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Abstract 
Consider the problem of scheduling a set of implicit deadline sporadic tasks on a heterogeneous multiprocessor so as to 
meet all the deadlines. Tasks cannot migrate and each processor is either of type-1 or type-2 (with each task having 
different execution speed on each processor type). We present a new algorithm, FF-3C, for this problem. FF-3C offers 
low-time complexity and provably good performance. Specifically, (i) it has the time-complexity O(n Â! max(m, log 
n)), where n is the number of tasks and m is the number of processors and (ii) it offers the guarantee that if a task set can 
be scheduled by an optimal task assignment scheme to meet deadlines then FF-3C meets deadlines as well if given 
processors twice as fast. We also present several extensions to FF-3C; these offer the same time-complexity and 
performance guarantee but in addition, they offer improved average-case performance. Via experiments with randomly 
generated task sets, we compare the performance of our new algorithms and two established state-of-art algorithms (and 
variations of the latter). We evaluate algorithms based on (i) running time and (ii) the necessary multiplication factor, 
i.e., the amount of extra speed of processors the algorithm needs, for a particular task set, in order to succeed as 
compared to an optimal task assignment scheme. Overall our new algorithms compare favorably to the state-of-art. One 
in particular (FF-4C-COMB), in our experimental evaluations, runs 13000 to 160000 times faster and has significantly 
smaller necessary multiplication factor than the prior state-of-art algorithms. 
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Abstract

Consider the problem of scheduling a set of implicit-
deadline sporadic tasks on a heterogeneous multiprocessor
platform to meet all deadlines. Tasks cannot migrate and
each processor is either of type-1 or type-2 (with each task
having different execution speed on each processor type).

We present a new algorithm, FF-3C, for this problem.
FF-3C offers low time-complexity and provably good per-
formance. Specifically, (i) its time-complexity is O(n ·
max(m, log n)), where n is the number of tasks and m is
the number of processors and (ii) it offers the guarantee
that if a task set can be scheduled by an optimal task as-
signment scheme to meet deadlines then FF-3C meets dead-
lines as well if given processors twice as fast. We also
present several extensions to FF-3C; these offer the same
time-complexity and performance guarantee as that of FF-
3C but in addition, they offer improved average-case perfor-
mance. Via experiments with randomly generated task sets,
we compare the performance of our new algorithms and two
established state-of-art algorithms (and variations of the
latter). We evaluate algorithms based on (i) running time
and (ii) the necessary multiplication factor, i.e., the amount
of extra speed of processors the algorithm needs, for a given
task set, so as to succeed, compared to an optimal task
assignment scheme. Overall our new algorithms compare
favorably to the state-of-art. One in particular (FF-4C-
COMB), in our experimental evaluations, runs 12000 to
160000 times faster and has significantly smaller necessary
multiplication factor than state-of-art algorithms.

1. Introduction
Designers have been achieving significant speedup of

particular tasks by using specialized processing units (e.g.,
Graphics Processors for computer graphics or Digital Sig-
nal Processors for signal processing). The advent of het-
erogeneous multiprocessors on a single chip facilitates this
even more. Virtually all major manufacturers offer some

kind of heterogeneous multiprocessor implemented on a
single chip [10, 13, 17]. Their use in embedded systems is
non-trivial however because many embedded systems have
real-time requirements, whose satisfaction at run-time has
to be proven/guaranteed a priori; this is a significant chal-
lenge for the use of heterogeneous multicores in real-time
embedded systems. The way tasks are scheduled signifi-
cantly influences whether their timing requirements are met.
Unfortunately, for heterogeneous multiprocessors, no com-
prehensive toolbox of real-time scheduling algorithms and
analysis techniques exists (unlike e.g., what exists for a
uniprocessor).

An algorithm for deciding whether or not a task set can
be scheduled on a heterogeneous platform exists [6] but it
assumes that tasks can migrate. Also, this assumption is
often unrealistic in practice, since processors with differ-
ent functionalities typically have different instruction sets.
Thus, the problem of assigning tasks to processors and then
scheduling them with a uniprocessor scheduling algorithm
(i.e., without migration) is of much greater practical signif-
icance. It requires solving two sub-problems: (i) assigning
tasks to processors and (ii) once tasks are assigned to pro-
cessors, performing uniprocessor scheduling on each pro-
cessor. The latter problem is well-understood (e.g., one may
use Earliest Deadline First scheduling [15]) — the difficult
part is the task assignment.

Among known task assignment schemes for multipro-
cessors in general (i.e., not necessarily heterogeneous), only
(i) bin-packing heuristics (e.g., first-fit), (ii) Integer-Linear-
Programming (ILP) modeling and (iii) Linear Programming
(LP) relaxation approaches for ILP perform provably well.
Bin-packing heuristics are popular for task assignment but
unfortunately, the proof techniques used on identical mul-
tiprocessors (i.e., a task has same execution speed on all
processors) do not easily translate to heterogeneous multi-
processors. Consequently, the current literature offers no
bin-packing heuristic for assigning real-time tasks on het-
erogeneous multiprocessors. Instead, task assignment is
modeled [7][8] as Zero-One ILP. Such a formulation can



be solved directly but has high computational complexity.
In particular, the decision problem ILP is NP-complete and
even with knowledge of the structure of the constraints in
the modeling of heterogeneous multiprocessor scheduling,
no polynomial-time algorithm is known ( [11], p. 245). Via
relaxation of ILP formulation to LP and certain tricks [18],
better time-complexity can be attained [7][8] (polynomial
time-complexity for the algorithm in [7] and for the special
case of fixed number of processors, the algorithm in [7] has
polynomial time-complexity as well). Neither of these al-
gorithms, however, attains low-degree (linear or quadratic)
polynomial time-complexity.

