

Architecture)and)Optimal)Configuration)of)a)
Real6Time)Multi6Channel)Memory)Controller)

)

Technical Report

CISTER-TR-130107

Version: 1.0

Date: 01-15-2013

Manil Dev Gomony

Benny Åkesson

Kees Goossens

Technical Report CISTER-TR-130107 Architecture and Optimal Configuration of

 a Real-Time Multi-Channel Memory Controller

© CISTER Research Unit
www.cister.isep.ipp.pt

1)
!

Architecture and Optimal Configuration of a Real-Time Multi-Channel Memory
Controller
Manil Dev Gomony, Benny Åkesson, Kees Goossens

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
Optimal utilization of a multi-channel memory, such as Wide IO DRAM, as shared memory in multi-processor
platforms depends on the mapping of memory clients to the memory channels, the granularity at which the
memory requests are interleaved in each channel, and the bandwidth and memory capacity allocated to each
memory client in each channel. Firm real-time applications in such platforms impose strict requirements on
shared memory bandwidth and latency, which must be guaranteed at design-time to reduce verification effort.
However, there is currently no real-time memory controller for multi-channel memories, and there is no
methodology to optimally configure multi-channel memories in real-time systems.

This paper has four key contributions: (1) A real-time multi-channel memory controller architecture with a new
programmable Multi-Channel Interleaver unit. (2) A novel method for logical-to-physical address translation that
enables interleaving memory requests across multiple memory channels at different granularities. (3) An optimal
algorithm based on an Integer Linear Program (ILP) formulation to map memory clients to memory channels
considering their communication dependencies, and to configure the memory controller for minimum bandwidth
utilization. (4) We experimentally evaluate the run-time of the algorithm and show that an optimal solution can be
found within 15 minutes for realistically sized problems. We also demonstrate configuring a multi-channel Wide IO
DRAM in a High-Definition (HD) video and graphics processing system to emphasize the effectiveness of our
approach.

Architecture and Optimal Configuration of a
Real-Time Multi-Channel Memory Controller

Manil Dev Gomony∗, Benny Akesson†, and Kees Goossens∗
∗Eindhoven University of Technology, The Netherlands

†CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal

Abstract—Optimal utilization of a multi-channel memory, such
as Wide IO DRAM, as shared memory in multi-processor
platforms depends on the mapping of memory clients to the
memory channels, the granularity at which the memory requests
are interleaved in each channel, and the bandwidth and memory
capacity allocated to each memory client in each channel. Firm
real-time applications in such platforms impose strict require-
ments on shared memory bandwidth and latency, which must be
guaranteed at design-time to reduce verification effort. However,
there is currently no real-time memory controller for multi-
channel memories, and there is no methodology to optimally
configure multi-channel memories in real-time systems.
This paper has four key contributions: (1) A real-time

multi-channel memory controller architecture with a new pro-
grammable Multi-Channel Interleaver unit. (2) A novel method
for logical-to-physical address translation that enables interleav-
ing memory requests across multiple memory channels at differ-
ent granularities. (3) An optimal algorithm based on an Integer
Linear Program (ILP) formulation to map memory clients to
memory channels considering their communication dependencies,
and to configure the memory controller for minimum bandwidth
utilization. (4) We experimentally evaluate the run-time of the
algorithm and show that an optimal solution can be found within
15 minutes for realistically sized problems. We also demonstrate
configuring a multi-channel Wide IO DRAM in a High-Definition
(HD) video and graphics processing system to emphasize the
effectiveness of our approach.

I. INTRODUCTION

In heterogeneous multi-processor platforms, main memory
(off-chip DRAM) is typically a shared resource for cost
reasons and to enable communication between the process-
ing elements. Such platforms run several applications with
diverse real-time requirements [1], and moreover, the firm
real-time applications impose strict worst-case requirements
on main memory performance in terms of bandwidth and/or
latency [2] [3]. These requirements must be guaranteed at
design-time to reduce the verification effort, which is made
possible using real-time memory controllers [4]–[6] that bound
the memory access time by employing predictable arbiters,
such as TDM and Round-Robin. Real-time memory controllers
can be analyzed using resource abstractions, such as the
Latency-Rate (LR) server model [7].
Memories with multiple physical channels and wide inter-

faces, such as Wide IO DRAMs [8], are essential to meet
the main memory power/bandwidth demands of future real-
time systems [9]. In multi-channel memories, the bandwidth
allocated to firm real-time memory clients to meet their
latency requirements depends on the mapping of clients to the
memory channels and the granularity at which the memory
requests are interleaved in each channel, i.e., the interleaving
granularity. The allocated bandwidth must be minimal so that

