

Bounding Cache Persistence Reload
Overheads for Set-Associative Caches

Conference Paper

*CISTER Research Centre

CISTER-TR-200716

2020/08/19

Syed Aftab Rashid*

Geoffrey Nelissen

Eduardo Tovar*

Conference Paper CISTER-TR-200716 Bounding Cache Persistence Reload Overheads for ...

© 2020 CISTER Research Center
www.cister-labs.pt

1

Bounding Cache Persistence Reload Overheads for Set-Associative Caches

Syed Aftab Rashid*, Geoffrey Nelissen, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: syara@isep.ipp.pt, gnn@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Cache memories have a strong impact on the response time of tasks executed on modern computing
platforms.For tasks scheduled under fixed-priority preemptive scheduling(FPPS), the worst-case response time
(WCRT) analyses thataccount for cache persistence between jobs along with cacherelated preemption delays
(CRPDs) have been shown to dominateanalyses that only consider CRPDs. Yet, the existing approachesthat
analyze cache persistence in the context of WCRT analysiscan only support direct-mapped caches.

In this work, we analyze cache persistence in the context ofWCRT analysis for set-associative caches. The main
contributionsof this work are: (i) to propose a solution to find persistent cacheblocks (PCBs) of tasks considering
set-associative caches, (ii) topresent three different approaches to calculate cache persistencereload overheads
(CPROs), i.e., the memory overhead due toeviction of PCBs of tasks, under set-associative caches, and (iii)
anexperimental evaluation showing that our proposed approachesresult in up to 22 percentage points higher task
set schedulabilitythan the state-of-the-art approaches.

Bounding Cache Persistence Reload Overheads for
Set-Associative Caches

Syed Aftab Rashid∗, Geoffrey Nelissen†, Eduardo Tovar∗
∗CISTER, ISEP, Polytechnic Institute of Porto, Portugal, †Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Abstract—Cache memories have a strong impact on the re-
sponse time of tasks executed on modern computing platforms.
For tasks scheduled under fixed-priority preemptive scheduling
(FPPS), the worst-case response time (WCRT) analyses that
account for cache persistence between jobs along with cache
related preemption delays (CRPDs) have been shown to dominate
analyses that only consider CRPDs. Yet, the existing approaches
that analyze cache persistence in the context of WCRT analysis
can only support direct-mapped caches.

In this work, we analyze cache persistence in the context of
WCRT analysis for set-associative caches. The main contributions
of this work are: (i) to propose a solution to find persistent cache
blocks (PCBs) of tasks considering set-associative caches, (ii) to
present three different approaches to calculate cache persistence
reload overheads (CPROs), i.e., the memory overhead due to
eviction of PCBs of tasks, under set-associative caches, and (iii) an
experimental evaluation showing that our proposed approaches
result in up to 22 percentage points higher task set schedulability
than the state-of-the-art approaches.

I. INTRODUCTION

Caches are smaller faster memories that bridge the speed
gap between the main memory and processor by holding fre-
quently required data and instructions closer to the processor.
However, due to their limited capacity not all data/instructions
of all tasks can simultaneously reside in the cache. Hence,
tasks compete for cache space, with one task potentially evict-
ing memory blocks previously loaded into the cache by others.
This may result in increasing the worse-case response time
(WCRT) of tasks depending on whether the instructions/data
needed by the tasks is still available in the cache (i.e., cache
hit) or have been evicted by other tasks (i.e., cache miss).