In practice, many heterogeneous multiprocessors only
use two types of processors (e.g., one type for graphics and
one general-purpose). AMD [1] plans to ship such chips;
FreeScale already does [10]. Traditionally, graphics proces-
sors were meant just for graphics tasks, hence task assign-
ment was trivial. Today though, designers [12] use them
for a wide range of calculations and this makes task assign-
ment non-trivial. Notably, the Cell processor [13][17] has
Turing-complete “graphics processors” (called synergistic
processors), able to compute anything that the main pro-
cessor can. Unfortunately, the research literature provides
no scheduling algorithm that takes advantage of this special
structure.

Therefore, in this paper we consider the problem of
scheduling without migration, to meet all deadlines, a set of
implicit-deadline independent sporadic tasks on a hetero-
geneous multiprocessor where each processor is either of
type-1 or type-2 (with each task having different execution
speed on each processor type). We present a new algorithm,
FF-3C, for this problem. FF-3C offers low time-complexity
and provably good performance. Specifically, (i) its time-
complexity is O(n · max(m, log n)), where n is the num-
ber of tasks and m is the number of processors and (ii) it
offers the guarantee that if a task set can be scheduled by
an optimal task assignment scheme to meet deadlines then
FF-3C meets deadlines as well if given processors twice as
fast. We also present several extensions to FF-3C; these
offer the same time-complexity and performance guaran-
tee as that of FF-3C but in addition, they offer improved
average-case performance. Via experiments with randomly
generated task sets, we compare the performance of our new
algorithms and two established state-of-art algorithms (and
variations of the latter). We evaluate algorithms based on
(i) average running time and (ii) the necessary multiplica-
tion factor, i.e., the amount of extra speed of processors the
algorithm needs, for a particular task set, in order to suc-
ceed as compared to an optimal task assignment scheme.
Overall our new algorithms compare favorably to the state-
of-art. In particular, in our experimental evaluations, one of
our new algorithms, FF-4C-COMB, runs 12000 to 160000
times faster and has significantly smaller necessary multi-

plication factor than state-of-art algorithms [8, 7].

2. Preliminaries
In a computer platform with two unrelated types of pro-

cessors, let P 1 be the set of type-1 processors and P 2 be the
set of type-2 processors. The workload consists of τ , a set
of implicit-deadline sporadic tasks (all task deadlines are
equal to their minimum inter-arrival times) each of which
releases a (potentially infinite) sequence of jobs.

A task is assigned to a processor and all jobs released
by this task must execute there. The utilisation of task τi
depends on the type of processor to which it is assigned.
The utilisation of task τi is U1

i if τi is assigned to a type-1
processor. Analogously, the utilisation of task τi is U2

i if
τi is assigned to a type-2 processor. Note that we allow
U1
i = ∞ (or U2

i = ∞) if task τi cannot be assigned at all
to a type-1 (or type-2) processor.

Let τ [p] denote the set of tasks assigned to processor p.
Earliest-Deadline-First (EDF) is a very popular algorithm
in uniprocessor scheduling [15]. A slight adaptation of a
previously known result [15] gives us:

Lemma 1. If all tasks in τ [p] are scheduled under EDF on
processor p (which is of type-z, where z stands for 1 or 2)
and

�
τi∈τ [p] U

z
i ≤ 1, then all deadlines are met.

Then the necessary and sufficient set of conditions for
schedulability on a partitioned heterogeneous multiproces-
sor with two types of processor is the following:

�

τi∈τ [p]

U1
i ≤ 1 ∀p ∈ P 1 (1)

�

τi∈τ [p]

U2
i ≤ 1 ∀p ∈ P 2 (2)

Thus our problem of scheduling tasks on a heteroge-
neous multiprocessor with two types of processors is re-
duced to assigning tasks to processors such that the above
constraints are satisfied. Yet, even in the special case of
identical multiprocessors, this problem is intractable [7].
We therefore aim for a non-optimal algorithm of polyno-
mial time-complexity which would still offer good perfor-
mance.

Commonly, the performance of an algorithm is charac-
terized using the notion of the utilisation bound [15]: an
algorithm with a utilisation bound of UB is always capable
of scheduling any task set with a utilisation up to UB so as
to meet deadlines. This definition has been used in unipro-
cessor scheduling [15] and multiprocessors with identical
processors [2]. However, it does not translate to heteroge-
neous multiprocessors, hence we rely on the resource aug-
mentation framework to characterize the performance of the
algorithm under design.



The speed competitive ratio CPTA of an algorithm A is
defined as the lowest number such that for every task set τ
and computing platform Π

�
it holds that if it is possible for

a non-migrative algorithm to meet all deadlines of τ on Π
�

then algorithm A meets all deadlines of τ on a computing
platform Π whose every processor is CPTA times faster
than the corresponding processor in Π

�
.1

A low speed competitive ratio indicates high perfor-
mance; the best achievable is 1. If a scheduling algorithm
has an infinite speed competitive ratio then a task set exists
which could be scheduled (by another algorithm) to meet
deadlines but would miss deadlines with the actually used
algorithm even if processor speeds were multiplied by an
“infinite” factor. Therefore, we aim for an algorithm with
finite (ideally small) speed competitive ratio.

