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Abstract 
The use of multicores is becoming widespread inthe field of embedded systems, many of which have real-time 
requirements. Hence, ensuring that real-time applications meet their timing constraints is a pre-requisite before 
deploying them on these systems. This necessitates the consideration of the impact of the contention due to shared low-
level hardware resources like the front-side bus (FSB) on the Worst-CaseExecution Time (WCET) of the tasks. 
Towards this aim, this paper proposes a method to determine an upper bound on the number of bus requests that tasks 
executing on a core can generate in a given time interval. We show that our method yields tighter upper bounds in 
comparison with the state of-the-art. We then apply our method to compute the extra contention delay incurred by tasks, 
when they are co-scheduled on different cores and access the shared main memory, using a shared bus, access to which 
is granted using a round-robin arbitration (RR) protocol. 
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Abstract—The use of multicores is becoming widespread in
the field of embedded systems, many of which have real-time
requirements. Hence, ensuring that real-time applications meet
their timing constraints is a pre-requisite before deploying them
on these systems. This necessitates the consideration of the
impact of the contention due to shared low-level hardware
resources like the front-side bus (FSB) on the Worst-Case
Execution Time (WCET) of the tasks. Towards this aim, this
paper proposes a method to determine an upper bound on the
number of bus requests that tasks executing on a core can
generate in a given time interval. We show that our method
yields tighter upper bounds in comparison with the state-
of-the-art. We then apply our method to compute the extra
contention delay incurred by tasks, when they are co-scheduled
on different cores and access the shared main memory, using
a shared bus, access to which is granted using a round-robin
arbitration (RR) protocol.

I. INTRODUCTION AND MOTIVATION

Embedded systems are increasing at a rapid rate and so
is the percentage of processors designed for such systems.
Almost 99% of the processors that are manufactured today
are deployed in the embedded market. Apart from having
specific functional requirements, many of the applications in
embedded systems have stringent timing requirements. For
systems exposing such timing requirements (called “real-
time” embedded systems), researchers have proposed many
scheduling algorithms over the last decades, together with
associated “schedulability analysis”, that enable certification
agencies to verify at design time whether the system will
always fulfill its timing requirements at run-time. The rigor-
ousness of the certification process varies according to the
“Safety Integrity Level” (SIL) of the task under scrutiny,
where every task of the system is assigned a SIL reflecting
its level of “criticality”.

The desired “wish-list” of embedded applications across
the market segments is a computing platform that can
provide high performance with reduced SWaP (size, weight
and power) properties and multicore systems have naturally
emerged as a promising solution. When deployed on the
same multicore system, tasks of different SILs can co-exist
and share some low-level hardware resources such as cores,
cache subsystems, communication buses and main memory.
It is of chief importance to understand that, unless these tasks
of different SILs are shown to be sufficiently independent,
the standards require that the hardware and software are
developed at the highest SIL among the SILs of all these
tasks, which is very expensive. This requirement is clearly

stated in the automotive domain (req. 7.4.2.3 of ISO 26262-
4 [1]), as well as in the international standard (req. 7.6.2.10
of IEC 61508 [2]). This is why substantial efforts are put
to (i) render the tasks of a same SIL as independent and
isolated as possible from the tasks with different SILs and
(ii) upper-bound the impact that the execution of the tasks
of a same SIL may have on the execution behavior of the
tasks of different SILs, with the objective of certifying each
subset of tasks at its own SIL level.

In order to limit the risk of failure of tasks with high SILs,
systems must be designed to isolate the execution of the
tasks, both in the spatial and temporal domains, and if total
isolation cannot be achieved then designers must be able to
upper-bound the impact that tasks executions have on each
other. To cater to these requirements, international standards
typically favor simple and safe designs such as partitioned
scheduling, partitioned caches1, time-triggered architectures
and cyclic scheduling algorithms (CSA) as recommended
in [2] (Annex F, page 103).

