of the physical world into the 
algorithm: after the selection of a new control point, all 
previously selected control points in the set S update their three 
attributes (the x, y coordinates and the value v) according to the 
defined change model.  

 
That approach has still a number of significant limitations: 

(i) in that approach there is no provision on how to obtain the 
physical model parameters to be incorporated into the 
algorithm (potentially without having any prior knowledge 
about the signal behavior) and (ii) there is no provision on any 
feedback control of the quality of the approximate interpolation 
enabling the periodic re-computation of the physical model 
parameters that are embedded in the approximate interpolation 
algorithm. 

 

IV. A SELF-ADAPTIVE APPROX. INTERPOLATION SCHEME 
In this paper we report ongoing research aiming at a more 

elaborated algorithm. Besides the approximate interpolation 
functionality (that performs compensation in the control points 
to accommodate the dynamics of the physical signal under 
observation) the novel algorithm also includes a functionality 
that is called Learning. Learning is performed at the beginning 
and every time need for re-computing the physical model 
parameters is determined by a third functionality that is called 
Assessment. The flow chart in Fig. 3 illustrates this approach. 
For simplification of terminology, we use the term “sample” to 
denote an approximate interpolation. The time between two 
consecutive samples is denoted by TS. 

A. Learning Mechanism 
During Learning, a matrix that models the change pattern of 

the physical signal is computed; we call this matrix the 
transformation matrix (Tmatrix). To define the parameters of the 
matrix, Ti,j, the trend of the signal change is observed and a 
system of equations based on this observation is solved. To do 
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Fig. 3.   Flow chart of the proposed algorithm. 
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so, we need to define a time window during which the tracking 
is performed. 

The term time-slot represents the time it takes to execute 
an iteration in the approximate interpolation (i.e. taking one 
control point and re-computing f(x,y)). As explained in the 
previous section, the node with highest error ei can be found 
and added to the set S during one time-slot. By nullifying the 
set S (line 2 of the following pseudo code) at the beginning of 
each iteration, it is possible to determine the location of the 
node with the highest error (i.e. the location of the physical 
signal peak, assuming that the shape of the signal is preserved) 
in consecutive time-slots. Repeating five times this procedure 
provides sufficient information to solve a system of equations 
through which the Tmatrix is computed. The following pseudo 
code summarizes the learning mechanism:  

1:  for j  1 to 5 do 

2:     S  ∅ 
3:     calculate the interpolation function f(xi,yi) based on S  
4:     calculate ej 
5:     select a sensor node Nk with the maximum ek, that is ek = e 
6:     save the location (x, y) and the sensor reading (v) of  the  
             control point and form a system of equations 
7:  end for 
8:  solve the system of equations to define the parameters of  
        Tmatrix, Ti,j  (further details on §4.1 of [13]) 

B. Interpolation 

While performing the interpolation, our algorithm uses the 
Tmatrix to update the data collected in the previous iteration. In 
particular, the algorithm selects a new control point at each 
time-slot, but before computing the approximate interpolation 
f(x, y), all the previously selected points in the set S update 
their three attributes (x,y,v) by applying the affine 
transformation expressed by the Tmatrix (see Equation (5), xnewi, 
ynewi and vnewi are the new (updated) version of x coordinate, 
y coordinate and value of the control point qi in the current 
time-slot).  

C. Assessment 

The assessment functionality is performed with a 
periodicity, TA, that is a multiple of TS. During Assessment, 
network communications are TDMA like. A sub set of the 
control points, ζ, taken into the previous sample send their 
observed error value in their allocated TDMA-slot. The 
observed error of a control point is the difference between the 
measured value and the value of the interpolated signal in its 
locations. The following pseudo code illustrates Assessment: 

Requirements:  
   (i) All nodes are aware of the start of the Assessment; 
   (ii) latest set S is preserved: S={q1 , q2 , …, qk};  
  1: for j  1 to ζ  do 
  2:    if id == qj .id then 
  3:        compute the error and broadcast it 
  4:    else 

 5:         receive the packet and store the observed error value 
  6:    endif 
  7: endfor 
  8: re-compute_Tmatrix  FALSE 
  9: if  Average observed error is bigger than  then 
10:    re-compute_Tmatrix  TRUE 
11: endif 

The first requirement listed in the above pseudo code is 
satisfied by utilizing the same synchronization technique 
applied in the prioritized MAC protocol [10-12], since all 
nodes agree on a common reference time to either start an 
iteration of interpolation or a TDMA-slot.   