3. Useful results
Bin-packing heuristics are popular for assigning tasks on

identical [14] or uniform [4] multiprocessors (where a pro-
cessor x times faster executes all tasks x times faster) be-
cause they run fast and offer finite speed competitive ratio.
Yet, straightforward application of bin-packing heuristics to
heterogeneous multiprocessors with two types of processors
performs poorly – see Appendix in [3]. It can be seen (in
Appendix in [3]) that the cause of low performance of such
a bin-packing scheme is that, by considering tasks one by
one, it lacks a “global view” of the problem, hence may as-
sign a task to a processor where it executes slowly. It seems
a good idea to try to assign each task to the processor where
it executes faster. We will use this idea; let us thus introduce
the following definitions:

The task set τ is viewed as two disjoint subsets, τ1 and
τ2. The set τ1 consists of those tasks which run at least
as fast on a type-1 processor as on a type-2 processor; τ2
consists of all other tasks. In notation:

τ = τ1 ∪ τ2 (3)
∀τi ∈ τ1 : U1

i ≤ U2
i (4)

∀τi ∈ τ2 : U1
i > U2

i (5)

We proceed with two useful observations (their correct-
ness is evident; for formal proofs, see the Appendix in [3]).

Lemma 2. If there is a task τi in τ1 such that 1 < U1
i , it is

then impossible to meet deadlines. Likewise for a task τi in
τ2 with 1 < U2

i .

Lemma 3. It is impossible to meet deadlines if
�

i∈τ1

U1
i +

�

i∈τ2

U2
i > |P 1|+ |P 2| (6)

1Our notion of speed competitive ratio in this paper is equivalent to that
in previous work by Baruah [6]. It differs from the one used in [5].

We next highlight how the problem in consideration is
related to other known computational problems, to help
with proofs later. If you read this paper for the first time,
you may want to skip this section now and revisit later.

Fractional knapsack problem: A vector x has n ele-
ments. The problem instance is represented by vectors v
and w of real numbers, arranged such that vi

wi
≥ vi+1

wi+1
∀i ∈

{1, 2, . . . , n − 1}. (Intuitively, vi and wi may be thought
of as, respectively, the “value” and “weight” of an item, in-
dexed i, while xi as the fraction of it that is employed).
Consider the problem of assigning values to the elements in
vector x so as to:
maximize

�n
i=1 xi · vi

subject to
�n

i=1 xi · wi ≤ CAP
and xi is a real number and 0 ≤ xi ≤ 1
and CAP is a given upper bound.

(Intuitively, determine how much of each item to use
such that cumulative value is maximized, subject to cumu-
lative weight not exceeding some bound).

Lemma 4. The following algorithm optimally solves the
Fractional knapsack Problem:
1. reindex tuples {vi, wi} by order of descending vi/wi

2. for i:= 1 to n do xi:=0; end for
3. i:=1; SUMWEIGHT:=0; SUMVALUE:=0;
4. while ((SUMWEIGHT+wi ≤ CAP ) and (i ≤ n)) do
5. xi:=1;
6. SUMWEIGHT:=SUMWEIGHT+wi;
7. SUMVALUE:=SUMVALUE+vi;
8. i:=i+1;
9. end while
10. if i ≤ n then
11. xi:=(CAP-SUMWEIGHT)/wi;
12. SUMWEIGHT:=SUMWEIGHT+wi · xi;
13. SUMVALUE:=SUMVALUE+vi · xi;
14. end if

This is found in undergraduate textbooks (e.g., Chapter
16.2 in [9]). Now consider a scheduling problem:

Lemma 5. Consider n tasks and a heterogeneous multi-
processor conforming to the system model (and notation) of
Section 2. Let x denote a number such that 0≤x≤ |P 1|

2 . Let
A1 denote a subset of τ1 such that

�

i∈A1

U1
i >

|P 1|
2

− x (7)

and for every pair of tasks τi∈A1 and τj∈τ1 \ A1 it holds

that U2
i

U1
i
−1≥U2

j

U1
j
−1. Let A2 denote τ1\A1.

Let B1 denote a subset of τ1 such that

�

i∈B1

U1
i ≤ |P 1|

2
− x (8)



Let B2 denote τ\B1. It then holds that:

�

i∈A1

U1
i +

�

i∈A2

U2
i +

�

i∈τ2

U2
i ≤

�

i∈B1

U1
i +

�

i∈B2

U2
i (9)

Proof. Let us arbitrarily choose A1, B1 as defined. We will
prove that this implies Inequality 9. Using Inequalities 7
and 8 we clearly get:

�

i∈A1

U1
i >

�

i∈B1

U1
i (10)

With this choice of A1 and B1, let us consider different
instances of the fractional knapsack problem:

Instance1:
CAP = left-hand side of Inequality 10.
For each τi ∈ τ , create an item i with
vi = U2

i − U1
i and wi = U1

i

SUMVALUE1=value of variable SUMVALUE when the
algorithm in Lemma 4 terminates with Instance1 as input.

Instance2:
CAP = left-hand side of Inequality 10.
For each τi ∈ A1, create an item i with
vi = U2

i − U1
i and wi = U1

i

SUMVALUE2=value of variable SUMVALUE when the
algorithm in Lemma 4 terminates with Instance2 as input.

Instance3:
CAP = right-hand side of Inequality 10.
For each τi ∈ B1, create an item i with
vi = U2

i − U1
i and wi = U1

i

SUMVALUE3=value of variable SUMVALUE when the
algorithm in Lemma 4 terminates with Instance3 as input.