Unfortunately by design constraints, complete isolation of
tasks by partitioning at the hardware level has its limit. A
simple manifestation of this is the range of multicore designs
(from different vendors) in which the cores are typically
connected to a shared off-chip main memory by a single
shared communication channel (which does not conform
to the “total-isolation” paradigm). In the Intel L7400 and
E8n00 series processors for example, this communication
channel is referred to as Front-Side-Bus or FSB. In the
Infineon Tricore architecture, the bus subsystem is dupli-
cated enabling the cores to communicate to the memories
in parallel, without conflicts, unless the cores access the
same memory subsystem (in which case the same problem
persists). Hereafter, we assume that the cores communicate
with the main memory over a single shared FSB.

As the traffic on the shared FSB increases, the bus gets
saturated and thus becomes a bottleneck causing tasks to
stall during their execution. The difference between the
processor speed and the time to access the main memory is
high, leading to a non-negligible increase in the WCET of
the tasks assigned to these cores. Since the contention for the
FSB cannot be totally avoided, the impact of the generated
traffic on the task executions has to be analyzed and upper-

1[1] page 14: “To achieve independence and to avoid propagation of
failure, the system design can implement the partitioning of functions and
components”. [3] page 12: “Partitioning can be used for fault containment to
avoid cascading failures.



bounded so that its influence on the temporal isolation can
be controlled and taken into account in the certification
process2. Key properties like the WCET and the response-
time of the tasks are dependent on the traffic generated by
the co-scheduled tasks on the other cores since they share
the same FSB. It is therefore challenging to ensure at design
time that tasks meet their timing requirements. Although
there has been considerable research in the uniprocessor
domain towards analyzing the WCET of tasks [4], these
methods cannot be applied as is and need to be augmented
by further analyses to factor-in the extra contention delay
due to the shared low-level hardware resources.

Contribution of this paper. The contribution of this paper is
twofold. First, we propose a method to compute an upper-
bound PCREp(t) on the number of requests that can be
generated on a given core p in any time window of length
t. Then, for a given task τi which executes for at most
Ci time units on a given core p′, we use the computed
functions PCREp(Ci) of the other cores p to upper-bound
the increased execution time of task τi due to the contention
between the cores for the shared FSB. In our method we
assume that the access to the FSB is granted using a Round-
Robin protocol (as in Intel processors [5]).

Organization of the paper. Section II describes the compu-
tational model; Section III describes our method to obtain an
upper-bound PCREp(t) on the number of bus requests gen-
erated by a given core p in a given interval of time t; Based
on this technique, Section IV proposes an improved method
to compute a tighter WCET considering RR arbitration for
a given task; This is extended to a system-wide analysis in
Section V; We present the related work in Section VI and
the paper concludes in Section VII.

II. SYSTEM MODEL

Platform model. The system is composed of a set of m
processor cores denoted by π1, π2, . . . ,πm and we assume
that no cache memory is shared between them (as in
the MPC8641D processor from Freescale) or all levels of
shared cache, if present, are disabled or partitioned. All the
cores share the FSB in order to access the shared main
memory. To focus on the requests which are generated by
cache misses, we consider that the hardware prefetching
mechanism is disabled in the processor: By doing so, we
reduce the non-determinism caused by arbitrary speculative
prefetches which consume bus bandwidth and can block
important requests from being served. We consider that
there is no pipelining of requests in the memory controller
or any support for split transactions. To re-iterate, having
temporal and spatial isolation between subsystems is a key
requirement for embedded systems to ensure composability
and timing predictability and hence the above assumptions

2[2] (Annex F): “Where a resource (such as a peripheral device) is shared
between elements, the design shall ensure that the elements will not function
incorrectly because the shared resource is locked by another element. The
time required to access a shared resource shall be taken into account in
determining temporal non-interference.”

are motivated by the problem domain itself and thereby not
restrictive.

