

Aeria l Image s Processing fo r Car Detection
using Convol uti onal Neur al Networ ks:
Comparison between Faster R -CNN and
YoloV3

Technical Report

CISTER-TR-200107

Adel Ammar

Anis Koubaa

Mohanned Ahmed

Abdulrahman Saad

Technical Report CISTER-TR-200107 Aerial Images Processing for Car Detection using ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Aerial Images Processing for Car Detection using Convolutional Neural Networks:
Comparison between Faster R-CNN and YoloV3

Adel Ammar, Anis Koubaa, Mohanned Ahmed, Abdulrahman Saad

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract
In this paper, we address the problem of car detection from aerial images using Convolutional Neural
Networks(CNN). This problem presents additional challenges as comparedto car (or any object) detection from
ground images becausefeatures of vehicles from aerial images are more difficult todiscern. To investigate this
issue, we assess the performance of twostate-of-the-art CNN algorithms, namely Faster R-CNN, which isthe most
popular region-based algorithm, and YOLOv3, whichis known to be the fastest detection algorithm. We analyze
twodatasets with different characteristics to check the impact ofvarious factors, such as UAV 19s altitude, camera
resolution, andobject size. The objective of this work is to conduct a robustcomparison between these two cutting-
edge algorithms. By usinga variety of metrics, we show that none of the two algorithmsoutperforms the other in all
cases.

Aerial Images Processing for Car Detection using
Convolutional Neural Networks:

Comparison between Faster R-CNN and YoloV3
Adel Ammar� , Anis Koubaa� x { , Mohanned Ahmed� , Abdulrahman Saad�

� Prince Sultan University, Saudi Arabia.
x CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Porto, Portugal

{ Gaitech Robotics, China

akoubaa@psu.edu.sa

Abstract—In this paper, we address the problem of car de-
tection from aerial images using Convolutional Neural Networks
(CNN). This problem presents additional challenges as compared
to car (or any object) detection from ground images because
features of vehicles from aerial images are more dif�cult to
discern. To investigate this issue, we assess the performance of two
state-of-the-art CNN algorithms, namely Faster R-CNN, which is
the most popular region-based algorithm, and YOLOv3, which
is known to be the fastest detection algorithm. We analyze two
datasets with different characteristics to check the impact of
various factors, such as UAV's altitude, camera resolution, and
object size. The objective of this work is to conduct a robust
comparison between these two cutting-edge algorithms. By using
a variety of metrics, we show that none of the two algorithms
outperforms the other in all cases.

Index Terms—Car Detection, Convolutional Neural Networks,
Deep Learning, You Only Look Once (Yolo), Faster R-CNN,
Unmanned Aerial Vehicles.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are nowadays a key
enabling technology for a large number of applications such
as surveillance [1], tracking [2], disaster management [3],
smart parking [4], Intelligent Transport Systems, to name a
few. Thanks to their versatility, UAVs offer unique capabilities
to collect visual data using high-resolution cameras from
different locations, angles, and altitudes. These capabilities
allow providing rich datasets of images that can be analyzed
to extract useful information that serves the purpose of the
underlying applications. UAVs present several advantages in
the context of aerial imagery collection, including a large �eld
of view, high spatial resolution, �exibility, and high mobility.
Although satellite imagery also provides a bird-eye view of the
earth, UAV-based aerial imagery presents several advantages
as compared to satellite imagery. In fact, UAV imagery has
a much lower cost and provides more updated views (several
satellite maps are several months old and do not present recent
changes). Besides, it can be used for real-time image/video
stream analysis in a much more affordable means.

This work is supported by the Robotics and Internet-of-Things Lab at Prince
Sultan University.

With the current hype of arti�cial intelligence and deep
learning, there has been an increasing trend since 2012 (the
birth of AlexNet) to use Convolutional Neural Networks
(CNNs) to extract information from images and video streams.
While CNNs have been proven to be the best approach for
classi�cation, detection and semantic segmentation of images,
the processing, and analysis of aerial images is generally more
challenging than the classical types of images (ground-level
images). In fact, given that UAVs can �y at high altitudes, the
feature extraction from images and detection becomes more
dif�cult to discern. This fact is due to the small size of features
and also the angle of views.

Recently, there have been several research works that ad-
dressed the problem of car detection from aerial images. In our
previous work [1], we also compared between YOLOv3 and
Faster R-CNN in detecting cars from aerial images. However,
we only used one small dataset from low altitude UAV images
collected at the premises of Prince Sultan University. However,
the altitude at which the image is taken plays an essential role
in the accuracy of the detection. Besides, we did not pro-
foundly analyze advanced and essential performance metrics
such as Intersection over Union (IoU) and the Mean Average
Precision (mAP). In this paper, we address the gap, and we
consider multiple datasets with different con�gurations. Our
objective is to present a more comprehensive analysis of the
comparison between these two state-of-the-art approaches.