The impact of caches on the WCRT of tasks is more evident
under preemptive scheduling. In preemptive scheduling, tasks
may suffer additional execution delays due to evictions of
their cache content by other tasks, causing for example Cache

Related Preemption Delays (CRPDs). CRPDs are additional
execution delays suffered by preempted tasks when they reload
useful cache blocks (UCBs) (i.e., memory blocks that would
normally remain in cache between two or more successive ac-
cesses by the preempted task) that were evicted from the cache
during the execution of preempting tasks. Recent works [1],
[2] have also shown that under FPPS, the use of caches may
result in tighter WCRT of tasks due to cache persistence.
Cache persistence refers to cache blocks that are never evicted
between any two execution of a task. Those cache blocks are
called persistent cache blocks (PCBs). Consequently, thanks

to PCBs, the memory access demand of subsequent jobs of
τi can be much lower than its worst-case memory access
demand in isolation, which results in reducing the WCRT for
tasks scheduled using FPPS. By definition, once loaded into
cache, PCBs of a task can never be invalidated or evicted
by the task itself. However, PCBs may be evicted due to
interleaved or preemptive execution of other tasks, leading to
Cache Persistence Reload Overheads (CPRO).

Considering that CPROs may significantly affect tasks
WCRTs, several approaches have been proposed in the state-
of-the-art to bound CPROs [1], [2] using the PCBs of the task
under analysis and evicting cache blocks (ECBs) (all cache
block used by the task during its execution) of all other tasks in
the system. However, those analyses [1], [2] assumed a direct-

mapped cache and did not work for processor architectures
based on set-associative caches. This is mainly because in a
direct-mapped cache, each cache set can hold at most one
memory block whereas, in a set-associative cache, each cache
set may hold as many memory blocks as there are cache ways

(also referred to as the cache associativity). Therefore, in case
of a cache conflict between two tasks τi and τj , each memory
access performed during τj’s execution may evict at most one
PCB of τi in a direct-mapped cache, while it may lead to
multiple evictions in a set-associative cache. This is known as
the cascading effect. An example of such cascading effect is
shown in Fig. 1. We can see that for a direct-mapped cache
(see Figure 1a) a single cache conflict between τi and τj (i.e.,
due to preemption of τi by τj) can only cause one cache
miss whereas the same cache conflict leads to multiple cache
misses for a set-associative cache (see Figure 1b). Therefore,
for set-associative caches, a sound CPRO estimate can only
be obtained by accounting for the cascading effect which is
not considered by the existing CPRO analysis that focus on
direct-mapped caches.

Note that there exist few analyses [3] in the literature
that focus on CRPD computation considering set-associative
caches. However, it has been shown in recent works [1], [2]
that only considering CRPDs for tasks scheduled under FPPS
may result in largely pessimistic WCRT bounds if it does
not account for cache persistence. Therefore, in this work, we
present different solutions to analyze cache persistence for set-
associative caches and integrate those solutions in the WCRT
analysis of FPPS. The main contributions of this work are as
follow: (i) to propose a solution to find persistent cache blocks
(PCBs) of tasks considering set-associative caches; and (ii) to
present three different approaches to calculate CPROs on plat-
forms implementing set associative caches. These approaches978-1-7281-4403-0/20/$31.00 ©2020 IEEE

(a) Direct-mapped Cache

(b) Set-associative Cache

Fig. 1: Example execution of a task τi (from left to right)
considering (a) a direct-mapped cache with 4 cache sets, i.e.,
{S0, S1, S2, S3} and (b) a 4-way set-associative cache having
one cache set S0 using a Least-Recently-Used (LRU) cache
replacement policy. The LRU age of a block b refers to how
many accesses were performed to the cache set in which b is
saved since the last access to b.

are (1) the PCB-ECB approach, that uses only the set of PCBs
of the task under analysis and the set of ECBs of all other
tasks in the system to evaluate the CPRO, (2) the ResilienceP
analysis, that removes some of the pessimism in the PCB-ECB
approach by considering the resilience of PCBs, and (3) the
multi-path ResilienceP analysis, that considers the variation in
the resilience of PCBs over different executions of a task in
order to have an even tighter CPRO bound. The experimental
evaluation shows that our proposed approaches result in up to
22 percentage points higher task set schedulability than the
state-of-the-art approaches.
Organization. Section II introduces the system model, nota-
tions and background. Section III outlines how to determine
the PCBs of tasks when considering set-associative caches. We
then present the PCB-ECB approach and the ResilienceP anal-
ysis in Section IV. Section V details the multi-path ResilienceP
analysis and in Section VI we explain how the computed
CPRO bounds can be incorporated into the WCRT analysis.
An experimental evaluation is presented in Section VII. Lastly,
conclusions are drawn in Section IX.