Task model. We consider a sporadic and constrained-
deadline task model in which a task τi is characterized
by four parameters: Ciso

i , Ti, BRiso
i and Di ≤ Ti. The

parameter Ciso
i denotes an upper-bound on the execution

time of task τi when it executes in isolation, i.e., with no
contention on the FSB. Ti denotes the minimum inter-arrival
time between two consecutive jobs from τi. Di denotes the
deadline of the task: every job released by the task τi has
to execute for at most Ciso

i time units within Di time units
from its release in order to meet its deadline. The parameter
Ciso

i can be computed by well-known techniques in WCET
analysis [4]. The current study focuses on determining Cmix

i ,
which denotes an upper-bound on the execution time when
τi executes with contention on the FSB, i.e., when the co-
scheduled tasks are running on the other cores. Clearly, the
value of Cmix

i is not an inherent property of τi and depends
on the traffic on the FSB and hence on the memory request
pattern of the co-scheduled tasks on the other cores during its
execution. BRiso

i (short for Bus Requests) denotes an upper-
bound on the number of bus requests that a job of τi can
generate when it executes non-preemptively in isolation3. We
assume that this parameter can be derived by static analysis
or measurements [6] or hybrid techniques.

Scheduler specification. We consider a partitioned scheme
of task assignment in which tasks are assigned to cores at
design time and are not allowed to migrate from one core to
another at run-time (non-migrative). We denote by π̄(i) the
set of m−1 cores to which task τi is not assigned (called the
“interfering cores” of task τi). We consider a non-preemptive
scheduler and hence do not deal with cache related and task
switching overheads. We assume that the number of tasks
in the system is known at system design-time and make
the non work-conserving assumption as follows: whenever
a task completes earlier than its WCET (say on CPU πp), the
scheduler idles the core πp up to the theoretical WCET of
the task. This assumption is made to ensure that the number
of bus-requests within a time window computed at design
time, is not higher at run-time due to early completion of
a task and the subsequent early execution of the next tasks.
The effect of jitter which is inherent to any timing based
design is not the focus of this paper and thus will not be
handled explicitly in the theory that follows.

III. DETERMINATION AND ANALYSIS OF PCREp(t)

This section describes a method to calculate the Per-
Core-Request-Evaluator function PCREp(t). Recall that this
function gives an upper-bound on the number of requests
generated by the set of tasks assigned to core πp in any
time interval of length t.

3Note that BRiso
i

may not correspond to execution path that results
in Ciso

i
, but assuming both estimates together ensures that the worst-case

behavior of the task τi is captured.





compute an upper bound on number of requests generated
by the task τi in the time window [Ciso

i −t, Ciso
i ] (the end

part of its execution) and [0, t] (the beginning part of its
execution), respectively. The detailed computation of these
upper-bounds is presented in [6].

Step 2 (lines 6–20). Depending on the scheduling al-
gorithm employed, the body portion of the task contains
different combinations of jobs. However, irrespective of the
scheduling algorithm, we know that each task τi can admit
at most njobsi = #b len/Ti$ complete executions of jobs
within a body portion of length b len. The aim of this step
is to select the tasks that will generate the maximum number
of requests within the body portion. The problem is therefore
analogous to the bounded knapsack problem in which the
capacity of the knapsack can be equated to the size of the
body portion (i.e., b len); Each object to be packed is a
job (of task τi) for which the weight is given by its WCET
Ciso

i and the value is given by the maximum number of
requests, BRiso

i , that it can generate. We first transform the
bounded knapsack problem to an instance of a 0/1 knapsack
problem by creating njobsi jobs for each task τi and store
them in a list (lines 9–10). The algorithm then sorts the job
list in the descending order of the BRiso

i / Ciso
i values (line

11). Then, it employs a greedy approach: it successively
pops the job at the front of the list and packs it within the
body window until the capacity of the knapsack (i.e., the
size of the body window) is not exceeded (lines 12-14)5.
As the jobs are packed, the algorithm accordingly updates
the breq[b len] array which holds the maximum number
of requests and filled cap, the currently occupied capacity.
If the last-popped job cannot fit entirely in the remaining
capacity, then the algorithm allows a fraction of this job to
fit in the remaining capacity and adds up to breq[b len]
the corresponding number of requests, assuming that the
requests are uniformly generated over the job’s execution
(reflected in line 18). This fractional assignment transforms
the problem to a fractional knapsack problem and is a source
of pessimism of our approach but ensures safe upper bounds
on the number of requests. It also violates our description
of the body portion in which only complete executions are
permitted and can lead to a final schedule containing two
partial executions of tasks (one at the end of the body portion
and one in the carry out), but given that the objective is
not to draw up the optimal schedule (which requires the
knowledge of the scheduling algorithm), we believe that this
is an acceptable solution.

