

Automated resource allocation for T-Res

Demo

CISTER-TR-160209

Shashank Gaur

Raghuraman Rangarajan

Eduardo Tovar

Demo CISTER-TR-160209 Automated resource allocation for T-Res

© CISTER Research Center
www.cister.isep.ipp.pt

1

Automated resource allocation for T-Res

Shashank Gaur, Raghuraman Rangarajan, Eduardo Tovar

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

This pap er presents a demo of an extension develop ed tosupp ort an existing programming abstraction for IoT:
mTRes. mT-Res is an extension of the T-Res programmingabstraction, which allows users to write applications
usinga web framework indep endent of resources. The pap er describ es an automated mechanism for allo cate
resources tosuch applications and adapt to changes in those resources.

Demonstration Abstract: Automated resource allocation

for T-Res

Shashank Gaur, Raghuraman Rangarajan, Eduardo Tovar
CISTER/INESC TEC, ISEP
Polytechnic institute of Porto

Porto, Portugal
{sgaur,raghu,emt}@isep.ipp.pt

ABSTRACT

This paper presents a demo of an extension developed to
support an existing programming abstraction for IoT: mT-
Res. mT-Res is an extension of the T-Res programming
abstraction, which allows users to write applications using
a web framework independent of resources. The paper de-
scribes an automated mechanism for allocate resources to
such applications and adapt to changes in those resources.

1. INTRODUCTION
Programming abstractions have been a major focus for

wireless sensor networks (WSNs). With the evolution of
hardware and software technologies, WSNs have become an
integral part of the Internet of Things (IoT). Such evolution
allows IoT to leverage heterogeneous hardware available in
the network to a much larger extent than simple WSNs.
However, this increases complexity in designing program-
ming abstractions for IoT. T-Res [1] is a recent important
technological contribution in that direction.

Applications in T-Res are created through a structure
called T-Res tasks. The T-Res task is the combination of
four sub-resources: Input Source (is), Output Device (od),
Processing Function (pf), and Last Output (lo). The main
application logic is stored in the /pf. The URI addresses of
Input and Output devices are stored in /is and /od respec-
tively. The most recent output of the application is stored
in /lo. The complete T-Res task can be hosted on an IoT
device and Constraint Application Protocol (CoAP) proce-
dures are used to configure the sub-resources. With such
a structure T-Res establishes separation between data pro-
cessing, input, and output. In the next section, we take a
look at an example scenario to understand the need for our
extension in T-Res.

2. MT-RES
Let us take a look at a simple application in T-Res. This

application keeps the temperature of a room between a fixed
range of 19°C and 22°C. Let us assume there are two temper-
ature sensors and one heating actuator inside the room. To
deploy this application using T-Res, a T-Res task has to be
created, as shown in Figure 1. Initially, the T-Res task can
be hosted on one of the temperature sensors. The /is can be
the temperature sensor other than the host. The /od can be
the heating actuator. The /pf can be set to a script which
takes the input from /is, performs the calculation to check
the temperature bound and provides the output instruction
to /od.

aaaa::2
/sens/temp

/tasks/avgtemp/is

/tasks/avgtemp/pf

/tasks/avgtemp/od

/tasks/avgtemp/lo

aaaa::3

/sens/temp

aaaa::1
/act/heater

/tasks/control/is

/tasks/control/pf

/tasks/control/od

/tasks/control/lo

X

Figure 1: T-Res example task structure

Now assume after some time the temperature sensor set as
/is, is no longer available due to energy failure, communica-
tion cost, or any other change in the IoT. Since there is an-
other temperature sensor available in the room, the system
should be able to detect this change, adapt to it and then use
the other sensor as /is. However, in T-Res, that has to be
done by the user by providing manual instructions using a
CoAP agent. We have designed and implemented an exten-
sion, called mT-Res [2], which facilitates above-mentioned
capabilities on top of T-Res.

mT-Res is divided into two parts, Resource Administrator
and Application Manager, as outlined in Figure 2. As of
now, we keep both of these parts centralized in the system.
The Resource Administrator deploys the code to host de-
vices, assigns the input and output devices and keeps track
of any changes in the system.

IoT Node

Sensor

IoT Node

Task

IoT Node

Actuator

Application

Manager
Resource

Administrator

T-Res

mT-Res

User

User
Manual

Automatic

Figure 2: mT-Res: Extension to T-Res

For user to create a new application, the Application Man-
ager provides a Django enabled web-interface. This inter-
face contains four fields, similar to the T-Res structure.
These are input, output, host, and code. In the code field,
the user can provide the same code as required for T-Res.
In the Input/Output/Host fields the user can do an abstract
selection by selecting the type of resource the user wants to
use. The user does not need to provide URI addresses of
specific resources.