In [5], the authors mentioned the challenges faced with
aerial images for car detection, namely the problem of hav-
ing small objects and complex backgrounds. They addressed
the problem with the proposed of Multi-task Cost-sensitive-
Convolutional Neural Network based on Faster R-CNN. Some
other researchers addressed the problem applying deep learn-
ing techniques on aerial images, in different contexts such as
object detection and classi�cation [6], [7], semantic segmen-
tation [8]–[10], generative adversarial networks (GANs) [11].

In this paper, we propose a comprehensive comparative
study between two state-of-the-art deep learning algorithms,
namely Faster R-CNN [12] and YoloV3 [13] for car de-
tection from aerial images. The contributions of this paper

ar
X

iv
:1

91
0.

07
23

4v
1

 [c
s.

C
V

]
16

 O
ct

 2
01

9

are manifold. First, we consider two different datasets of
aerial images for the car detection problem with different
characteristics to investigate the impact of datasets properties
on the performance of the algorithms. In addition, we provide
a thorough comparison between the two most sophisticated
categories of CNN approaches for object detection, Faster
RCCN, which is a region-based approach proposed in 2017,
and YOLOv3, which is the latest version of the You-Look-
Only-Once approach proposed by Joseph Redmon in 2018.

The remaining of the paper is organized as follows. Section
II discusses the related works that dealt with car detection
and aerial image analysis using CNN, and some comparative
studies applied to other object detection. Section III sets forth
the theoretical background of the two algorithms. Section IV
describes the datasets and the obtained results. Finally, section
V draws the main conclusions of this study.

II. RELATED WORKS

Various techniques have been proposed in the literature to
solve the problem of car detection in aerial images and similar
related issues. The main challenge being the small size and
the large number of objects to detect in aerial views, which
may lead to information loss when performing convolution
operations, as well as the dif�culty to discern features because
of the angle of view. In this scope, Chen et al. [14] applied a
technique based on a hybrid deep convolutional neural network
(HDNN) and a sliding window search to solve the vehicle
detection problem. The maps of particular layers of the CNN
are split into blocks of variable �eld sizes, to be able to
extract features of various scales. They obtained an improved
detection rate compared to the traditional deep architectures
at that time, but with the expense of high execution time (7s
per image, using a GPU).

Following a different approach, Ammour et al. [15] used a
pre-trained CNN coupled with a linear support vector machine
(SVM) classi�er to detect and count cars in high-resolution
UAV images of urban areas. First, the input image is seg-
mented into candidate regions using the mean-shift algorithm.
Then, the VGG16 [16] CNN model is applied to windows
that are extracted around each candidate region to generate
descriptive features. Finally, these features are classi�ed using
a linear SVM binary model. This technique achieved state-
of-the-art performance, but it still falls short of real-time
processing, mainly due to the high computational cost of the
mean-shift segmentation stage.

Xi et al. [4] also addressed the problem of vehicle detection
in aerial images. They proposed a multi-task approach based
on the Faster R-CNN algorithm to which they added a cost-
sensitive loss. The main idea is to subdivide the object
detection task into simpler subtasks with enlarged objects, thus
improving the detection of small objects which are frequent
in aerial views. Besides, the cost-sensitive loss gives more
importance to the objects that are dif�cult to detect or occluded
because of complex background and aims at improving the
overall performance. Their method outperformed state-of-the-
art techniques on their own speci�c dataset that was collected

from surveillance cameras placed on top of buildings surround-
ing a parking lot. However, their approach has not been tested
on other datasets, nor on UAV images.

In a similar application, Kim et al. [17] compared vari-
ous implementations of YOLO, SSD, R-CNN, R-FCN and
SqueezeDetPerson on the problem of person detection, trained
and tested on their own in-house dataset composed of images
that were captured by surveillance cameras in retail stores.
They found that YOLOv3 (with 416 input size) and SSD
(VGG-500) [18] provide the best tradeoff between accuracy
and response latency.

Some recent works have addressed the problem of domain
adaptation for convolutional neural networks on aerial images.
In fact, one of the problem of CNN is that it is very prone to
the domain changes. This means if a network is training on
objects from a certain domain and achieves a certain accuracy,
this accuracy is likely to decrease a lot if the same objects
provided as input come from a different domain. To address
this issues, in [11], the authors have proposed a technique for
domain adaptation based on generative adversarial networks
(GANs) to improve the semantic segmentation accuracy of
urban environment in aerial images. The authors achieved an
increase of accuracy up to 52% of the semantic segmentation
when performing domain adaptation from the source domain
which is the German Potsdam city to the Vaihingen city.
In [19], the authors proposed another technique for domain
adaptation based on Active Learning applied to animal detec-
tion in wildlife using aerial images. The core idea consists
in using Transfer Sampling (TS) criterion to localize animals
effectively, which uses Optimal Transport to determine the
regions of interest between the source and target domain.

In [20], Hardjono et al. investigated the problem of auto-
matic vehicle counting in CCTV images collected from four
datasets with various resolutions. They tested both classical
image processing techniques (Back Subtraction, Viola Jones
Algorithm, and Gaussian Filters) and deep learning neural net-
works, namely YOLOv2 [21] and FCRN (fully convolutional
regression network) [22]. Their results show that deep learning
techniques yield markedly better detection results (in terms of
F1 score) when applied on higher resolution datasets.