Instance4:
CAP = right-hand side of Inequality 10.
For each τi ∈ τ , create an item i with
vi = U2

i − U1
i and wi = U1

i

SUMVALUE4=value of variable SUMVALUE when the
algorithm in Lemma 4 terminates with Instance4 as input.

Observe that:
O1: In all four instances, it holds for each element that
vi
wi

= U2
i

U1
i
− 1.

O2: Instance1 and Instance2 have the same capacity.
O3: Although Instance2 has a subset of the elements of
Instance1, this subset is the subset of those elements with
the largest vi/wi. (Follows from the definition of A1.)
O4: CAP in Instance2 is exactly the sum of the weights of
the elements in A1.
O5: From O1,O2,O3 and O4: SUMVALUE2=SUMVALUE1.
O6: Instance3 and Instance4 have the same capacity.
O7: Instance3 has a subset of the elements of Instance4.
O8: From O6 and O7: SUMVALUE3≤SUMVALUE4.
O9: Instance4 has smaller capacity than Instance1.

O10: Instance4 has the same elements as Instance1.
O11: From O9 and O10: SUMVALUE4≤SUMVALUE1.
O12: From O8 and O11: SUMVALUE3≤SUMVALUE1.
O13: From O12 and O5: SUMVALUE3≤SUMVALUE2.

Using O13 and the definitions of the instances and of A1
and B1 and observing that the capacity of Instance2 and
Instance3 are set such that all elements in either instance
will fit into the respective “knapsack”, we obtain:

�

i∈B1

(U2
i − U1

i ) ≤
�

i∈A1

(U2
i − U1

i ) (11)

Now, observing that τ=τ1∪τ2=B1∪B2 gives us:
�

i∈τ1

U2
i +

�

i∈τ2

U2
i =

�

i∈B1

U2
i +

�

i∈B2

U2
i (12)

Combining Inequality 11 and Equation 12 gives us:
�

i∈τ1

U2
i +

�

i∈τ2

U2
i −

� �

i∈A1

U2
i −

�

i∈A1

U1
i

�

≤
�

i∈B1

U2
i +

�

i∈B2

U2
i −

� �

i∈B1

U2
i −

�

i∈B1

U1
i

�
(13)

Rearranging terms and exploiting A2 = τ1\A1 yields:

�

i∈A1

U1
i +

�

i∈A2

U2
i +

�

i∈τ2

U2
i ≤

�

i∈B1

U1
i +

�

i∈B2

U2
i

This is the statement of the lemma.

Lemma 5 considers the task set τ . We can however ap-
ply this on only a subset of τ . Let us assume that H1 and
H2 are two disjoint subsets of τ . We apply Lemma 5 on
τ \ (H1 ∪H2) and then add the same sum to both sides of
Inequality 9. This gives us:

Lemma 6. Consider n tasks and a heterogeneous multi-
processor conforming to the system model (and notation) of
Section 2. Let x denote a number such that 0≤x≤ |P 1|

2 . Let
A1 denote a subset of (τ1\(H1∪H2)) such that

�

i∈A1

U1
i >

|P 1|
2

− x (14)

and for every pair of tasks τi∈A1 and
τj∈(τ1\(H1∪H2))\A1 it holds that U2

i

U1
i
−1≥U2

j

U1
j
−1.

Let A2 denote (τ1 \ (H1 ∪H2))\A1.
Let B1 denote a subset of (τ1 \ (H1 ∪H2)) such that

�

i∈B1

U1
i ≤ |P 1|

2
− x (15)

Let B2 denote (τ \ (H1 ∪H2))\B1. It then holds that:



�

i∈H1

U1
i +

�

i∈H2

U2
i +

�

i∈A1

U1
i +

�

i∈A2

U2
i +

�

i∈τ2 \ (H1 ∪ H2)

U2
i

≤
�

i∈H1

U1
i +

�

i∈H2

U2
i +

�

i∈B1

U1
i +

�

i∈B2

U2
i

Lemma 6 will be useful for proving the performance of
our new algorithm, formulated in Section 4.

4. The new algorithm

Our goal is to design an algorithm with a speed compet-
itive ratio 2. The new algorithm is based on two ideas.

Idea1: A task should ideally be assigned to the processor
type where it runs faster (termed “favourite” type).

Idea2: A task with utilisation above 50% on its non-
favourite type of processor should be assigned to its
favourite type of processor. This special case of Idea1 is
stated separately because this facilitates creating an algo-
rithm with the desired speed competitive ratio: Since we
will compare the performance of our new algorithm versus
every other algorithm that uses processors of at most half
the speed, following Idea2 ensures that each of those tasks
is assigned to the same corresponding processor type as un-
der every other successful assignment algorithm.

Based on these ideas and the concepts of τ1 and τ2 (de-
fined in Section 2), we also define the disjoint sets:

H1 = {τi ∈ τ1 : U2
i > 1/2} (16)

H2 = {τi ∈ τ2 : U1
i > 1/2} (17)

F1 = τ1 \H1 (18)
F2 = τ2 \H2 (19)

A task is termed to be heavy on type-1 processors (or, re-
spectively, type-2 processors) if its utilisation on that pro-
cessor type strictly exceeds 1

2 . Intuitively, H1 and H2
identify those tasks which should be assigned based on
Idea2. H1 stands for “Set of tasks with type-1 proces-
sors as favourite which are heavy if they are assigned to
their non-favourite processor type (type-2)”. Analogous for
H2. (Obviously, a task in H1 or H2 might also be heavy
on its favourite processor type.) Also, intuitively, F1 and
F2 identify those tasks which should be assigned based on
Idea1. F1 stands for ”Set of tasks that have type-1 pro-
cessors as their favourite and which are not heavy on either
processor type”. Analogous for F2. From the definitions of