Figure 3: Django enabled web-interface

Once a user submits the application, the Application Man-
ager utilizes Resource Administrator to check available re-
sources and deploy the application accordingly. The Ap-
plication Manager creates a list of acceptable resources for
each allocation. If any of the lists are empty, the framework
notifies users that the desired resources are not available.
Next, it will choose one of the options from each list at ran-
dom, assigns a category ”Active” to selected resources and
”Available” to remaining resources. Once the selections are
available, it requests Resource Administrator to do the allo-
cations.

The Resource Administrator is enabled via python scripts,
which provide automated CoAP operations (such as PULL,
PUSH, GET, and OBSERVE), in form of python functions.
Using these operations, Resource Administrator keeps track
of all resources. If any operation returns with an error, the
Application Manager will once again execute the process to
allocate resources. However, this time, it will use another
available resource for the corresponding error received ear-
lier.

3. DEMO SETUP
We will demonstrate the mT-Res functionality using the

Cooja simulator in Contiki operating system. We choose
Cooja, because it provides emulated motes (WISMotes) and
cycle accurate simulations for the MSP430 microcontroller.
In addition, we can demonstrate radio transceivers with bit-
level accuracy for the same devices. Also, IPv6 and CoAP
support are provided inside Contiki as well. Source code for
mT-Res is available at a public git repository[2].

Figure 4: Cooja Simulation

For our demo, we will use the same example as provided by
T-Res with four WiSMotes. The functions of each mote will
be as follows: mote 1 as border router; mote 2 as host sensor
mote; mote 3 as input sensor mote and mote 4 as output
actuator mote. Both sensor motes 2 and 3 can measure
the same physical parameter. The host sensor mote 2 takes
input from the sensor mote 3, divides the input values in
half and provides output to the actuator mote 4.

We will demonstrate the ability to submit the applica-
tion using mT-Res for these motes. In mT-Res, the user

will provide the same code as T-Res using the application
form provided by the Application Manager. For host, input
and output, the user will just define the type of motes to
be selected. Since there will be two motes which can mea-
sure the same physical parameter, and mT-Res will perform
autonomous resource allocation for that.

Router

Temperature

Sensor

Temperature

 Sensor

Heating

Actuator

Task

CoAP

Instructions

Output

Input

Input

X

Router

Temperature

Sensor

Temperature

 Sensor

Heating

Actuator

CoAP

Instructions

Output

Input

X

Task

(a) Input Node Failure (b) Host Node Failure

Figure 5: Four motes with a simple T-Res task

In our demo, the mT-Res will adapt to failure of two
motes, host and input, respectively. When the input mote
will fail, mT-Res will automatically re-allocate the input
resource to the application by substituting input from the
failed mote to host mote itself, which can measure the same
physical parameter (see Figure 5(a)).

In the second case, failure of host mote will be detected.
For that, the mT-Res will reinitialize the deployment by sub-
stituting the input mote as host mote and assign itself as the
input source as well (see Figure 5(b)). This will demonstrate
that mT-Res can also autonomously move the code from one
device to another device.

4. CONCLUSION
In this demo, we extend capabilities of T-Res to provide

autonomous resource allocations for IoT applications. In ad-
dition, mT-Res provides a web-interface for user(s) to input
applications independent of specific resources. This exten-
sion is an effort to support context-aware IoT [3].

Acknowledgments

This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and Tech-
nology) and co-financed by ERDF (European Regional De-
velopment Fund) under the PT2020 Partnership,
UID/CEC/04234/2013 (CISTER Unit); also by FCT/MEC
and ERDF through COMPETE (Operational Programme
’Thematic Factors of Competitiveness’), within project FCOMP-
01-0124-FEDER-020312 (Smartskin) and also by FCT/MEC
and the EU ARTEMIS JU within project
ARTEMIS/0004/2013 - JU grant nr. 621353(DEWI).

5. REFERENCES
[1] D. Alessandrelli, M. Petraccay, and P. Pagano. T-res:

Enabling reconfigurable in-network processing in
iot-based wsns. In IEEE International Conference on
Distributed Computing in Sensor Systems, 2013.

[2] S. Gaur. mt-res.
https://bitbucket.org/shashankgaur /tres extension,
2015.

[3] S. Gaur, R. Rangarajan, and E. Tovar. Extending t-res
with mobility for context-aware iot. In 1st International
Workshop on Interoperability, Integration, and
Interconnection of Internet of Things Systems 2016.