The closest work to the present study is that of Benjedira
et al. [1] who presented a performance evaluation of Faster
R-CNN and YOLOv3 algorithms, on a reduced UAV imagery
dataset of cars. The present paper is an improvement over this
work from several aspects:

1) We use two datasets with different characteristics for
training and testing, whereas most previous works described
above tested their technique on a single proprietary dataset.

2) We tested various hyperparameter values (three different
input sizes for YOLOv3, two different feature extractors for
Faster R-CNN, various values of score threshold).

3) We conducted a more detailed comparison of the results,
by showing the AP at different values of IoU thresholds,
comparing the tradeoff between AP and inference speed, and
calculating several new metrics that have been suggested for
the COCO dataset [23].

III. T HEORETICAL OVERVIEW FASTER R-CNN AND

YOLOV3

Object detection is an old fundamental problem in image
processing, for which various approaches have been applied.
But since 2012, deep learning techniques markedly outper-
formed classical ones. While many deep learning algorithms
have been tested for this purpose in the literature, we chose to
focus on two recent cutting-edge neural network architectures,
namely Faster R-CNN and YOLOv3, since they were proved
to be successful in terms of accuracy and speed in a wide
variety of applications.

A. Faster R-CNN

R-CNN, as coined by [24] is a convolutional neural network
(CNN) combined with a region-proposal algorithm that hy-
pothesizes object locations. It initially extracts a �xed number
of regions (2000), by means of a selective search. Then it
merges similar regions together, using a greedy algorithm,
to obtain the candidate regions on which the object detec-
tion will be applied. Then, the same authors proposed an
enhanced algorithm called Fast R-CNN [25] by using a shared
convolutional feature map that the CNN generates directly
from the input image, and from which the regions of interest
(RoI) are extacted. Finally, Ren et al. [12] proposed Faster R-
CNN algorithm (Figure 1) that introduced a Region Proposal
Network (RPN), which is a dedicated fully convolutional
neural network that is trained end-to-end (Figure 2) to predict
both object bounding boxes and objectness scores in an almost
computationally cost-free manner (around 10ms per image).
This important algorithmic change thus replaced the selective
search algorithm which was very computationally expensive
and represented a bottleneck for previous object detection
deep learning systems. As a further optimization, the RPN
ultimately shares the convolutional features with the Fast R-
CNN detector, after being �rst independently trained. For
training the RPN, Faster R-CNN kept the multi-task loss
function already used in Fast R-CNN, which is de�ned as
follows:

L (pi ; t i) =
1

Ncls

X

i

L cls (pi ; p�
i) + �

1
N reg

X

i

p�
i L reg (t i ; t �

i)

Where:
� pi is the predicted probability that an anchor i in a mini-

batch is an object.
� p�

i equals 1 if the anchor is positive (having either
the highest IoU overlap with a ground-truth box, or an
overlap higher than 0.7), and 0 if it is negative (IoU
overlap lower than 0.3 with all ground-truth boxes).

� t i is the vector of coordinates of the predicted bounding
box.

� t �
i is the vector of coordinates of the ground truth box

corresponding to a positive anchor.
� L cls is the classi�cation log loss.
� L reg is the regression loss calculated using the robust loss

function, already used for Fast R-CNN [25].
� Ncls andN reg are normalization factors.

Fig. 1: Faster R-CNN basic architecture.

Fig. 2: Region Proposal Network (RPN) architecture.

� � is a blancing weight.

Faster R-CNN uses three scales and three aspect ratios for
every sliding position, and is translation invariant. Besides, it
conserves the aspect ratio of the original image while resizing
it, so that one of its dimension should be 1024 or 600.

B. YOLOv3

Contrary to R-CNN variants, YOLO [26], which is an
acronym for You Only Look Once, does not extract region
proposals, but processes the complete input image only once
using a fully convolutional neural network that predicts the
bounding boxes and their corresponding class probabilities,
based on the global context of the image. The �rst version
was published in 2016 (Figure 3). Later on in 2017, a second
version YOLOv2 [21] was proposed, which introduced batch
normalization, a retuning phase for the classi�er network, and
dimension clusters as anchor boxes for predicting bounding
boxes. Finally, in 2018, YOLOv3 [13] improved the detection
further by adopting several new features:

� Replacing mean squared error by cross-entropy for the
loss function. The cross-entropy loss function is calcu-
lated as follows:

�
MX

c=1

� x 2 clog(p(x 2 c))

Where M is the number of classes, c is the class index, x
is an observation,� x 2 c is an indicator function that equals
1 when c is the correct class for the observation x, and
log(p(x 2 c)) is the natural logarithm of the predicted
probability that observation x belongs to class c.

� Using logistic regression (instead of the softmax function)
for predicting an objectness score for every bounding box.

� Using a signi�cantly larger feature extractor network with
53 convolutional layers (Darknet-53 replacing Darknet-
19). It consists mainly of 3*3 and 1*1 �lters, with some
skip connections inspired from ResNet [27], as illustrated
in Figure 4.