Output: τ [p] specifies the tasks assigned to processor p.
1. Form sets H1, H2, F1, F2 as defined by Eq. 16-19
2. ∀p: U[p] := 0
3. ∀p: τ [p] := ∅
4. if first-fit( H1, P 1) �= H1 then declare FAILURE
5. if first-fit( H2, P 2) �= H2 then declare FAILURE
6. F11 := first-fit( F1, P 1)
7. F22 := first-fit( F2, P 2)
8. if (F11 = F1) ∧ (F22 = F2) then declare SUCCESS
9. if (F11 �= F1) ∧ (F22 �= F2) then declare FAILURE
10. if (F11 �= F1) ∧ (F22 = F2) then
11. F12 := F1 \ F11
12. if first-fit( F12, P 2) = F12 then
13. declare SUCCESS
14. else
15. declare FAILURE
16. end
17. end
18. if (F11 = F1) ∧ (F22 �= F2) then
19. F21 := F2 \ F22
20. if first-fit( F21, P 1) = F21 then
21. declare SUCCESS
22. else
23. declare FAILURE
24. end
25. end

Figure 1. The new algorithm, FF-3C

H1, H2, F1, and F2 (and Inequalities 4 and 5), we have:

τi ∈ H1 ⇒ U2
i >

1

2
(20)

τi ∈ H2 ⇒ U1
i >

1

2
(21)

τi ∈ F1 ⇒ U1
i ≤ 1

2
and U2

i ≤ 1

2
(22)

τi ∈ F2 ⇒ U1
i ≤ 1

2
and U2

i <
1

2
(23)

Figure 1 shows the new algorithm, FF-3C. The intuition
behind the design of FF-3C is that first we assign tasks to
their favourite processors which would be heavy on other
processor type (lines 4-5). Then we assign the non-heavy
tasks to their favourite processors (lines 6-7). Then, if there
are remaining non-heavy tasks, these have to be assigned to
processors that are not their favourite (lines 12 and 20).

FF-3C is named after the fact that each task has three
chances to be assigned (using first-fit): (i) according to
Idea2 (to avoid making a task heavy), (ii) assignment to its
favourite and (iii) to its non-favourite processor type.

As already mentioned, the algorithm FF-3C performs
several passes with first-fit bin-packing. It uses a subroutine
first-fit (see Figure 2 for pseudocode) which takes
two parameters, a set of tasks to be assigned using first-
fit bin-packing and a set of processors to assign these tasks,
and it returns the set of successfully assigned tasks.

We next establish the competitive ratio of FF-3C.



1. function first-fit( ts : set of tasks; ps : set of processors)
return set of tasks

2. assigned tasks := ∅
3. If ps consists of type-1 (type-2) processors, then order

ts by decreasing U2
i /U

1
i (resp., increasing U2

i /U
1
i ).

Use any order for processors ps, but maintain it
during the execution of the function first-fit.

4. τi := first task in ts
5. p := first processor in ps
6. Let k denote the type of processor p (either 1 or 2)
7. if U[p]+Uk

i ≤ 1 then
8. U[p] := U[p]+Uk

i
9. τ [p] := τ [p] ∪ {τi}
10. assigned tasks := assigned tasks ∪ {τi}
11. if remaining tasks exist in ts then
12. τi := next task in ts
13. go to line 5.
14. else
15. return assigned tasks
16. end if
17. else
18. if remaining processors exist in ps then
19. p := next processor in ps
20. go to line 6.
21. else
22. return assigned tasks
23. end if
24. end if

Figure 2. First-fit bin-packing

Theorem 1. The speed competitive ratio of FF-3C is at
most 2.

Proof. An equivalent claim is that any task set τ which is
not schedulable under FF-3C over a computing platform
Π would likewise be unschedulable, using any algorithm,
over computing platform Π

�
each of whose processors has

at most half the speed of the corresponding processor in Π.
This, we will prove (by contradiction). From the definition
of Π

�
:

∀i : U1
i

U1�
i

=
U2
i

U2�
i

=
1

2
(24)

Assume that FF-3C failed to assign τ on Π but it is possible
(using an algorithm OPT) to assign τ on Π

�
. Since FF-

3C failed to assign τ on Π, it follows that FF-3C declared
FAILURE. We explore all possibilities for this to occur:

Failure on line 4 in FF-3C.
If
�

i∈H1 U
1
i ≤ |P 1|

2 then (from a well-known result [16]),
first-fit succeeds. Therefore, we know that

�

i∈H1

U1
i >

|P 1|
2

(24)⇒
�

i∈H1

U1�

i > |P 1|

Therefore, OPT cannot assign all tasks in H1 to P 1. Hence,
it assigns at least one task τi∈H1 to P 2. From Inequality 20
and Equation 24 we get U2�

i > 1, hence OPT produces an
infeasible assignment – a contradiction.

Failure on line 5 in FF-3C.
This results in contradiction (symmetric to the case above).