Step 3 (lines 21–25). The algorithm considers all possible
combinations of length for the carry in and carry out por-
tions (in len and out len) and assigns the remaining length
to b len (line 23), such that in len + out len + b len = t.
We use the pre-computed number of requests stored in arrays
inreq, outreq and breq to compute the final upper bound

5The method primarily aims to compute the maximum requests, and not
to generate the exact schedule leading to it. Hence placing tasks in order
τ1,τ2,τ1 will lead to the same number of requests as the schedule τ1,τ1,τ2

on the maximum number of requests generated in the time
window of length t.

Special case (lines 27–28). If the duration t of the time
window is less than the execution time of a task, then this
task could have started its execution before the beginning of
the window and finish its execution outside the window. In
such a case, the maximum number of requests may be found
within the task or across 2 successive partial executions of
the task. The method inscan(i, t) internally scans the task for
the maximum number of requests and records the maximum
in the variable maxrq1.

B. Sources of over-estimation in Algorithm PCREp(t)

As seen in Figure 2(b), Algorithm 1 may schedule differ-
ent tasks in the carry in and carry out portions compared
to the actual “worst-case schedule” (WCS) (Figure 2(a))
and the generated schedule may allow for a longer body
portion. A task which is part of the carry in portion in the
WCS may be disallowed (by scheduling constraints) in the
body portion. But since Algo. 1 does not record which tasks
have been scheduled in the carry in and out portions, the
jobs of these tasks can be re-considered while analyzing the
body portion to maximize the number of generated requests,
hence leading to a first over-approximation. The second
over-approximation is attributed to the number of requests
computed for the fractional assignment of the last packed
task in the body portion of the window and the assumption
that its requests are assumed to be uniformly distributed
over its execution. In short, the pessimism arises from a)
the over-approximation made while computing the number
of requests in the body and b) the fact that the maximum
number of requests generated in each of the three portions
is computed regardless of which tasks are scheduled in the
other portions, hence allowing potentially more jobs of the
same task to execute within the t time units.

C. Complexity of Algorithm PCREp(t)

As explained in Section III, the size t of the window is the
execution time of the analyzed task; That is, the maximum
value of t is given by Cmax = maxτi∈τ Ciso

i . Let n be
the number of tasks deployed on processor πp. Therefore,
assuming that the value of headi(k) and taili(k) is given
for all tasks τi and durations k, it can be seen that the time-
complexity of Step 1, 2 and 3 are n × Cmax, C2

max and
Cmax×n× log n, respectively, leading to a total complexity
of O(max(n×Cmax, C2

max, Cmax ×n× log n)) for Algo. 1.
Since Cmax is typically greater than the number n of tasks
in practice, the algorithm runs with a pseudo-polynomial
time-complexity of O(C2

max).

D. Algorithm PCREp(t) provides a safe upper-bound

Theorem 1: Algorithm 1 computes a safe upper-bound on
the number of requests.

Proof: Let SM(t) denote the schedule of the tasks
leading to the maximum number of requests in a time
window of length t. For example, suppose that SM(t) is the



schedule depicted in Figure 2(a). Since Algo. 1 considers all
combinations of feasible carry in and carry out portions,
it eventually covers the case leading to SM(t). Therefore,
Algo. 1 finds the same number of requests generated in
these portions as in SM(t). In the body portion, we know
that SM(t) contains only complete executions. We relax
this requirement to include a fractional execution at the
end and this enables the problem to be expressed as an
instance of a fractional bounded knapsack problem for which
the greedy approach is known to be optimal [8] and is
guaranteed to provide an upper-bound to the corresponding
integer knapsack problem. The algorithm finds the maximum
over all feasible carry in and carry out and body portions
and thereby is guaranteed to find an upper-bound which is
safe and is greater or equal to the solution resulting from
the schedule SM(t).