Contrary to Faster R-CNN's approach, each ground-truth ob-
ject in YOLOv3 is assigned only one bounding box prior.
These successive variants of YOLO were developed with
the objective of obtaining a maximum mAP while keeping
the fastest execution which makes it suitable for real-time
applications. Special emphasis has been put on execution time
so that YOLOv3 is equivalent to state-of-the-art detection
algorithms like SSD [18] in terms of accuracy but with the
advantage of being three times faster [13]. Figure 5 depicts
the main stages of YOLOv3 algorithm when applied to the
car detection problem. Variable input sizes are allowed in
YOLO. We have tested three input sizes: 320x320, 416x416,
and 608x608. Figure 6 shows an example of the output of
YOLOv3 on a sample image of the PSU dataset.

To summarize, Table I compares the features and parameters
of Faster R-CNN and YOLOv3. While successive optimiza-
tions and mutual inspirations made the methodology of the two
algorithms relatively close, the main difference remains that
Faster R-CNN has two separate phases of region proposals and
classi�cation (although now with shared features), whereas
YOLO has always combined the classi�cation and bounding-
box regression processes.

Fig. 3: YOLO (version 1) network architecture.

Fig. 4: Darknet-53 architecture adopted by YOLOv3 (from [13]).

Fig. 5: Successive stages of the YOLOv3 model applied on car
detection.

Fig. 6: Example of the output of YOLOv3 algorithm, on an image of
the PSU dataset.

TABLE I: Theoretical comparison of Faster R-CNN and
YOLOv3

YOLOv3 Faster R-CNN

Phases
Concurrent
bounding-box regression,
and classi�cation.

RPN +
Fast R-CNN object detector.

Neural
network
type

Fully convolutional.
Fully convolutional
(RPN and 4
detection network).

Backbone
feature
extractor

Darknet-53
(53 convolutional layers).

VGG-16 or
Zeiler & Fergus (ZF).
Other feature extractors
can also be incorporated.

Location
detection

Anchor-based
(dimension clusters). Anchor-based.

Number of
anchors
boxes

Only one bounding-box
prior for each
ground-truth object.

3 scales and 3 aspect ratios,
yielding k = 9 anchors
at each sliding position.

IoU
thresholds One (at 0.5). Two (at 0.3 and 0.7).

Loss
function Binary cross-entropy loss.

Multi-task loss:
- Log loss for classi�cation.
- Smooth L1 for regression.

Input size
Three possible input sizes
(320x320, 416x416,
and 608x608).

- Conserves the aspect
ratio of the original image.
- Either the smallest
dimension is 600,
or the largest
dimension is 1024.

Momentum Default value: 0.9. Default value: 0.9.
Weight
decay Default value: 0.0005. Default value: 0.0005.

IV. EXPERIMENTAL COMPARISON BETWEENFASTER

R-CNN AND YOLOV3

A. Datasets

In order to obtain a robust comparison, we test Faster R-
CNN and YOLOv3 algorithms on two datasets of aerial images
showing completely different characteristics.

� The Stanford dataset [28] consists of a large-scale
collection of aerial images and videos of a university
campus containing various agents (cars, buses, bicycles,
golf carts, skateboarders and pedestrians). It was obtained
using a 3DR solo quadcopter (equipped with a 4k camera)
that �ew over various crowded campus scenes, at an
altitude of around 80 meters. It is originally composed
of eight scenes, but since we are exclusively interested

TABLE II: Stanford Dataset

Training set Testing set Total
Number of images 6872 1634 8506
Percentage 80.8% 19.2% 100%
Number of car instances 74,826 8,131 82,957

TABLE III: Image size in the Stanford dataset

Size Number of images
1409x1916 1634
1331x1962 1558
1330x1947 1557
1411x1980 1494
1311x1980 1490
1334x1982 295
1434x1982 142
1284x1759 138
1425x1973 128
1184x1759 70

in car detection, we chose only one scene (Nexus) that
contains the largest percentage of cars (29.51%). All other
scenes contain less than 5% of cars. Besides, we have
removed images that contain no cars. We noticed that
the ground-truth bounding boxes in some images contain
some mistakes (bounding boxes containing no objects)
and imprecisions (many bounding boxes are much larger
than the objects inside them), as can be seen in Figure 7,
but we used them as they are in order to assess the impact
of annotation errors on detection performance. In fact,
the Stanford Drone Dataset was not primarily designed
for object detection, but for trajectory forecasting and
tracking. Table II shows the number of images and
instances in the training and testing datasets. The images
in the selected scene have variable sizes, as shown in
Table III.