Failure on line 9 in FF-3C.
From the case, we obtain that F11⊂F1 and F22⊂F2.
Therefore, when executing line 6 in FF-3C, there was a task
τfailed1 ∈ F1 which could not be assigned on any proces-
sor in P 1 and when executing line 7 in FF-3C there was
a task τfailed2 ∈ F2 which could not be assigned on any
processor in P 2. Consequently, we obtain:

∀p ∈ P 1 : U [p] + U1
failed1 > 1 (25)

and ∀p ∈ P 2 : U [p] + U2
failed2 > 1 (26)

Since τfailed1∈F1, Inequality 22 gives us U1
failed1≤ 1

2 .
Analogously, U2

failed2 ≤ 1
2 . Using these on Inequalities 25

and 26 gives:

∀p ∈ P 1 : U [p] > 1/2 (27)
and ∀p ∈ P 2 : U [p] > 1/2 (28)

Observing that tasks assigned on processors in P 1 are a sub-
set of τ1 and using Inequality 27 gives us:

�

τi∈τ1

U1
i >

|P 1|
2

(29)

With analogous reasoning, we obtain:
�

τi∈τ2

U2
i >

|P 2|
2

(30)

Observing these two inequalities and Equation 24 and
Lemma 3 gives us that OPT fails to assign tasks on Π

�
. This

is a contradiction.
Failure on line 15 in FF-3C.

From the case, we obtain that F11⊂F1 and F22=F2.
Therefore, when executing line 12 in FF-3C there was a
task τfailed ∈ (F1 \ F11) which was attempted to each of
the processors in P 2 but all of them failed. Hence, we have:

∀p ∈ P 2 : U [p] + U2
failed > 1 (31)

We can add these inequalities together and get:
�

p∈P 2

U [p] > |P 2| · (1− U2
failed) (32)

We know that the tasks assigned to processors in P 2 are
H2 ∪ F22 ∪ τF12assigned where τF12assigned is the set of
tasks that were assigned when executing line 12 in FF-3C.
We also know that τF12assigned ⊂ F12. Hence:

�

i∈(H2∪F22∪F12)

U2
i > |P 2| · (1− U2

failed)

Since τfailed ∈ F1 \ F11 ⊆ F1, using τfailed ∈ F1 and
Inequality 22 on the above inequality yields:

�

i∈(H2∪F22∪F12)

U2
i >

|P 2|
2

(33)



We also know that FF-3C has executed line 6 and when
it performed first-fit-bin-packing, there must have been a
task τfailed1 ∈ (F1 \F11) which was attempted to each of
the processors in P 1. But all of them failed. Note that this
task τfailed1 may be the same as τfailed mentioned above
or it may be different. Because it was not possible to assign
τfailed1 on any of the processors in P 1, we have:

∀p ∈ P 1 : U [p] + U1
failed1 > 1 (34)

Adding these inequalities together gives us:
�

p∈P 1

U [p] > |P 1| · (1− U1
failed1) (35)

We know that the tasks assigned to processors in P 1 just
after executing line 6 in FF-3C are H1 ∪ F11. Therefore,
we have:

�

i∈(H1∪F11)

U1
i > |P 1| · (1− U1

failed1) (36)

Since τfailed ∈ (F1 \ F11) ⊆ F1, using τfailed ∈ F1 and
Inequality 22 on Inequality 36 yields:

�

i∈(H1∪F11)

U1
i >

|P 1|
2

(37)

Let us now discuss OPT, the algorithm which succeeds in
assigning the task set τ on the computer platform Π

�
. Let

us discuss tasks in H1. From the definition, we know that:

∀τi ∈ H1 : U2
i > 1/2 (38)

Using Equation 24 gives us:

∀τi ∈ H1 : U2�

i > 1 (39)

If ∃τi∈H1 : U1
i >

1
2 , then ∃τi∈H1 : U1�

i >1 and using
τi∈H1 and Inequality 4 gives ∃τi ∈ H1 ⊆ τ1 : U2�

i > 1.
Hence such a task cannot be assigned by OPT on any pro-
cessor of Π

�
(of any type) and this is a contradiction. Hence

we can assume that ∀τi ∈ H1 : U1
i ≤ 1

2 , from which we
get:

∀τi ∈ H1 : U1�

i ≤ 1 (40)
Using Inequalities 39 and 40 yields that every task in H1
is assigned to processors in P 1 by OPT. With analogous
reasoning, we have that every task in H2 is assigned to a
processor in P 2. Let τOPT1 denote the tasks (except those
from H1) assigned to processors in P 1 by OPT. Analo-
gously, let τOPT2 denote the tasks (except those from H2)
assigned to processors in P 2 by OPT. Therefore (using In-
equalities 1 and 2), we know that:

�

τi∈(H1∪τOPT1)

U1�

i ≤ |P 1| (41)

and
�

τi∈(H2∪τOPT2)

U2�

i ≤ |P 2| (42)

Using Equation 24 gives us:

�

τi∈(H1∪τOPT1)

U1
i ≤ |P 1|

2
(43)

and
�

τi∈(H2∪τOPT2)

U2
i ≤ |P 2|

2
(44)

We can now reason about the inequalities we obtained about
the assignments of FF-3C and OPT. Rewriting Inequali-
ties 37 and 43 respectively yields:

�

i∈F11

U1
i >

|P 1|
2

−
�

i∈H1

U1
i (45)

�

τi∈τOPT1

U1
i ≤ |P 1|

2
−

�

τi∈H1

U1
i (46)