E. Monotonically Increasing Property

We now introduce a basic property of the function
PCREp(t) which can be formally expressed as:

Property 1 (Monotonically Increasing Property):
Given core πp and durations t1 and t2, we have
t1 ≤ t2 ⇔ PCREp(t1) ≤ PCREp(t2).

Proof: Let maxrequests1 and maxrequests2 be the
maximum number of requests returned by PCREp(t1) and
PCREp(t2) (computed as per Algo. 1), respectively. Let
tin1 and tout

1 be the lengths of the carry in and carry out
portions in the solution returned by PCREp(t1). Since all
possible lengths for the carry in and carry out portions
are considered by Algo. 1, the computation of PCREp(t2)
considers these lengths tin1 and tout

1 as well. Therefore, two
cases may arise: (i) maxrequests2 is obtained for these
lengths of carry in and carry out, which results in a larger
body portion (i.e., t2 − tin1 − tout

1 ≥ t1 − tin1 − tout
1 ) and

thus a greater number of requests within the body since the
set of jobs that can execute within t2 − tin1 − tout

1 ⊇ the
set of jobs that can execute within t1 − tin1 − tout

1 , hence
maxrequests2 ≥ maxrequests1, or (ii) maxrequests2 is
obtained for different lengths of the carry in and carry out,
which means that Algo. 1 found other values of carry in and
carry out for which maxrequests2 is even greater (hence
maxrequests2 ≥ maxrequests1 holds as well).

F. Comparison against the approach in [6]

In order to compare the PCRE(·) function, with the
approach in [6] we generated a set of 25 tasks varying
the WCET (from 10 to 500 ms), periods (from 4 to 10
times the WCET) and randomly generated memory traces
and assigned the tasks randomly to cores. To have a fair
comparison with [6], we ensured that the cumulative utiliza-
tions on tasks assigned to the core is less than one. Figure 3
shows the comparison of the upper-bound on the number of
requests generated over time for core 1 to which 7 tasks were
assigned. As seen in Figure 3, our method (legend: “New
Approach”) provides tighter upper-bounds on the number
of bus requests in comparison with the approach in [6]
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Figure 3. Comparison with the approach in [6]

(legend “SOA”). The graph also illustrates the monotonically
increasing property of the PCRE() function.

G. PCRE() for periodic tasks with static schedules.

The problem of computing the function PCREp(t) is
inherently simpler for a system in which tasks are periodic
and the scheduler enforces a fixed ordering of task execution
(static scheduling) that repeats itself (cyclic scheduling or
CSA) every H time units, where H is the period of the
schedule. In this approach also, we make the non work-
conserving assumption, i.e., if tasks do not execute up to
their WCET, the core must be idled up to the WCET. In
contrast to the previously proposed approach of finding the
combination of tasks that leads to the maximum number
of bus requests within a time window of length t, we first
draw up the entire schedule of the tasks from time 0 to
time H + t. Since the task set and the order of task arrivals
is known, this schedule can be constructed at design time.
Then, this schedule is scanned by sliding a time window
of length t from time 0 to time H + t. The extra t time
units beyond the period of the schedule must be considered,
as the maximum number of bus requests may be generated
across two schedule periods. As the interval is scanned, the
maximum number of requests observed so far within t time
units is recorded and is finally returned by the PCREp(t)
function.

IV. WCET ANALYSIS: BASIC RR AND IMPROVED RR

As mentioned in Sec. II, we assume that the contention
over the FSB is resolved based on a RR arbitration mecha-
nism, in which all the cores are treated equally. The order
in which the cores acquire the ownership of the bus is fixed
apriori. When more than one core tries to access the bus, ties
are resolved based on the fixed-ownership ordering. Given
the WCET Ciso

i of a task τi in isolation, here we compute the
extra execution time that should be added to Ciso

i in order
to take into account the delay due to contention on the FSB.
We introduce the notation TRiso which denotes an upper-
bound on the time to serve a memory request when a task
runs in isolation. TRiso includes the time for arbitration over
the FSB, the time spent in the memory controller and finally
the time for the memory subsystem to serve the request and
the bi-directional communication delay (for the request and
response).