the slack bandwidth available can be allocated to the soft
real-time clients in the system, which improves their average-
case performance. However, for optimal memory bandwidth
utilization, there is currently no methodology to map memory
clients to memory channels and to determine the interleaving
granularity, and the bandwidth and memory capacity allocated
to each memory client in each channel. Also, there is no real-
time memory controller architecture for multi-channel memo-
ries that can be programmed with the optimal configuration.
This paper has four contributions: (1) A real-time multi-

channel memory controller architecture, shown in Figure 1,
with a new programmable Multi-Channel Interleaver and each
channel controlled by an existing real-time memory controller.
(2) A novel logical-to-physical address translation method that
enables interleaving of a memory request in different sizes
across any number of memory channels. (3) An optimal algo-
rithm based on an Integer Linear Program (ILP) formulation
to map memory clients to memory channels considering their
communication dependencies, and to configure the memory
controller for minimum bandwidth utilization. (4) We experi-
mentally evaluate the run-time of the optimal algorithm, and
we also demonstrate configuring a multi-channel Wide IO
DRAM for a High-Definition (HD) video and graphics pro-
cessing system using our approach.

&KDQQHO�
&RQWUROOHU��

&KDQQHO�
&RQWUROOHU��0XOWL�&KDQQHO�,QWHUOHDYHU

0HPRU\�
&KDQQHO��

0HPRU\�
&KDQQHO��

$UELWHU��

$UELWHU��

6HTXHQFH�*HQ��

6HTXHQFH�*HQ��

6HTXHQFH�*HQ��

$WRPL]HU��

$WRPL]HU��

$WRPL]HU��

&6��

&6��

&6��

�

�

�

�

�

0
XO
WL�
VW
DJ
H�

&
UR
VV
ED

U

0HPRU\�
&OLHQW��

0HPRU\�
&OLHQW��

0HPRU\�
&OLHQW��

�

�

�

�
�

�

�

Fig. 1. High-level view of real-time multi-channel memory controller
architecture showing three memory clients and two memory channels. The
Atomizer chops a memory request in to smaller sub-units and the Channel
Selector (CS) routes these sub-units to the different memory channels accord-
ing to the configuration in the Sequence Generators.

In the remainder of this paper, Section II reviews the
related work, Section III gives an introduction to state-of-the-
art real-time memory controllers and the LR server model. In
Section IV, we introduce our proposed multi-channel memory
controller architecture, including a method for logical-to-
physical address translation. We present the formulation of
our optimal algorithm in Section V, and evaluate its run-978-3-9815370-0-0/DATE13/ c©2013 EDAA

time in Section VI. Section VII then presents a case study of
configuring a Wide IO DRAM in an HD video and graphics
processing system, and finally we conclude in Section VIII.

II. RELATED WORK

Among the previous related works, some exploit the benefits
of interleaving data across multiple memory channels. In [10]
and [11], data is interleaved across the memory channels
such that all channels are accessed by a single transaction
to improve average-case performance. Similarly in [12], the
traffic within a logical address region is split across multiple
memory channels to improve average-case performance by
reducing average latency. Dynamic mechanisms for efficient
data placement to reduce average memory access latency in
a system comprising multiple memory controllers is proposed
in [13]. However, all of them focus on the improvement of
average-case performance, and do not consider providing guar-
antees on bandwidth and latency to firm real-time applications.
The rest of the previous related works focus on memory

controller architectures and logical-to-physical address trans-
lation for multi-channel memories. In [14], a parallel-access
mechanism is proposed in which two separate DDR Finite
State Machines (FSM) are used to control 8 memory channels
of a 3D-DRAM. The proposed architecture in [15] has every
processing element allocated to its own local DRAM channel
with a memory controller, and a custom crossbar is used
to route incoming traffic from other processing elements.
The multi-channel NAND flash memory controller in [16]
uses a dynamic mapping strategy by using a mapping table
that stores the logical-to-physical address translation, and a
crossbar switch is used for routing traffic across multiple
memory channels. Also, the multi-channel memory controller
architecture proposed in [17] routes an incoming request
to any of the memory channels using a crossbar. In [18],
an architecture is presented for fine-grained DRAM access
of memory chips in a DIMM by grouping them in logical
sub-ranks of different interface widths and accessing them
concurrently. However, neither of the aforementioned memory
controller architectures are predictable or perform logical-
to-physical address translation for requests interleaved with
different interleaving granularities. Even though there are real-
time memory controllers that provides bounds on memory
performance [4]–[6], they do not consider multi-channel mem-
ories and interleaving data across multiple channels.
To summarize, presently there is no real-time multi-channel

memory controller and no logical-to-physical address transla-
tion method for multi-channel memories. Also, there is no
structured methodology to determine the optimal mapping
and number of memory channels to which a memory request
needs to be interleaved, the interleaving granularity, and the
bandwidth allocated in each channel, for optimal memory
bandwidth utilization in real-time systems.