We can see that Inequalities 45 and 46 with x =
�

i∈H1 U
1
i

ensure that the assumptions of Lemma 6 are true, given the
ordering of F1 during assignment over P 1 (line 3 in Fig 2),
which ensures that ∀τi ∈ F11, ∀τj ∈ F12 : U2

i

U1
i

≥ U2
j

U1
j

.
Using Lemma 6 gives us:
�

i∈H1

U1
i +

�

i∈H2

U2
i +

�

i∈F11

U1
i +

�

i∈F12

U2
i +

�

i∈F22

U2
i

≤
�

i∈H1

U1
i +

�

i∈H2

U2
i +

�

i∈τOPT1

U1
i +

�

i∈τOPT2

U2
i

Applying Inequalities 43 and 44 to the inequality above
gives us:
�

i∈H1

U1
i +

�

i∈H2

U2
i +

�

i∈F11

U1
i +

�

i∈F12

U2
i +

�

i∈F22

U2
i

≤ |P 1|
2

+
|P 2|
2

(47)

Applying Inequalities 33 and 37 to Inequality 47 gives us:

|P 1|
2

+
|P 2|
2

<
|P 1|
2

+
|P 2|
2

(48)

This is a contradiction.
Failure on line 23 in FF-3C.

A contradiction results – proof analogous to previous case.
We see that all cases where FF-3C declares FAILURE

lead to contradiction. Hence, the theorem holds.

5. Time complexity of the new algorithm
We will show that the time-complexity of FF-3C is a

polynomial function of the number of tasks (n) and pro-
cessors (m). By inspection of the pseudocode for FF-3C
(Figure 1), the function first-fit is invoked at most 5 times.
Within each of those invocations:



• Sorting is performed over a subset of τ (i.e., at most
n tasks). The time-complexity of this operation is
O(n log n) e.g., using Heapsort.

• Sorting is performed over either P 1 or P 2 (i.e., at most
m processors). Since the order does not matter – only
that an order exists – the complexity is O(m).

• First-fit bin-packing is performed (O(n ·m)).

Thus the time-complexity of the algorithm is at most

5·
�
O(n · logn)� �� �

sort tasks

+ O(m)� �� �
sort pro-
cessors

+ O(n ·m)� �� �
bin-packing

�
= O(n·max(m, log n))

6. Extensions to FF-3C

In this section, we will discuss how to enhance FF-3C to
attain better average-case performance.

FF-4C: One drawback of FF-3C is the early declaration
of failure while trying to assign heavy tasks. If heavy tasks
could not be assigned to their favourite processor type then
FF-3C declares failure even without trying to assign them
on their non-favourite processor type (line 4 and 5 in Fig-
ure 1). In an extreme case, FF-3C would fail with a system
comprised of (i) a heavy task of type H1 (or H2) which can
fit on processor of type P 2 (or P 1) and (ii) zero proces-
sors of type P 1 (or P 2) and infinite number of processors
of type P 2 (or P 1). FF-4C, an enhanced version of FF-3C,
overcomes this drawback and gives better average-case per-
formance than FF-3C. FF-4C, upon failing to assign tasks in
H1 (or H2) on processors of type P 1 (or P 2), tries to assign
those unassigned tasks onto their non-favourite processors
of type P 2 (or P 1).

FF-4C-NTC: One observation about the classification of
tasks into H1, F1 and H2, F2 by FF-3C (and also FF-4C) is
that it can misguide the algorithm to assign a task in a way
which causes a failure later on. For example, consider the
following system with two tasks τ1 with U1

1 =0.99, U2
1 =1.0

and τ2 with U1
2 =0.495, U2

2 =2.0 and processors P1 of type-1
and P2 of type-2. FF-3C (also FF-4C) classifies τ1 as H1
and assigns it to P1 and τ2 as F1 and fails to assign it to
either P1 or P2. The intuitive way would be to just classify
tasks as τ1 or τ2 (as defined by Inequalities 4 and 5) and for
each class, assign tasks in order of decreasing U2

i /U
1
i for

type-1 processors and decreasing U1
i /U

2
i for type-2 proces-

sors, respectively. Hence, this version of FF-4C does not
classify τ1 into H1 and F1 nor τ2 into H2 and F2: It only
considers favourite/non-favourite processor types and dis-
regards whether a task is heavy or not. The algorithm first
tries to assign (using first-fit as shown in Figure 2) tasks
from τ1 on their favourite processors of type P 1 and if any
of these tasks could not be assigned then it tries to assign

them on their non-favourite processor type P 2 – and analo-
gously for τ2. For the above example, FF-4C-NTC would
assign τ1 to P2 and τ2 to P1.

FF-4C-COMB: For some task sets FF-4C succeeds and
FF-4C-NTC fails but for others the inverse occurs. FF-
4C-COMB exploits this by first attempting task assignment
with FF-4C and, upon failing, also trying FF-4C-NTC.

The speed competitive ratio and time-complexity of
these algorithms are same as that of FF-3C. The proofs (and
their pseudocode) can be found in Appendix in [3].

7. Experimental setup and results

We experimentally compare the performance of our al-
gorithms and two prior state-of-art algorithms. We imple-
mented two versions of [8] (SKB-RTAS and SKB-RTAS-
IMP) and two versions of [7] (SKB-ICPP and SKB-ICPP-
IMP). SKB-RTAS and SKB-ICPP follow from the corre-
sponding papers; the -IMP variants are our improved ver-
sions of the respective algorithms (see description below).
We implemented all algorithms in C on Windows XP on an
Intel Core2 (2.80 GHz). For SKB- algorithms we also used
a state-of-art LP/ILP solver, IBM ILOG CPLEX.