� The PSU datasetwas collected from two sources: an
open dataset of aerial images available on Github [29];
and our own images acquired after �ying a 3DR SOLO
drone equipped with a GoPro Hero 4 camera, in an
outdoor environment at PSU parking lot. The drone
recorded videos from which frames were extracted and
manually labeled. Since we are only interested in a single
class, images with no cars have been removed from the
dataset. Figure 8 shows a sample image of the PSU

TABLE IV: PSU Dataset

Training set Testing set Total
Number of images 218 52 270
Percentage 80.7% 19.3% 100%
Number of car instances 3,364 738 4,102

TABLE V: Image size in the PSU dataset

Size Number of images
1920x1080 172
1764x430 26
684x547 21
1284x377 20
1280x720 19
4000x2250 12

TABLE VI: Details of Experiments

Algorithm
Feature

Extractor Dataset
Average
input size

Number
of steps

1 Faster R-CNN Inception v2 Stanford 816*600 600,000
2 Faster R-CNN Inception v2 PSU 992*550 600,000
3 Faster R-CNN Resnet50 Stanford 816*600 600,000
4 Faster R-CNN Resnet50 PSU 992*550 600,000
5 YOLO v3 Darknet-53 Stanford 416*416 200,000
6 YOLO v3 Darknet-53 Stanford 608*608 200,000
7 YOLO v3 Darknet-53 Stanford 320*320 200,000
8 YOLO v3 Darknet-53 PSU 416*416 10,000
9 YOLO v3 Darknet-53 PSU 608*608 10,000
10 YOLO v3 Darknet-53 PSU 320*320 10,000

dataset, and Table IV shows the number of images and
instances in the training and testing datasets. The dataset
thus obtained contains images of different sizes, as shown
in Table V.

B. Hyperparameters

The main hyperparameter for the YOLO network is the in-
put size, for which we tested three values (320x320, 416x416,
and 608x608). On the other hand, the main hyperparameter for
Faster R-CNN is the feature extractor. We tested two different
feature extractors: Inception-v2 [30] (also called BN-inception
in the literature [31]) and Resnet50 [32]. These settings make
a total of 5 classi�ers that we trained and tested on the two
datasets described above, which amounts to 10 experiments
that we summarize in Table VI. We used the number of steps
necessary to the convergence of each algorithm con�guration
and kept the default values for the momentum (0.9), weight
decay (0.0005), and learning rate (initial rate of 0.001 for
YOLOv3, 0.0002 for Faster R-CNN with Inception-v2, and
0.0003 with Resnet50).

C. Results and Discussion

For the experimental setup, we used a workstation powered
by an Intel core i7-8700K (3.7 GHz) processor, with 32GB
RAM, and an NVIDIA GeForce 1080 (8 GB) GPU, running
on Linux.

The following metrics have been used to assess the results:
� IoU: Intersection over Union measuring the overlap be-

tween the predicted and the ground-truth bounding boxes.
� mAP: mean average precision, or simply AP, since we

are dealing with only one class. It corresponds to the area
under the precision vs. recall curve. AP was measured for
different values of IoU (0.5, 0.6, 0.7, 0.8 and 0.9).

� FPS: Number of frames per second, measuring the infer-
ence processing speed.

� Inference time (in millisecond per image): also measuring
the processing speed.

� ARmax=1, ARmax=10, ARmax=100: average recall, when con-
sidering a maximum number of detections per image,
averaged over all values of IoU speci�ed above.

1) Average Precision: When analyzing the results, it ap-
pears that both YOLOv3 and Faster R-CNN gave a much
better AP on PSU dataset than on Stanford dataset (Figure
9). This is mainly due to the small size of objects in the

TABLE VII: Average recall for a given maximum number of
detections, averaged over all values of IoU (05, 0.65, 0.8, and
0.9), on the Stanford Dataset

Network ARmax=1 ARmax=10 ARmax=100

Faster R-CNN (Inception-v2) 15.1% 17.1% 17.1%
Faster R-CNN (Resnet50) 16.4% 18.6% 18.6%
YOLOv3 (320x320) 9.04% 9.06% 9.06%
YOLOv3 (416x416) 17.13% 17.32% 17.32%
YOLOv3 (608x608) 17.24% 17.30% 17.30%

TABLE VIII: Average recall for a given maximum number of
detections, averaged over all values of IoU (05, 0.65, 0.8, and
0.9), on the PSU Dataset

Network ARmax=1 ARmax=10 ARmax=100

Faster R-CNN (Inception-v2) 6.2% 41.5% 70.8%
Faster R-CNN (Resnet50) 6.4% 41.5% 67.2%
YOLOv3 (320x320) 6.0% 42.2% 81.0%
YOLOv3 (416x416) 6.4% 44.1% 90.4%
YOLOv3 (608x608) 6.4% 44.5% 91.9%

Fig. 7: A sample image of the Stanford dataset, with ground-truth
bounding boxes showing some annotation errors and imprecisions.

Fig. 8: Example of the output of Faster R-CNN algorithm, on an
image of the PSU dataset.