III. BACKGROUND

This work relies on existing single-channel real-time mem-
ory controllers to bound the memory response time, and uses
the LR server model as the shared resource abstraction to
derive bounds on service provided by predictable arbiters.
Hence, we introduce them in this section.

A. Real-time memory controllers
State-of-the-art real-time memory controllers [4]–[6] bound

the execution time of a memory transaction by fixing the
memory access parameters, such as burst size and number
of read/write commands, at design-time. These parameters
define the access granularity of the memory controller. When
the access granularity is fixed for a memory device, the
worst-case execution time of a read/write transaction can be
computed from the worst-case timing behavior provided by the
memory data-sheet. Also, the worst-case bandwidth offered by
a memory for a fixed access granularity can be computed [19].
In this paper, we refer to a memory transaction of a fixed
size as a service unit, and the time taken to serve a service
unit is service cycle. The service cycle for a read and a
write transaction can be different and depends on the memory
device.

B. LR servers
Latency-Rate (LR) servers are a general model to capture

the worst-case behavior of various scheduling algorithms or
arbiters in a simple unified manner [7], which helps to formally
verify the service provided by a shared resource. There are
many arbiters belonging to the class of LR servers, such
as TDM, Round-Robin and its variants, and priority based
arbiters with a rate-regulator. The LR abstraction enables
modeling of many different arbiters, and is compatible with
a variety of formal analysis frameworks, such as data-flow or
network calculus.
Using the LR abstraction, a lower linear bound on the

service provided by an arbiter to a client or requestor can
be derived. In this paper, we use the term requestor to denote
a memory client that requests access to a memory resource
with certain bandwidth and latency requirements. Figure 2
shows example service curves of a LR server. The requested
service by a requestor at a time consists of one or more service
units. The minimum service provided to the requestor is the
service guaranteed by the LR abstraction, which depends on
two parameters namely, the service latencyΘ and the allocated
rate ρ′ (bandwidth).

��1�व͛͘͘

a1a

$
FF

XP
XO

DW
HG

�
VH

UY
LF

H�
XQ

WLV

6HUYLFH�F\FOHV

5HTXHVWHG�VHUYLFH

3URYLGHG�VHUYLFH

0LQLPXP�SURYLGHG�
VHUYLFH

व͛
aύa

Fig. 2. Example service curves of a LR server showing service latency and
completion latency.

The service latency is the maximum time taken to schedule
a request at the head of a requestor’s request queue because
of interfering clients and depends on the choice of arbiter
and its configuration, e.g. allocated rate and/or priority [19].
After a request consisting of N service units is scheduled to
be served, it receives service at the allocated rate ρ′ and it
hence takes N/ρ′ service cycles to finish serving the request,
called the completion latency of the requestor. The worst-case
latency Lmax (in service cycles) of a requestor is then the
sum of the service latency and the completion latency, given
by Lmax = Θ+ !N/ρ′".
This work considers a TDM arbiter as an example of a

LR server. For a TDM arbiter with a frame size f and

consecutively allocated slots, the worst-case latency of a
requestor with an allocated rate of ρ′ is given by Equation (1).
The service latency is f × (1−ρ′) because of the interference
from other requestors that occupy the remaining fraction of
TDM slots. Both service latency and completion latency are
rounded up to make the bound conservative.

Lmax = !f × (1− ρ′)"+

⌈

N

ρ′

⌉

(1)

IV. MULTI-CHANNEL MEMORY CONTROLLER FOR
REAL-TIME SYSTEMS

We start this section with an analysis of the impact of
interleaving data across multiple memory channels on the
service provided by arbiters belonging to the class of LR
servers, which we refer to as LR arbiters. Then, we present
our proposed real-time multi-channel memory controller archi-
tecture, followed by a method for logical-to-physical address
translation.

A. LR servers and multi-channel memories
When the memory request of a requestor is interleaved

across multiple memory channels with each channel consisting
of an LR arbiter, the worst-case latency is the maximum of
the worst-case latencies among all the memory channels to
which the request is interleaved. The worst-case latency of a
requestor with a required rate (bandwidth) ρ′ increases when
the number of channels to which its request is interleaved
increases. This can be observed in Equation (2), which shows
the worst-case latency for a TDM arbiter in each memory
channel, assuming the required rate ρ′ and the total number
of service units N in a memory request are distributed evenly
to the number of channels to which the request is interleaved
nCh. It can be seen that the service latency increases with
nCh, however, the completion latency remains constant. This
conclusion is valid for all other LR arbiters as well and is
evident from their worst-case latency equations [19]. Hence,
when a requestor is interleaved across multiple memory chan-
nels, the latency requirement by the requestor might not be
satisfied with its required rate ρ′, and a higher rate than the
required rate, i.e., over-allocation of rate might be required
depending on its latency requirement.