A. Basic Round Robin equation

Given a RR bus arbitration mechanism, an upper-bound
Cmix

i on the WCET of each task τi considering bus con-
tention is given by

Cmix
i

def
= Ciso

i + BRiso
i ×(m − 1) × TRiso (1)

Since the access to the shared FSB is granted using the RR
protocol, each request generated by τi can be blocked by at
most 1 request issued by the tasks running on each of the
other (m−1) cores, hence creating an extra delay of at most
BRiso

i ×(m− 1)×TRiso time units. Equation (1) implicitly
assumes that the tasks running on each of the (m − 1)
interfering cores will generate BRiso

i requests during the
execution of task τi, which might not be true as tasks running
on these cores may generate lesser number of requests.
Hence the above equation may lead to pessimistic bounds.
We tackle this over-pessimism by providing a tighter upper-
bound in the following subsection.

B. Improved Round Robin equation

Lemma 1: Considering that a task τi is executing with
contention on the FSB, an upper-bound Cmix

i on its execu-
tion time is given by the first solution (i.e., Ck

i = Ck−1
i ) at

which the following fixed-point iteration converges:

Ck
i

def
= Ciso

i +
∑

πp∈π̄(i)

min(BRiso
i ,PCREp(C

k−1
i )) × TRiso

(2)

with C0
i

def
= Ciso

i . The fixed point iteration terminates when
Ck

i = Ck−1
i , at which, the value of Cmix

i is given by the
corresponding Ck

i .
Proof: Equation (2) recursively computes a new value

of Ci at each iteration k ≥ 1, and incorporates the extra
delay incurred by task τi due to the requests generated by
the tasks running on the interfering cores, i.e., the cores
πp ∈ π̄(i). By definition, we know that τi generates at
most BRiso

i requests during its execution. For a RR bus
arbitration algorithm, each of the interfering cores can delay
every request issued by τi by at most 1 request and hence
can delay the execution of τi by at most BRiso

i ×TRiso time
units. Hence, at each iteration k, Equation (2) considers for
each core πp ∈ π̄(i) the minimum between (i) the number
of requests that πp might actually generate in the (currently
computed) execution time of τi (i.e. PCREp(C

k−1
i )) and

(ii) the maximum number of requests that can be used by
πp to block τi’s execution (i.e., BRiso

i ).
In the next subsection, we discuss some properties of this

improved RR equation.

C. Properties of the Improved RR equation

Lemma 2: In Equation (2), for any iteration k ≥ 1, the
value of Ck

i monotonically increases, i.e Ck
i ≥ Ck−1

i

Proof: The proof is by induction. Initially, C0
i = Ciso

i
and it can be inferred from Equation (2) that C1

i ≥ C0
i .

The induction step consists in showing that, if Ck
i ≥ Ck−1

i

then Ck+1
i ≥ Ck

i . According to Equation (2), the expression
Ck+1

i ≥ Ck
i can be rewritten as

Ciso
i +

∑
πp∈π̄(i) min(BRiso

i ,PCREp(Ck
i )) × TRiso

≥ Ciso
i +

∑
πp∈π̄(i) min(BRiso

i ,PCREp(C
k−1
i )) × TRiso

By subtracting/dividing the common terms from both sides
we have:

∑
πp∈π̄(i) min(BRiso

i ,PCREp(Ck
i )) ≥

∑
πp∈π̄(i) min(BRiso

i ,PCREp(C
k−1
i )) (3)

From Property 1, for any πp we have PCREp(Ck
i ) ≥

PCREp(C
k−1
i ). Therefore, only three cases may arise:

1) BRiso
i ≥ PCREp(Ck

i ) ≥ PCREp(C
k−1
i )

2) PCREp(Ck
i ) ≥ BRiso

i ≥ PCREp(C
k−1
i )

3) PCREp(Ck
i ) ≥ PCREp(C

k−1
i ) ≥ BRiso

i

and it can be easily shown for all of them that

min(BRiso
i ,PCREp(C

k
i )) ≥ min(BRiso

i ,PCREp(C
k−1
i ))

which provides Inequality (3) and thereby, establishes the
proof.

Lemma 3: Equation (2) always terminates in at most
(m−1)×BRiso

i iterations and may provide a tighter upper-
bound than Equation (1).