In [8], it is stated that LPRelax-Feas(Γ, Π) assigns at
least (n−m+1) tasks to processors (n is number of tasks,
m is number of processors); any remaining tasks (at most
m−1) are assigned by exhaustive enumeration. While as-
signing these tasks, the author illustrates with an exam-
ple that their utilisation can be compared against (1−z)
for assignment decisions on any processor, where z (re-
turned by the LP solver) is the maximum utilised fraction of
any processor – SKB-RTAS implements this (pessimistic)
rule. Since the actual remaining capacity of each processor2

can be easily computed from the LP solver solution, SKB-
RTAS-IMP uses that, instead of (1−z), to test assignments,
for improved average-case performance.

In [7], the author compares whether Uri
OPT ≤ (1− ri)

(in procedure optSrch) to identify whether a feasible
mapping has been obtained by the algorithm (namely,
taskPartition) where Uri

OPT is the vertex solution’s ob-
jective function value returned by LP solver by setting all
the utilisations of those tasks which are greater than ri to
∞ – SKB-ICPP implements this feasibility test. This pes-
simistic test severely impacts performance. Hence, SKB-
ICPP-IMP implements a better feasibility condition which
checks that the sum of utilisations of all the tasks assigned
to each processor does not exceed its computing capacity
thereby improving its performance significantly in practice.

We assess (i) the average-case performance of algo-
rithms by creating a histogram of necessary multiplication

2The actual remaining capacity on processor p is 1−
�

i:xi,p=1 ui,p

where xi,p is the indicator variable used in [8].



factor (the amount of extra speed of processors the algo-
rithm needs, for a given task set, so as to succeed, as
compared to an optimal task assignment scheme) and also
(ii) the average run-time of each algorithm. Since all the
SKB- algorithms use CPLEX, an external program, for as-
signing tasks to processors (for solving LP), they are pe-
nalized by the startup time and reading of the problem in-
stance from file (referred to as CPLEX overhead). We deal
with this issue by measuring the average time for CPLEX
overhead and subtract it from the measured running time of
those algorithms that rely on CPLEX. In particular, SKB-
ICPP and SKB-ICPP-IMP invoke CPLEX multiple times
for a single task set. Hence, we record, for such algorithms
for each task set how many times CPLEX was invoked and
subtract as many times the average CPLEX overhead.

The problem instances (number of tasks, their utilisa-
tions and number of processors of each type) were gener-
ated randomly. Each problem instance had at most 12 tasks
and at most 3 processors of each type. We term a task set
critically feasible if it is feasible on a given heterogeneous
multiprocessor platform but rendered infeasible if all U1

i

and U2
i are increased by an arbitrarily small factor. To ob-

tain critically feasible task sets from the randomly generated
task sets, we perform assignment with the ILP approach as
in [7] and obtain z, the utilisation of the most utilised pro-
cessor, and then multiply all task utilisations by 1.0/z and
repeatedly feed back to CPLEX till 0.98<z≤ 1.

We ran each algorithm on 15000 generated critically fea-
sible task sets to obtain the necessary multiplication fac-
tor. We input a task set to algorithm A (where A can be:
FF-3C, FF-4C, FF-4C-NTC, FF-4C-COMB, SKB-RTAS,
SKB-RTAS-IMP, SKB-ICPP or SKB-ICPP-IMP) and if the
algorithm cannot find a feasible mapping, we increment the
multiplication factor by a small step i.e., STEP = 0.01 and
divide the original U1

i and U2
i of each task by the new mul-

tiplication factor (whose value is now 1.01) and feed this
task set to algorithm A. These steps (multiplication factor
adjustment and feeding back of the derived task set) are re-
peated till the algorithm succeeds (which gives us necessary
multiplication factor). This entire procedure is repeated for
each of the 15000 task sets.

With this procedure, we obtain a histogram of necessary
multiplication for different algorithms. (Detailed results are
provided in Appendix in [3].) Among the previously known
algorithms, we found that SKB-ICPP-IMP offered the best
necessary multiplication factor. Among the new algorithms,
we found that FF-4C-COMB performed best. Therefore,
we only depict these (and FF-3C since it is a baseline of
all our algorithms) in Figure 3. As seen in our experi-
ments, the necessary multiplication factor of FF-4C-COMB
never exceeded 1.325 whereas for FF-3C and SKB-ICPP-
IMP this factor is close to two. Therefore, FF-4C-COMB
offers significantly better average-case performance com-

pared to prior state-of-art.
We also measured the running times of each algorithm

(Table 1). As mentioned, we deal with the CPLEX overhead
for the SKB-algorithms for fair evaluation. We can see that,
in our experiment, our proposed algorithms all run in less
than 1.1 µs but the SKB algorithms had running times in the
range of 13500 to 160000 µs. Hence all of our algorithms
run at least 12000 times faster.

8. Discussion and conclusions
The heterogeneous multiprocessor computational model

(i.e unrelated parallel machines) is more general than identi-
cal or uniform multiprocessors, in terms of the systems that
it can accommodate. Generally, this called for algorithms
with large computational complexity, for provably good
performance. We partially solve the issue via a scheduling
algorithm for multiprocessors consisting of two unrelated
processor types. This restricted model is of great practi-
cal interest, as it captures many current/future single-chip
heterogeneous multiprocessors [13][17][1][10]. FF-3C is
low-degree polynomial in time-complexity, i.e., faster than
algorithms based on ILP (or relaxation to LP).

We designed variations on FF-3C with better average-
case performance and with the same time-complexity and
the same speed competitive ratio. In particular we note
that, in our experimental evaluations, one of our new algo-
rithms, FF-4C-COMB, runs 12000 to 160000 times faster
and has significantly smaller necessary multiplication fac-
tor than the prior state-of-art algorithms [8, 7].
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