Lmax′

=

⌈

f × (1−
ρ′

nCh
)

⌉

+

⌈

N/nCh

ρ′/nCh

⌉

(2)

In a real-time system consisting of several memory re-
questors with diverse bandwidth/latency requirements, mem-
ory capacity requirements and request sizes, the optimal
mapping of requestors to the memory channels for minimal
bandwidth utilization results in different degrees of inter-
leaving across the memory channels for each requestor. This
implies that the existing methods, in which all requestors are
interleaved in the same fashion to the memory channels are
not always optimal. Hence, we need a programmable memory
controller architecture that can be configured to interleave
memory requests of a requestor to any number of available
memory channels at different granularities.

B. Real-time multi-channel memory controller architecture
The proposed multi-channel memory controller, shown in

Figure 1, consists of a Multi-Channel Interleaver, and a
Channel Controller in each memory channel. The Channel

Controller can be any state-of-the-art real-time memory con-
troller [4]–[6] employing any LR arbiter. We use a Multi-
stage Crossbar that connects each requestor to every Channel
Controller. This architecture enables all possible connections
of a requestor to any of the memory channels with any level
of interleaving, and different rate allocated to each requestor
in each channel. The Multi-Channel Interleaver consists of
an Atomizer and a Channel Selector (CS) and a Sequence
Generator connected to each memory requestor. The Multi-
Channel Interleaver has separate request and and response
paths. In the request path, the Atomizer chops an incoming
memory request into a number of service units, and the CS
routes the service units to the different memory channels
according to the configuration in the Sequence Generator. The
response from the different memory channels arrive at different
times. Hence, the incoming service units are buffered in the
receive path until all service units from the different channels
have arrived, and then the response is reconstructed by the
Atomizer and sent back to the requestor. The CS also performs
a logical-to-physical address translation for a requestor in each
memory channel.

C. Logical-to-physical address translation
Consider an example scenario consisting of a requestor R1

with a capacity requirement of 512 B (we consider a small
capacity requirement for ease of presentation) and request size
of 256 B interleaved across two memory channels, Channel 1
and Channel 2. Figure 3a and 3b illustrate the logical
and physical views of the memory, respectively. Assuming a
service unit size of 64 B, every request from the requestor
consists of 4 service units. Figure 3b shows the physical
memory map of the two memory channels, each having an
address space of 1 GB. Two service units (SU1, SU2) of
request Q1 are allocated to Channel 1, and the remaining two
(SU3, SU4) are allocated to Channel 2. Request Q2 is also
shown in the figure and is allocated in the same fashion.

�[��������

68�
68�
68�
68�

68�
68�
68�
68�

68�
68�
68�
68�

68�
68�
68�
68�

�[��������

�[��������

�[��������

�[�))))))(

5
HT
XH
VW
RU
�5
�

�[��������

�[��������

�[��������

�[��))))))

�[��������

�[��))))))

4
�

�D��/RJLFDO�YLHZ �E��3K\VLFDO�YLHZ

4
�

%DVHGGUSS

%DVH$GGU&K�

%DVH$GGU&K�

4
�

4
�

4
�

4
�

8VHG�UHJLRQ

&KDQQHO��

8VHG�UHJLRQ

8QXVHG�UHJLRQ
8QXVHG�UHJLRQ

8QXVHG�UHJLRQ

&KDQQHO��

Fig. 3. Example memory map showing requestor R1 allocated to two memory
channels, with every request Q1 and Q2 interleaved across the two channels.

As shown in Figure 3b, the service units of a memory
request can end up in different physical addresses in each
channel when interleaved across multiple memory channels.
This is because the optimal mapping of requestors to the
channels results in each channel mapped with different num-
ber of requestors with different memory capacities allocated.
However, the application programmer must be able to view the
entire memory space (including all memory channels) as a sin-
gle continuous logical address space, as in Figure 3a, to avoid

explicit data partitioning and data movement while writing the
application program. Hence, to access an incoming memory
request, say Q2 starting at logical address 0x10010200, the
address needs to be translated to the corresponding physical
addresses 0x10000180 and 0x10000080 in Channel 1 and
Channel 2, respectively. To reduce complexity in the logical-
to-physical address conversion and to keep the lookup table
size to a minimum, we propose a method to compute the
logical address in each channel, expressed by Equation (3).