Faster RCNN YOLOv3
0.0

0.2

0.4

0.6

0.8

A
ve

ra
ge

 A
P

0.704

0.189

0.906

0.138

Average AP

PSU Dataset

Stanford Dataset

Fig. 9: Comparison of the average AP between YOLOv3 and Faster
R-CNN.

latter dataset. Figure 10 con�rms this observation and shows
that both precision and recall are signi�cantly lower on the
Stanford dataset. However, Figure 11 shows that the number
of false negatives (non-detected cars) is much higher than
the number of false positives on the Stanford dataset (3
times higher for Faster R-CNN, and 42 times higher for
YOLOv3), and also much higher than the number of true
positives, which indicates that most cars go undetected in
the Stanford dataset due to their small size. Figure 12 and
Figure 13 respectively show examples of YOLOv3 and Faster
R-CNN misclassi�cations on a sample image of the Stanford
dataset. The false positives shown may be explained by the
presence of errors of annotations in the learning dataset, as
mentioned in section IV.A. Figure 14 and Figure 15 show
examples of YOLOv3 and Faster R-CNN misclassi�cations
(all of them false negatives) on a sample image of the PSU
dataset, respectively.

Figures 16 and 17 show the effect of the score threshold
on AP. While this effect is very reduced on Faster R-CNN
for both datasets, it shows a high dependency for YOLOv3
only on Stanford dataset, decreasing to almost 0 for a score
threshold of 0.9. This reveals the fact that YOLOv3 predictions
on Stanford dataset are much less con�dent. For all other
�gures shown here, the score threshold has been �xed to 0.5.

2) Average Recall: Table VII shows the average recall for a
given maximum number of detections, on the Stanford Dataset.
Faster R-CNN outperforms YOLOv3 in this metric except for
ARmax=1, with a slight better performance for Resnet50 feature
extractor over Inception-v2, and a marked inferior performance
for YOLOv3 with an input size of 320x320. Whereas the
input sizes 416x416 and 608x608 give similar performance,
which means that YOLOv3's medium input size is suf�cient
for Stanford dataset. The fact that the columns ARmax=10 and
ARmax=100 in this table are identical can be explained by the
fact that very few images in the Stanford testing dataset contain
more than 10 car instances.

Table VIII shows the same metrics on PSU dataset. While
all tested networks yield a close performance in terms of
ARmax=1 and ARmax=10, YOLOv3 is signi�cantly better in
terms of ARmax=100, with an increasing performance for larger
input sizes, which indicates that YOLOv3 is better at detecting
a high number of objects in a single image.

3) Effect of the dataset characteristics: YOLOv3 shows
the largest performance discrepancy between the two datasets.
While it has a very high recognition on the PSU dataset
(up to 0.96 of AP), its performance markedy decreases on
the Stanford dataset (Figure 9). This highlights a previously
known limitation of the YOLO algorithm when dealing with
small objects within the image. This is mainly due to the
spatial constraints imposed by the algorithm. On the other
hand, Faster R-CNN was designed to better deal with objects
of various scales and aspect ratios [12].

Nevertheless, the contrary can be observed in terms of
IoU (Figure 18). While the average IoU of Faster R-CNN
decreases by half between PSU dataset and Stanford dataset,
it decreases only by 4% times for YOLOv3. The imprecision
of the ground-truth bounding boxes in the Stanford dataset
partly explains the discrepancy between the two datasets in
terms of IoU. YOLOv3 however manages to keep relatively
precise predicted bounding boxes on both datasets.

Besides, Faster R-CNN shows a high disparity between the
two datasets in terms of processing speed (2.7 times faster on
Stanford dataset), mainly due to the difference in image input
size. In fact, we calculated that the average number of pixels
in input test images (after resizing) is 544K for PSU dataset,
and 265K for Stanford dataset.

4) Effect of the feature extractor: The effect of the feature
extractor for Faster R-CNN is very limited on the AP, except
for a high value of IoU threshold (0.9) on the Stanford dataset,
as can be seen in Figure 19 and Figure 20. Nevertheless, in
terms of inference speed, the Inception-v2 feature extractor
is signi�cantly faster than Resnet50 (Figures 21 and 22),
which is consistent with the �ndings of Bianco et al. [31]
who also showed that Inception-v2 (aka BN-inception) is less
computationally complex.

5) Effect of the input size: Figures 21 and 22 show
a signi�cant gain in YOLOv3's AP when moving from a
320x320 input size to 416x416, but the performance stagnates
when we move further to 608x608, which means that the
416x416 resolution is suf�cient to detect the objects of the two

Precision Recall
0.0

0.2

0.4

0.6

0.8

V
al

ue

0.97

0.71

PSU Dataset

Precision Recall

0.44

0.21

Stanford Dataset

Precision Recall

0.93 0.93

PSU Dataset

Precision Recall

0.87

0.15

Stanford Dataset

Algorithm / Dataset
Faster RCNN YOLOv3

Fig. 10: Precision and recall values for YOLOv3 and Faster R-CNN, on the two datasets.