II. SYSTEM MODEL, NOTATIONS AND BACKGROUND

We focus on single-core processor with a private set-
associative instruction cache (also referred to as L1) using
the LRU replacement policy, i.e., on a cache miss the least
recently used memory block (or equivalently the block with
the largest LRU-age) within the targeted cache set is evicted.
The number of memory blocks that can be stored in each cache
set is referred to as the number of ways or the associativity
of the cache and is denoted by W . The set of all cache sets
is denoted by S. We use dmem to denote the time needed to
load one block from the main memory into the cache.

We consider a task set Γ comprising n sporadic constrained
deadline tasks {τ1 , τ2 , ...τn}. Each task τi ∈ Γ is defined by
a triplet (Ci ,Ti ,Di), where Ci is the worst-case execution
time (WCET) of τi, Ti is its minimum inter-arrival time and
Di is the relative deadline of each instance or job of τi.
We assume Di ≤ Ti . In addition to the WCET Ci, we use
separate terms to measure the worst-case processing demand
and memory access demand of each task. PD i denote the
worst-case processing demand of τi, i.e., it only accounts for

execution requirements of τi and does not include the time
spent by τi to perform memory operations. MD i denote the
worst-case memory access demand of any job of task τi, i.e.,
the maximum time during which any job of τi is performing
memory operations. Note that the value of Ci, PD i and MD i

are determined assuming τi executes in isolation. It obviously
hold that Ci > PD i and Ci > MD i, but it also holds that
Ci ≤ PD i + MD i

1 since PD i and MD i may result from
different execution scenarios of τi along different execution
paths (e.g., due to different inputs). The WCRT of task τi,
denoted by Ri, is defined as the longest time between the
arrival and the completion of any job of τi.

For notational convenience, we use hp(i) to denote the set
of tasks with priorities higher than that of τi and hep(i) to
denote the set of tasks with higher than or equal priority to τi,
including τi, i.e., hep(i) = hp(i)∪ τi. Note that in this work,
we only focus on analyzing additional cache overheads due
to CRPDs and CPROs. Other overheads that remain constant
over the execution of a task, e.g., due to context switches etc.,
are assumed to be included in the task’s WCET.
Evicting and Useful Cache Blocks (ECBs and UCBs). Any
cache block m used by a task during its execution is called
an evicting cache block (ECB) [6]. A cache block m is also
called a UCB at program point P , if m is cached at P and
may be reused at program point Q that may be reached from
P without eviction of m [7].
Cache Related Preemption Delay (CRPD). When a task τi is
preempted by a higher priority task τj , ECBs of τj may evict
UCBs of τi that are to be reloaded from the main memory
after τi resumes its execution. The additional execution time
incurred by τi due to these extra cache reloads is termed as
cache related preemption delay (CRPD) and is denoted by γi,j .

For set-associative caches, the resilience-analysis [3] dom-
inates all other methods in the state-of-the-art to compute
CRPD. It uses the notion of resilience defined as follows.
Resilience [3]. The resilience of a memory block m at program
point P is the maximum disturbance that m can endure before
being evicted from the cache. This disturbance represents the
number of ECBs of preempting task(s) that may be mapped
to the same cache set as m. The Resilience of a cache block
m at a program point P is given by

resP (m) = (W − 1)−max -ageP (m) (1)

where max -ageP (m) is the maximum LRU-age of m at
program point P, i.e., the maximum number of accesses to
the same cache set as m from the last use of m (before or
at program point P) to the next access to m after P [3]. For
example, assuming memory blocks mi, ma, mb, mc and md

in Figure 2 are all accessed by task τi and that they are all
mapped to the same cache set, the maximum LRU-age of UCB
mi at program point P, i.e., max -ageP (mi), is 4 and therefore
for W = 8, its resilience according to Eq. (1) is (8−1)−4 = 3.