ReqAddrCh = ((ReqAddrApp −BaseAddrApp)

% (log2(Request size/NChn
))) +BaseAddrChn

(3)

The logical address offset between the requested logical
address, ReqAddrApp, and the logical base address of the
application, BaseAddrApp, is computed first, and then added
to the physical base address of the corresponding channel,
BaseAddrChn

. When a request is interleaved across multiple
channels, the logical address offset is divided by the ratio
of service units allocated to each memory channel. This is
because the memory capacity allocated to a requestor in each
channel is proportional to the number of service units of its
request allocated to the channel. For a fast and simple hard-
ware implementation, division is performed using a logical
shift operation. We hence consider the number of service
units allocated to each channel in the order of power of two,
assuming request sizes to be a power of two.
The logical base address of an application, BaseAddrApp,

is generated by the application compiler/linker, while the
number of service units allocated to each channel, NChn

, is
decided by an optimal algorithm for requestor mapping and
allocation presented in Section V. We generate the base ad-
dresses for all the requestors mapped to each of the channels,
BaseAddrCh, based on the memory capacity allocated to
them. In the next section, we present an optimal method to
map memory requestors to memory channels and configure
the multi-channel memory controller.

V. OPTIMAL METHOD FOR REQUESTOR MAPPING AND
CONFIGURATION IN MULTI-CHANNEL MEMORIES

Given that we have presented a multi-channel memory
controller architecture that can be programmed with an optimal
configuration, we proceed with our method to determine the
optimal configuration. First, we present a formal definition
of our system and then our generic optimization problem
formulation, which applies to any arbiter belonging to the class
of LR servers.

A. System definition
The set of memory channels is defined as c ∈ C, with each

channel having a total memory capacity (in Bytes) given by
Bch(c). The access granularity (in Bytes) of a channel c ∈ C
is given by AG(c), with a service cycle (in ns) given by
SCns(c). For each memory channel c ∈ C, the worst-case
bandwidth (in MB/s) can be computed for a fixed access
granularity AG(c) (e.g. see [19]), and is given by bch(c).
Consider a set of requestors denoted as r ∈ R, with a worst-

case latency requirement (in ns) given by Lns(r), minimum
bandwidth requirement (in MB/s) given by bmin(r), and a total
memory capacity requirement (in Bytes) given by Breq(r).
The worst-case latency requirement of a requestor (in service
cycles) in each channel c ∈ C is given by Lmax(r), and
is defined as ∀r ∈ R : Lmax

c (r) = (Lns(r)/SCns(c)). The

request size (in Bytes) of requests from a requestor r ∈ R
is given by s(r), and we assume a constant request size for
all requests from a single requestor. The number of service
units in each request is given by q(r) and is defined as
∀r ∈ R : q(r) = !s(r)/AG". Each requestor r ∈ R has an
associated group number given by g(r), which represents the
communication dependency with other requestors, or in other
words, requestors that need to communicate through shared
memory are assigned the same group number since they need
to be able to access the same set of channels. In the next
section, we define the optimization problem statement and
formulate it as an ILP.

B. Optimization problem formulation
We define our optimization problem as follows: Find the

mapping of requestors to the memory channels, and the
allocation of number of service units, Nc, and a rate, ρ′c, for
each requestor r ∈ R in each memory channel c ∈ C, such
that the sum of rates allocated to all requestors is minimized.
The optimization problem is defined as

Minimize:
∑

c∈C

∑

r∈R

ρ′c(r) (4)

Such that the following seven constraints are satisfied:
Constraint 1: The worst-case latency of each requestor

r ∈ R after allocation Lmax′

(r) must be less than or equal
to its worst-case latency requirement Lmax(r), and is defined
as ∀c ∈ C, r ∈ R : Lmax′

(r) ≤ Lmax(r). The service units
of every request of a requestor are allocated across the
memory channels such that each requestor has a (Θ, ρ) per
channel. The worst-case latency of a requestor r ∈ R in
each channel c ∈ C is then given by Lmax′

c (r), and is de-
fined as ∀c ∈ C, r ∈ R : Lmax′

c (r) = Θc(r) + !Nc(r)/ρ′c(r)",
where Θc(r) is the service latency of a requestor in
each channel. The worst-case latency of a requestor
r ∈ R is then the maximum of the worst-case laten-
cies among all the memory channels, which is defined
as ∀c ∈ C, r ∈ R : Lmax′

(r) = maxc∈C Lmax′

c (r). The non-
linear max function is made linear to enable formulation as an
ILP, and Constraint 1 is then defined as

∀c ∈ C, r ∈ R : Lmax(r)− Lmax′

c (r) ≥ 0 (5)

Constraint 2: The sum of rates allocated to all requestors
in each memory channel c ∈ C should not be greater than 1,
i.e., 100%, defined as

∀c ∈ C :
∑

r∈R

ρ′c(r) ≤ 1 (6)

Constraint 3: The sum of rates allocated to each requestor
r ∈ R across all memory channels should be greater or
equal to its minimum required rate, defined by Equation (7).
The minimum rate required by a requestor is the ratio of its
minimum bandwidth requirement bmin(r) and the worst-case
bandwidth offered by a memory channel bch(r).