The observed error computed in Assessment is used to 
decide whether re-computing the transformation matrix or not.  
If the average observed error is bigger than a threshold value 
( , the current parameters of Tmatrix are deemed as not valid 
anymore and the Learning mechanism will execute. 

 

V. EVALUATION 
Through simulations we studied the average error of the 

samples provided by the proposed self-adaptive approximate 
interpolation scheme. We consider a dense network with 2500 
nodes deployed in square grid fashion over an area of 1m2. For 
simplification we consider having an input physical signal that 
can be modeled by a single peak middle shape signal (similar 
to the one given in Fig. 2(a)) with the following Gaussian 
function:  , . . 0.1 (6)

We consider in the experiments abrupt change patterns in 
the signal, expressed by the displacement of the whole signal 
up and down. We express the displacement in terms of relative 
speed compared to the duration of a time slot.  

Fig. 4(A) shows the speed of the change during the 
simulation time (4000 time-slots). The positive values and 
negative values represent "movements" up and down, 
respectively. Note, as written previously, that the values 
change equally in all points (xi, yi) of the grid.  

We run the simulation for 4000 time-slots and set the TS to 
be 25 time-slots and TA to be 3 × TS, which means that a new 
sample is computed every 25 time-slots and the assessment 
runs every 75 time-slots. The number of control points is set to 
6. In the assessment mechanism, we chose the first five control 
points that contributed in computing the latest interpolation 
sample (ζ=5). 

Since we set TA to be 3 × TS, in the worst case, we may 
observe three samples with lower quality. In our described 
scenario, this happens for example after time-slot 100 when the 
change rate increases from 12% to 14%. Since the last 
assessment has occurred at time-slot 86, and the next 
assessment occurs at time-slot 161 (75 time-slot later), the 
samples taken between time-slot 100 to 161 are computed with 
an outdated Tmatrix, hence we see three low quality samples in a 
row. After the assessment in time-slot 167 since the average 
observed error is not small enough (  is chosen 0.01), all nodes 

   xnew   T , x   T , y    T , v   T ,ynew   T , x   T , y    T , v   T ,  vnew   T , x   T , y   T , v   T , (5) 



prepare to execute the learning mechanism in order to re-
compute the Tmatrix.  

Our novel algorithm provides more accurate results 
(average error of about 3%), compared with the Basic 
Interpolation Algorithm (BIA). It is noteworthy to mention that 
for the simple physical signal with low change rate, the 
performance of the BIA algorithm is roughly the same as that 
of our proposed algorithm, but for more complex signals 
(where there is need to have more points in the set S for 
computing one sample) the new approach outperforms BIA 
even for slow change rates.   

Besides, in worst case, and for this experiment, the novel 
algorithm provides samples with 9% as the largest average 
error, while BIA produces samples with an average error of 
27%, especially when the signal change rate is high.  

VI. FUTURE WORK 
Ongoing work involves synthesizing such an algorithm 

from a model of the physical world by incorporating changes 
in the assessment rate as part of the feedback control as well as 

more sophisticated techniques to model more complex change 
patterns   (not monotonous in the area of observation). Notably 
we will also address the implementation fit of those algorithms 
in real platforms. It is foreseeable that some tradeoffs (in 
accuracy) will need to be addressed to fit execution 
complexity.  
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Fig. 4.   (A) Change pattern scenario, (B) Average error with BIA and (C) 
Average error with our novel algorithm. 
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