Avg.FP Avg.TP Avg.FN
0

1000

2000

3000

4000

5000

6000

7000

V
al

ue

18
526

212

PSU Dataset

Avg.FP Avg.TP Avg.FN

2119
1690

6441

Stanford Dataset

Avg.FP Avg.TP Avg.FN

52

684

54

PSU Dataset

Avg.FP Avg.TP Avg.FN

167

1184

6947
Stanford Dataset

Algorithm / DatasetFaster RCNN YOLO v3

Fig. 11: Average number of false positives (FP), false negatives (FN), and true positives (TP) for YOLOv3 and Faster R-CNN, on the two
datasets.

datasets. On another hand, the same �gures show that the input
size has a signi�cant impact on the inference time, as expected,
since a larger input size generates a greater number of network
parameters, and hence a larger number of operations. In fact,
the inference processing speed of YOLOv3 largely depends
on the input size (from 12 FPS for 608*608 up to 23 FPS
for 320*320), with little variation between the two datasets
(Figure 23).

6) Main lessons learned: Figures 21 and 22 summarize
the main results of this comparison study. They compare
the trade-off between AP and inference time for YOLOv3
(with 3 different imput sizes) and Faster R-CNN (with two
different feature extractors), on the PSU and Stanford datasets
respectively. It can be observed that while Faster R-CNN (with
Inception v2 as feature extractor) gave the best trade-off in

terms of AP and inference speed on the Stanford dataset,
YOLOv3 (with input size 320*320) presented the best trade-
off on the PSU dataset. This lays emphasis on the fact that
none of the two algorithms outperforms the other in all cases,
and that the best trade-off between AP and inference time
depends on the characteristics of the dataset (object size,
resolution, quality of annotation, etc.).

Finally, it should be noted that although the present case
study was restricted to only car objects, its conclusions can
be easily generalized to any similar types of objects in aerial
images, since we did not use any speci�c feature of cars.

V. CONCLUSION

In this study, we conducted a thorough experimental
comparison of the two leading object detection algorithms

Fig. 12: Example of YOLOv3's output on an image of the Stanford
dataset, showing a true positive.

(YOLOv3 and Faster R-CNN) on two UAV imaging databases
that present speci�c challenges (tiny objects, high number of
objects per image, and ambiguous features due to the angle
of view) compared to classical datasets of ground images like
ImageNet [33] or COCO [23]. The two databases used for
performance evaluation present very different characteristics,
which makes the comparison more robust. Furthermore, the
performance of the two algorithms was assessed using several
metrics (mAP, IoU, FPS, ARmax=1, ARmax=10, ARmax=100,...)
in order to uncover their strengths and weaknesses. One of
the main conclusions that we can draw from this comparative
study is that the performance of these two algorithms largely
depends on the characteristics of the dataset. In fact, while
Faster R-CNN (with Inception v2 as feature extractor) gave
the best trade-off in terms of AP and inference speed on
the Stanford dataset, YOLOv3 (with input size 320*320)
presented the best trade-off on the PSU dataset.

ACKNOWLEDGMENTS

This work is supported by the Robotics and Internet of
Things Lab of Prince Sultan University. We also thank Mr.
Bilel Ben Jdira and Mr. Taha Khursheed for working on the
prior conference version of this paper.

Fig. 13: Example of Faster R-CNN's output on an image of the
Stanford dataset, showing a false positive.

Fig. 14: Example of YOLOv3's output on an image of the PSU
dataset, showing a few false negatives (non detected cars).

REFERENCES

[1] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car
detection using unmanned aerial vehicles: Comparison between faster
r-cnn and yolov3,” in2019 1st International Conference on Unmanned
Vehicle Systems-Oman (UVS), pp. 1–6, IEEE, 2019.

[2] A. Koubaa and B. Qureshi, “Dronetrack: Cloud-based real-time object
tracking using unmanned aerial vehicles over the internet,”IEEE Access,
vol. 6, pp. 13810–13824, 2018.

[3] E. T. Alotaibi, S. S. Alqefari, and A. Koubaa, “Lsar: Multi-uav collabo-
ration for search and rescue missions,”IEEE Access, vol. 7, pp. 55817–
55832, 2019.

Fig. 15:Example of Faster R-CNN misclassi�cations on an image of
the PSU dataset, showing several false negatives (non detected cars).

Fig. 16: AP for different values of score threshold, for the two
algorithms on PSU dataset (IoU threshold �xed at 0.6).

[4] X. Xi, Z. Yu, Z. Zhan, C. Tian, and Y. Yin, “Multi-task cost-sensitive-
convolutional neural network for car detection,”IEEE Access, pp. 1–1,
2019.

[5] X. Xi, Z. Yu, Z. Zhan, Y. Yin, and C. Tian, “Multi-task cost-sensitive-
convolutional neural network for car detection,”IEEE Access, vol. 7,
pp. 98061–98068, 2019.

[6] I. evo and A. Avramovi, “Convolutional neural network based automatic
object detection on aerial images,”IEEE Geoscience and Remote Sens-
ing Letters, vol. 13, pp. 740–744, May 2016.

[7] K. S. Ochoa and Z. Guo, “A framework for the management of agri-
cultural resources with automated aerial imagery detection,”Computers
and Electronics in Agriculture, vol. 162, pp. 53 – 69, 2019.

[8] M. Kampffmeyer, A. Salberg, and R. Jenssen, “Semantic segmentation
of small objects and modeling of uncertainty in urban remote sens-
ing images using deep convolutional neural networks,” in2016 IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 680–688, June 2016.