∀r ∈ R :
∑

c∈C

ρ′c(r) ≥
bmin(r)

bch(r)
(7)

Constraint 4: The sum of service units Nc(r) of each
requestor r ∈ R allocated across all memory channels must
be equal to the total number of service units q(r) in every
request from the requestor, defined as

∀r ∈ R :
∑

c∈C

Nc(r) = q(r) (8)

Constraint 5: The number of service units Nc(r) of each
requestor r ∈ R allocated to each memory channel c ∈ C
must be a power of two. To formulate this as a linear
constraint, we define two decision variables bc(r) and N ′

c(r)
for each requestor in every channel. bc(r) is a binary decision
variable defined by Equation (9) and N ′

c(r) is in the range
0.. log2[q(r)]. Constraint 5 is then defined by Equation (10)

bc(r) =

{

1, if Nc(r) > 0.
0, otherwise.

(9)

∀c ∈ C, r ∈ R : Nc(r) = 2N
′

c(r) × bc(r) (10)

Constraint 6: Each two communicating requestors, i.e., with
the same group number g(r) must be allocated to the same
set of memory channels, and the number of service units of
the requestors allocated in each channel must be proportional
for data alignment. Two communicating requestors share the
same physical address space for data sharing and they may
have different request sizes. The number of service units of
the two requestors allocated in each memory channel must be
proportional, such that by dividing the logical address offset
with the ratio of request size to the number of service units,
as in Equation (3), results in the same physical address for
both the requestors. For two communicating requestors ri and
rj , the constraint is defined by Equation (11). The decision
variable N ′

c(r) is the same one defined under Constraint 5.

∀c ∈ C, r ∈ R, g(ri) = g(rj) :

Nc(ri)× 2N
′

c(rj) = Nc(rj)× 2N
′

c(ri) (11)

Constraint 7: The total memory capacity of all requestors in
each channel c ∈ C must be less than or equal to the channel
capacity Bch(c), defined as

∀c ∈ C :
∑

r∈R

Nc(r)

q(r)
×Breq(r) ≤ Bch(c) (12)

Our generic optimization problem formulation can be used
to model an optimization problem for any LR arbiter by using
the worst-case latency derivation of the corresponding arbiter
in Constraint 1. In the next section, we demonstrate modeling
the optimization problem for a TDM arbiter and evaluate its
run-time in an optimization tool.

VI. OPTIMIZATION FOR A TDM ARBITER

We modeled the optimization problem in the CPLEX op-
timization tool [20]. First, we substituted Equation (1) in
Constraint 1. Since decision variables in the denominator
of constraints are not supported by the tool, we multiply
the equation by ρ′, as it is in the denominator in Equa-
tion (1). The constraint hence becomes quadratic as expressed
by Equation (13), making it a quadratic constrained integer
problem. The two ceiling functions had to be removed to
make the problem linear, and hence the service latency and the
completion latency are approximated as (f × (1− ρ′c(r)) + 1
and Nc(r)/ρ′c(r) + 1, respectively, to make the computation
conservative.

∀c ∈ C, r ∈ R :

f × ρ′c(r)
2 − ρ′c(r)× (f − Lmax(r) + 2)−Nc(r) ≥ 0 (13)

A. Run-time evaluation
We used a synthetic use-case generator that generates dif-

ferent classes of memory requestors to evaluate the run-time
of the optimization problem in the tool. We considered three
different classes of memory requestors: (1) Requestors with
low average latency requirements (LL), such as LCD con-
trollers and CPUs [21]. (2) Requestors with medium latency
requirements (ML), such as H.264 video decoders [10]. (3)
Requestors with relaxed latencies (RL), which includes a wide
variety of requestors with low and high bandwidth require-
ments, e.g., graphics processing [21], input processors [3], etc.
The bandwidth, latency and request size ranges of different
traffic classes are shown in Table I.

TABLE I
TRAFFIC CLASS SPECIFICATIONS

Traffic Lmax(µs) bmin(MB/s) s(B)
LL 1-15 500-1000 64-1024
ML 15-30 150-500 64-1024
RL 30-100 1-1000 64-1024

Because of the large design space of the optimization
problem (17 variables and 15 constraints for each requestor),
the optimization tool takes significant amount of time to search
through the entire design space. However, the time taken by
the tool to find the first optimal solution is much less. This
is observed from the solutions found by the tool at different
time instants until it terminates normally. Since the tool does
not automatically stop upon finding first optimal solution, we
experimentally determined the maximum time it took to find
the first solution for up to 100 seeds of use-cases. The results
are shown in Table II for different number of requestors. It can
be seen that the search can be terminated with a conservative
time limit of 15 minutes in a worst-case scenario consisting
of up to 100 requestors.