Proof: The proof is a direct consequence of Lemma 2.
The highest value of Ck

i is reached when ∀πp ∈ π̄(i) it
holds that PCREp(Ck

i ) ≥ BRiso
i . In this case, Equation (2)

becomes Ck
i

def
= Ciso

i +
∑

πp∈π̄(i) BRiso
i ×TRiso which cor-

responds to Equation (1). In order to maximize the number
of iterations to reach this highest value of Ck

i , we have
to consider that at each iteration k, there exists only one
core π# ∈ π̄(i) such that min(BRiso

i ,PCRE#(C
k−1
i )) =

min(BRiso
i ,PCRE#(C

k−2
i ))+1 and for all cores πp ∈ π̄(i)

with p += #, it is the case that min(BRiso
i ,PCREp(C

k−1
i )) =

min(BRiso
i ,PCREp(C

k−2
i )). In this scenario, we get Ck

i =
Ck−1

i + 1 at each iteration k and it takes (m − 1) × BRiso
i

iterations to reach the highest value of Ck
i given above.

Finally, if Equation (2) converges to a solution Ck
i = Ck−1

i

before this extreme value, then the resulting Cmix
i (where

Cmix
i = Ck

i ) provides a tighter upper-bound than the Cmix
i

computed by Equation (1).

D. Comparison: Basic RR vs Improved RR

The resulting WCET of a task (with contention) is sensi-
tive to co-scheduled task’s Ciso

i , Ti), memory profile besides
core assignments and the scheduling algorithm and cannot
be summarized without exhaustive tests. However, the aim
here is to validate and compare our approach and hence we
provide a “proof of concept” with a small set of tasks. We
generated 16 random tasks with different memory profiles
(generated randomly) and assigned them to 4 different cores
randomly. We used Algo. 1 to compute the PCRE() function
in Eq. (2) to compute the WCET. As seen in Fig. 4, for all
the tasks, our method performs equally or better (in most
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Figure 4. WCET comparison: improved approach vs. basic RR

Figure 5. Our system-wide analysis is a non-cyclic process.

cases) against the basic RR arbitration. The tightness of
the improved WCET varies from (0 to 41%). There is no
improvement using our approach for task 2 and 13, which
can be explained as follows: These tasks have a very low
request density (BRiso

i / Ciso
x ) ratio) of around 2 and a low

execution time. Hence their WCET increases marginally due
to the contention on the bus and there is little scope for
improvement. For tasks 1, 5, 6, 8, 16 the request densities
varied from 25 to 30 (high for this example). For such
tasks, the impact of contention is high and the tightness
varied from (25-41%). The rest of the tasks showed moderate
improvements (5 to 18%) with the new approach.

V. SYSTEM WIDE ANALYSIS

In this section, we describe the process of applying the
method described earlier to all the tasks in the system.
Consider an example system with 2 cores {π1, π2} and
4 tasks {τ1, τ2, τ3, τ4}. Let tasks τ1 and τ2 be assigned
to π1 and tasks τ3 and τ4 be assigned to π2. We calculate
the functions PCRE1(t) and PCRE2(t) using the method
described in Section III (left box in Fig. 5). Tasks assigned to
core π1 are subject to interferences from tasks co-scheduled
on π2 and vice versa. Therefore, we compute Cmix

1 and Cmix
2

against PCRE2(t) and Cmix
3 and Cmix

4 against PCRE1(t),
using the method introduced in Section IV (right box in
Fig. 5). At this point, it may seem that the functions
PCRE1(t) and PCRE2(t) can be refined using as input,
the newly computed Cmix

1 ,Cmix
2 ,Cmix

3 and Cmix
4 . If so,

the process may re-iterate and a natural question is “when
should the process stop iterating?”. We answer this question
based on the following Lemma 4.

Lemma 4: For every core p, the function PCREp(t)
monotonically decreases as the WCET of the tasks running
on core πp is inflated due to the contention for the FSB.