1It is experimentally confirmed since Ci ≤ PD i +MD i for several
benchmarks from the Mälardalen Benchmark Suite [4] that were analyzed
using the Heptane [5] static WCET estimation tool for a MIPS R2000/R3000
architecture.

For every program point P , the maximum LRU-age of a
UCB m can be calculated by using a forward analysis to find
the maximal number of accesses from the last use of m to
program point P and a backward analysis to find the maximum
number of accesses from program point P to the next access to
m. The maximum LRU-age of m at program point P is then
bounded by the sum of the bounds returned by both analyses
(see [3] for a detailed description).

Fig. 2: Illustration of the maximum LRU-age of a UCB mi.
The dashes (from left to right) denote the sequence of memory
accesses during the execution of τi.

Using the resilience-analysis, the CPRD suffered by a task
τi due to a single preemption by a higher priority task τj in
a cache set s is given by γres,s

i,j , i.e.,

γres,s
i,j = dmem ×

∣

∣

∣
UCBs

i \ {mi|res(mi) ≥ |ECBs
j |}

∣

∣

∣
(2)

where |UCBs
i | and |ECBs

j | denote the number of UCBs of
τi and the number of ECBs of τj in cache set s, respectively.
The total CRPD over all cache sets in S is then given by γres

i,j ,
where

γres
i,j =

∑

s∈S

γres,s
i,j (3)

Note that since the number of UCBs and their resilience
is calculated for each program point, γres

i,j is given by the
program point that maximizes Eq. (3) over all program points
in the task code.
Persistent Cache Block (PCB) [1]. A memory block mi of
task τi is a PCB if, once loaded by τi, mi will never be
invalidated or evicted from the cache when τi executes in
isolation. The set of PCBs of a task τi is denoted by PCB i.

If all PCBs of a task τi are available in the cache from a
previous job execution of τi then the memory access demand
of subsequent jobs of τi will be much lower than the worst-
case memory access demand of τi in isolation. This reduced
memory demand is called the residual memory access demand

of τi and is denoted by MDr
i .

Residual Memory Demand (MDr
i) [1]. The residual memory

access demand MDr
i of task τi is the worst-case memory

access demand of any job of τi when all its PCBs are already
loaded in the cache memory.

The number of PCBs and the residual memory access
demand (MDr

i) of a task τi can be used to bound its total

memory access demand M̂D i(t) in isolation during a time
interval of length t:

M̂D i(t)
def
= min

{⌈

t

Ti

⌉

MD i ;

⌈

t

Ti

⌉

MDr
i+ | PCB i | ×dmem

}

(4)

where
⌈

t
Ti

⌉

counts the maximum number of jobs released by

τi in the interval of length t.

Cache Persistence Reload Overhead (CPRO) [1]. The
CPRO suffered by a task τj executing during the response
time of a task τi is denoted by ρj,i and is formally defined as
the additional execution time incurred by task τj in reloading
from the main memory its PCBs that may have been evicted
from the cache due to the executions of tasks in hep(i) \ τj .
Disturbance. The disturbance suffered by a task τi on a cache
set s due to another set of tasks T is defined as the total
number of ECBs of tasks in T that are mapped to the cache
set s. The disturbance due to T is thus the maximum number
of memory blocks of tasks in T that compete with τi for space
in cache set s.