TABLE II
WORST-CASE RUN-TIME TO FIND OPTIMAL ALLOCATION

Channels Requestors First optimal Complete run

4
25 8.9 secs 3 hrs
50 2.2 mins 10 hrs
100 13.4 mins 2 days

VII. CASE STUDY: CONFIGURING A WIDE IO DRAM IN A
HD VIDEO AND GRAPHICS PROCESSING SYSTEM

In this section, we present the memory subsystem require-
ments for an HD video and graphics processing system, and
then show configuring a 4-channel Wide IO SDR 200 MHz
DRAM [8] device using our approach.

A. HD video and graphics processing system requirements

/ŶƉƵƚ�
WƌŽĐĞƐƐŽƌ�;/WͿ 'WhsŝĚĞŽ�

�ŶŐŝŶĞ�;s�Ϳ
,�>����ŽŶƚƌŽůůĞƌ�

;,�>��Ϳ

DƵůƚŝͲĐŚĂŶŶĞů�DĞŵŽƌǇ��ŽŶƚƌŽůůĞƌ

DƵůƚŝͲĐŚĂŶŶĞů��Z�D

�Wh

/WŽƵƚ s�ŽƵƚs�ŝŶ 'WhŽƵƚ'WhŝŶ >��ŝŶ

Fig. 4. Memory-centric architecture for HD video and graphics processing

A High-Definition video (1080p) and graphics processing
system with a Unified Memory Architecture (UMA) is shown
in Figure 4. This system is based on the industrial systems
from [3] and [21] combined to create a suitable load for
a modern multi-channel memory. The Input Processor (IP)
receives an encoded video stream and writes to the memory.
The Video Engine (VE) decodes the video, the GPU performs

post-processing (e.g video overlay) and finally, the HDLCD
Controller (HDLCD) sends the screen refresh. The GPU and
CPU requirements are based on [21], and the IP requirements
on [3]. The VE and HDLCD requirements are computed
considering the requirements for HD video with a resolution
of 1920× 1080, 8 bpp and 30 fps [22]. Due to lack of space,
we do not show the derivation of the system requirements. A
summary of the requirements is shown in Table III.

TABLE III
MEMORY SUBSYSTEM REQUIREMENTS

Requestor bmin (MB/s) Lmax (cycles) s (B) g
IPout 1 - 128 1
VEin 769.8 - 128 1
VEout 93.3 - 128 2
GPUin 1000 - 256 2
GPUout 500 102 256 3
LCDin 500 102 256 3
CPU 150 - 128 4

B. Configuring the Wide IO DRAM
For the Wide IO SDR 200 MHz device with 4 memory

channels, we selected an access granularity of 64 B in each
channel that provides a worst-case bandwidth of 966.9 MB/s.
This configuration provides sufficient guaranteed bandwidth to
meet the requirements of all requestors. We selected a service
unit size equal to the access granularity of 64 B, since it
is smaller than all request sizes in Table III, which allows
interleaving of the memory requests across memory channels.
For the service unit size of 64 B, it takes 13 clock cycles to
perform a read or write operation (service cycle), and hence we
choose this as the TDM slot size. We selected a frame size of
5 to meet the worst-case latency requirements of the HDLCD
and GPUout of 102 clock cycles, corresponding to 8 TDM
slots. The configuration results found by the optimization tool
are shown in Table IV.

TABLE IV
MAPPING OF REQUESTORS AND ALLOCATED SERVICE UNITS AND RATES

Requestor Channel 1 Channel 2 Channel 3 Channel 4
N1 ρ′1 N2 ρ′2 N3 ρ′3 N4 ρ′4

IPout 0 0 0 0 1 0.01 1 0.01
VEin 0 0 0 0 1 0.4 1 0.4
VEout 0 0 0 0 1 0.05 1 0.05
GPUin 0 0 0 0 2 0.51 2 0.51
GPUout 2 0.4 2 0.4 0 0 0 0
LCDin 2 0.4 2 0.4 0 0 0 0
CPU 2 0.16 0 0 0 0 0 0
Total 6 0.96 4 0.8 5 0.97 5 0.97

It can be seen that the requestors GPUout and LCDin are
interleaved across two memory channels to satisfy their latency
requirements. Note that the rate allocated to each requestor
is 0.8, i.e., 773.5 MB/s, which amounts to an over-allocated
bandwidth of 273.5 MB/s. This relates to our conclusion in
Section IV-A that increasing the degree of interleaving for a
requestor may result in over-allocation of rate depending on its
latency requirement. GPUin is interleaved across two memory
channels, since its bandwidth requirement of 1 GB/s cannot be
satisfied in a single channel. VEout also is interleaved across
the same set of channels as GPUin, since they communicate
and hence belong to the same group. However, over-allocation
of rate is not required for GPUin and VEout because of their
relaxed latency requirements. Since we know that GPUout and
LCDin need a rate of 0.4 in each memory channel and GPUin

a rate of 0.51, the rate remaining in any of the single channels
cannot satisfy the combined rate requirements of 0.82 by VEin
and IPout. Hence, they are interleaved across two memory

channels. CPU is not interleaved as its required rate can be
satisfied with the rate available in a single channel.
To summarize, the requests from the requestors are in-

terleaved across memory channels at different granularities
depending on their latency/bandwidth requirements, request
sizes and/or communication requirements, for optimal memory
bandwidth utilization. Memory capacity requirements by the
requestors also impacts the interleaving of requests across
channels, which we did not include in our case-study for the
ease of presentation.