Proof: The proof is a consequence of the fact that
incorporating the interference from other tasks into the
WCET estimate of a given task τi does not increase the
number of requests that τi can potentially generate in any
time window of any length t. That is, the number of requests
that are inherently generated by each task τj assigned to πp

does not increase as its WCET inflates. In the computation
of PCREp(t), the only side-effect of inflating the WCET
of each task τi (without modifying its maximum number of
request BRiso

i ) is that potentially lesser jobs of τi can execute
within the body portion and lesser requests can potentially
be generated within a given length of carry in and carry out
portions. Hence the lemma.

As proven in Lemma 4, re-iterating the process of comput-
ing PCREp(t) (for all cores πp) and Cmix

i (for all tasks τi)
alternately will decrease the value returned by the function
PCREp(t) at each iteration, hence ultimately providing an
unsafe upper-bound for the WCETs. As a result, our analysis
is a one-step process, i.e., it is not cyclic. This also means
that the given model facilitates the determination of the value
of Cmix

i for every task τi at design-time itself.

VI. RELATED WORK

The problem of analyzing the impact of shared hardware
resource contention on the WCET of the tasks is of sig-
nificant importance and the research community has taken
initial steps to address this problem. Time Division Multiple
Access (TDMA) based schemes have been proposed in
[9], [10], [11] and [12] and [13]. The methods approach the
problem in different ways: precomputing application specific
bus schedules, or analyzing buses with the assumption of
separate buses for memories and data, restricting accesses to
the bus in specific phases of task execution, division of the
tasks into superblocks which execute in specific slots and
using FlexRay like approaches to have fixed and reserved
slots. These methods therefore require a change in either
the application behavior or modification in the hardware. An
analysis of a work conserving bus is presented in [6] and
[7] and we have shown that they can result in overestimated
WCETs. Also of interest are the works of [14] based on
timed automata which is restricted to instruction accesses
and the work of [15] which again assumes division of tasks
into superblocks which run in pre-assigned time slots.

It is important to cite the works related to the contention
due to shared caches which is another major problem and has
been addressed in [16],[17],[18],[19]. Alternative ideas have
been proposed that circumvent the shared cache contention
by spatial isolation. Cache Partitioning and cache locking
techniques have been proposed [20],[21] and [22] to ensure
that dedicated cache space is available to critical real-time
tasks. As seen above, many of the approaches favor a
non work-conserving TDMA bus. We present some views
regarding this in the following subsection.



A. TDMA and the Non work-conserving assumption

The TDMA bus arbitration is predictable and composable,
allowing tasks to be analyzed in isolation, making it a real-
time friendly protocol. But it is non work-conserving and
hence the bus is idle when the core owning a time-slot does
not have any requests to be served. Although it is favored
in the research community, existing COTS-based systems
(which are designed for high performance) do not employ
it. Therefore in this paper, we assume that the FSB uses a
work conserving and predictable (known upper bounds) RR
bus arbitration algorithm.

The approach in our paper shifts the TDMA-like approach
from the bus-level to the task-level through the non work-
conserving assumption. With the TDMA approach at the
bus-level, reclaiming the unused time-slots is difficult as
most of the COTS-based systems do not allow for repro-
gramming the bus arbitration rule. On the other hand, a non
work-conserving scheduler enables an easier reclamation of
the slack – scheduling rules can be modified to achieve this:
for example, if a task τi completes δ units before its WCET
then the scheduler could start executing any pending task
τj such that Cj ≤ δ and BRiso

j ≤ taili(δ). In this manner,
the maximum number of requests generated at run-time in
any time window of length t is guaranteed not to exceed the
one computed at design time using PCREp(t) (for all cores
p). A significant amount of research work on slack time
reclamation techniques exists and we will further investigate
how to relax our non work-conserving assumption as part
of the future work.

VII. CONCLUSIONS

In this paper, we highlighted the need for isolation among
components and the need to determine an upper-bound on
the interference. An analysis was presented to compute an
upper-bound on the number of bus requests generated by
a set of tasks running on a given cores considering (i)
a static schedule (ii) no assumptions on the scheduling
algorithm. We showed that the proposed method provides
tighter bounds than the existing methods in literature. This
method was used to further compute a tighter bound on
the WCET against the WCET computed by the basic RR
mechanism.
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