[9] S. M. Azimi, P. Fischer, M. Krner, and P. Reinartz, “Aerial lanenet:
Lane-marking semantic segmentation in aerial imagery using wavelet-
enhanced cost-sensitive symmetric fully convolutional neural networks,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57,
pp. 2920–2938, May 2019.

[10] L. Mou and X. X. Zhu, “Vehicle instance segmentation from aerial image
and video using a multitask learning residual fully convolutional net-
work,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56,

Fig. 17: AP for different values of score threshold, for the two
algorithms on Stanford dataset (IoU threshold �xed at 0.6).

Fig. 18: Average IoU value for YOLOv3 and Faster R-CNN, on the
two datasets.

pp. 6699–6711, Nov 2018.
[11] B. Benjdira, Y. Bazi, A. Koubaa, and K. Ouni, “Unsupervised domain

adaptation using generative adversarial networks for semantic segmen-
tation of aerial images,”Remote Sensing, vol. 11, no. 11, 2019.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with,”IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, 2017.

[13] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

[14] X. Y. Chen, S. M. Xiang, C. L. Liu, and C. H. Pan, “Vehicle Detection
in Satellite Images by Hybrid Deep Convolutional Neural Networks,”
Ieee Geoscience and Remote Sensing Letters, 2014.

[15] N. Ammour, H. Alhichri, Y. Bazi, B. Benjdira, N. Alajlan, and M. Zuair,

Fig. 19: Average Precision at different IoU threshold values of the
tested algorithms on the PSU dataset.

Fig. 20: Average Precision at different IoU threshold values of the
tested algorithms on the Stanford dataset.

“Deep Learning Approach for Car Detection in UAV Imagery,”Remote
Sensing, vol. 9, p. 312, mar 2017.

[16] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,”International Conference on Learning
Representations (ICRL), 2015.

[17] C. E. Kim, M. M. D. Oghaz, J. Fajtl, V. Argyriou, and P. Remagnino, “A
comparison of embedded deep learning methods for person detection,”
arXiv preprint arXiv:1812.03451, 2018.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” inLecture Notes
in Computer Science (including subseries Lecture Notes in Arti�cial
Intelligence and Lecture Notes in Bioinformatics), 2016.

[19] Benjamin Kellenberger, Diego Marcos, Sylvain Lobry, Devis Tuia, “Half

Fig. 21: Comparison of the trade-off between AP and inference time
for YOLOv3 (with 3 different imput sizes) and Faster R-CNN (with
two different feature extractors), on the PSU dataset.

Fig. 22: Comparison of the trade-off between AP and inference time
for YOLOv3 (with 3 different input sizes) and Faster R-CNN (with
two different feature extractors), on the Stanford dataset.

a percent of labels is enough: Ef�cient animal detection in uav imagery
using deep cnns and active learning,”In press at IEEE Transactions on
Geoscience and Remote Sensing (TGRS), pp. 1–1, 7 2019.

[20] B. Hardjono, H. Tjahyadi, M. G. A. Rhizma, A. E. Widjaja, R. Kon-
dorura, and A. M. Halim, “Vehicle counting quantitative comparison
using background subtraction, viola jones and deep learning methods,” in
2018 IEEE 9th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pp. 556–562, Nov 2018.

[21] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pp. 6517–6525, 2017.

[22] H. Tayara, K. Gil Soo, and K. T. Chong, “Vehicle detection and counting
in high-resolution aerial images using convolutional regression neural
network,” IEEE Access, vol. 6, pp. 2220–2230, 2018.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision, pp. 740–755,
Springer, 2014.

Fig. 23: Inference speed measured in Frames per Second (FPS), for each of the tested algorithms.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 580–587, 2014.

[25] R. Girshick, “Fast R-CNN,” inProceedings of the IEEE International
Conference on Computer Vision, 2015.

[26] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Uni�ed, real-time object detection,” in2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pp. 779–788, 2016.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,”Arxiv.Org, 2015.

[28] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning
social etiquette: Human trajectory understanding in crowded scenes,” in
European conference on computer vision, pp. 549–565, Springer, 2016.

[29] “Aerial-car-dataset, available online on: https://github.com/jekhor/aerial-
cars-dataset, accessed on (16-10-2018).”

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,”CoRR,
vol. abs/1502.03167, 2015.

[31] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,”IEEE
Access, vol. 6, pp. 64270–64277, 2018.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” inProceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

	I INTRODUCTION
	II RELATED WORKS
	III Theoretical Overview Faster R-CNN and YOLOv3
	III-A Faster R-CNN
	III-B YOLOv3

	IV Experimental comparison between Faster R-CNN and YOLOv3
	IV-A Datasets
	IV-B Hyperparameters
	IV-C Results and Discussion
	IV-C1 Average Precision
	IV-C2 Average Recall
	IV-C3 Effect of the dataset characteristics
	IV-C4 Effect of the feature extractor
	IV-C5 Effect of the input size
	IV-C6 Main lessons learned

	V Conclusion