VIII. CONCLUSIONS
Shared multi-channel memories in multi-processor plat-

forms for real-time systems are tedious to configure and
verify. As a first work in this direction, we presented a real-
time multi-channel memory controller architecture that can
interleave memory requests across multiple memory channels
at different granularities. We also presented an optimal algo-
rithm to map memory requestors to the memory channels and
configure the memory controller, while minimizing resource
utilization. We show that for a realistic use-case scenario
consisting of 4 memory channels and up to 100 memory
requestors, an optimization tool can find the optimal map-
ping and configuration in less than 15 minutes. Finally, we
demonstrated the effectiveness of our work in a real use-case
scenario.

ACKNOWLEDGMENT
This work was partially funded by projects EU FP7 288008

T-CREST and 288248 Flextiles, Catrene CA104 COBRA,
ARTEMIS 100202 RECOMP, PT FCT, and NL STW 10346
NEST.

REFERENCES
[1] P. Kollig et al., “Heterogeneous Multi-Core Platform for Consumer Multimedia

Applications,” in Proc. DATE, 2009.
[2] P. van der Wolf et al., “SoC Infrastructures for Predictable System Integration,”

in Proc. DATE, 2011.
[3] L. Steffens et al., “Real-Time Analysis for Memory Access in Media Processing

SoCs: A Practical Approach,” Proc. ECRTS, 2008.
[4] M. Paolieri et al., “An Analyzable Memory Controller for Hard Real-Time CMPs,”

Embedded Systems Letters, IEEE, vol. 1, no. 4, 2009.
[5] B. Akesson et al., “Architectures and Modeling of Predictable Memory Controllers-

for Improved System Integration,” in Proc. DATE, 2011.
[6] J. Reineke et al., “PRET DRAM Controller: Bank Privatization for Predictability

and Temporal Isolation,” in Proc. CODES+ISSS, 2011.
[7] D. Stiliadis et al., “Latency-rate servers: A general model for analysis of traffic

scheduling algorithms,” IEEE/ACM Trans. Netw., vol. 6, no. 5, 1998.
[8] Wide I/O Single Data Rate Specification, JESD229 ed., JEDEC Solid State

Technology Association, 2012.
[9] M. D. Gomony et al., “DRAM Selection and Configuration for Real-Time Mobile

Systems,” in Proc. DATE, 2012.
[10] E. Aho et al., “A Case for Multi-channel Memories in Video Recording,” in Proc.

DATE, 2009.
[11] Z. Zhu et al., “Fine-grain Priority Scheduling on Multi-channel Memory Systems,”

in Proc. HPCA, 2002.
[12] P. Casini, “SoC Architecture to Multichannel Memory Management Using Sonics

IMT,” White paper, 2008, sonics, inc.
[13] M. Awasthi et al., “Handling the problems and opportunities posed by multiple

on-chip memory controllers,” in Proc. PACT, 2010.
[14] T. Zhang et al., “A 3D SoC Design for H.264 Application with On-chip DRAM

Stacking,” in Proc. 3DIC, 2010.
[15] I. Loi et al., “An Efficient Distributed Memory Interface for Many-core Platform

with 3D Stacked DRAM,” in Proc. DATE, 2010.
[16] Y. Ou et al., “A Scalable Multi-channel Parallel NAND Flash Memory Controller

Architecture,” in Proc. ChinaGrid, 2011.
[17] C. Bouquet, “Optimal Multi-channel Memory Controller System,” Patent number:

6643746, United States Patent and Trademark Office (USPTO), 2000.
[18] G. Zhang et al., “Heterogeneous multi-channel: Fine-grained dram control for both

system performance and power efficiency,” in Proc. DAC, 2012.
[19] B. Akesson and K. Goossens, Memory Controllers for Real-Time Embedded

Systems, 1st ed., ser. Embedded Systems. Springer, 2011.
[20] “IBM ILOG CPLEX Optimizer,” http://www.ibm.com, IBM Corporation.
[21] A. Stevens, “QoS for High-Performance and Power-Efficient HD Multimedia,”

ARM White paper, http://wwww.arm.com, 2010.
[22] A. C. Bonatto et al., “Multichannel SDRAM Controller Design for H.264/AVC

Video Decoder,” in Proc. SPL, 2011.