III. FINDING PCBS FOR SET-ASSOCIATIVE CACHES

For direct-mapped caches, determining the set of PCBs, i.e.,
PCB i, of a task τi is relatively simple. A memory block mi of
task τi belongs to PCB i if it is the only memory block of τi
mapped to a given cache set. However, under set-associative
caches, several memory blocks of τi may be mapped to a
single cache set and the presence of a memory block in cache
depends on the LRU-age of that memory block. A W -way
set-associative LRU-cache can hold up to W memory blocks
in each cache set and the LRU-age of each memory block
can be between 0 and W − 1 (respectively representing the
most-recently and the least-recently accessed memory block
in the cache set). Given a program point P , if the LRU-age
of a memory block at P is greater than or equal to W then
an access to that memory block at P will be a cache miss,
i.e., the memory block is not in the cache anymore. We can
leverage this information to find PCBs of a task τi under a set-
associative cache. By definition, once loaded into the cache by
task τi all PCBs of τi will not be evicted or invalidated by
τi while executing in isolation. Therefore, all memory blocks
used by τi that have an LRU-age less than or equal to W − 1
at every program point P in τi can be PCBs of τi. However,
knowing that PCBs are potentially reused by the same but
also by every next job executed by task τi, using only one job
execution of τi to bound the maximum LRU-age of PCBs may
not be sufficient. To illustrate this last property, consider the
control-flow graph (CFG) and mapping of the memory blocks
of two successive jobs of task τi (i.e., τi,1 and τi,2) shown in
Fig. 3. In that example, all memory blocks, i.e., m1, m2, m3,
and m4, used by τi map to the same cache set s in a 4-way set-
associative cache. We can see in Fig. 3a that when considering
only one job of τi, i.e., τi,1, the maximum LRU-age of memory
blocks m1, m2, m3, and m4 is 3, 2, 1, and 0 respectively.
However, if we consider the execution sequence τi,1 followed
by τi,2, we can see that the maximum LRU-age of all the
memory blocks is 3. Note that underestimating the maximum
LRU-age of memory blocks may lead to false positives, i.e.,
a memory block may be categorized as a PCB (i.e., LRU-age
≤ W − 1 over the execution of one job) while it is not (i.e.,
LRU-age > W − 1 over the execution of a sequence of jobs).
Therefore, in order to soundly estimate the set of PCBs of a
task τi, it is important to calculate the maximum LRU-age of
all memory blocks used by τi after any execution sequence of
jobs of τi (in isolation). This can be done by assuming that

(a) (b)

Fig. 3: Maximum LRU-age of memory blocks of task τi
(a) over the execution of two jobs of τi, and (b) under the
assumption that τi is cyclic

τi is cyclic, i.e., a loop is assumed between the end point E
and start point S of τi (see Fig. 3b). The cyclic assumption
ensures that the maximal number of different cache accesses
between the last use of a memory block mi in one job of τi
and the first access of mi in the next job of τi are considered
when determining the maximum LRU-age of mi.

Formally, the analysis to find PCBs of a task τi is performed
as follows:

1) Apply the standard persistence analysis [8] on the code of
task τi to determine the set of memory blocks Bs

m that
are persistent in each cache set s at the end of τi. The
Persistence analysis determines if a memory block will not
be evicted after it has been loaded in the cache, i.e., the
first reference to that memory block may result in a cache
miss but all subsequent references to that memory block
will be cache hits (see [8] for a detailed description on the
persistence analysis). A memory block mi is persistent in
a cache set s if its LRU-age in s is less than or equal to
W − 1 at the end of τi’s execution.

2) Apply the persistence analysis again (i.e., to account for
the cyclic assumption) on τi assuming that each cache set
s already contains the Bs

m memory blocks at the start
of τi’s execution and that each of those blocks has its
maximum LRU-age derived in step 1. All memory blocks
in Bs

m that are in every Abstract Cache States (ACSs) (i.e.,
representing all possible mappings of memory blocks to
cache lines) of the second persistence analysis (i.e, memory
block with LRU-age≤ W − 1 in all ACSs) are PCBs of τi
in cache set s and are denoted by PCBs

i . The final set of
PCBs of task τi is then given by

PCB i =
⋃

s∈S

PCBs
i (5)

IV. CPRO ANALYSIS FOR SET-ASSOCIATIVE CACHES

In this section, we present two approaches for the calcula-
tion of the CPRO for set-associative caches, namely, the PCB-
ECB approach and the ResilienceP analysis.

A. PCB-ECB Approach

For direct-mapped caches, the CPRO can be computed by
using the intersection between the set of PCBs of the task

under analysis and the set of ECBs of all other tasks that may
evict PCBs of that task. For example, under the CPRO-union
approach presented in [1], the CPRO ρdirj,i one job of a higher
priority task τj ∈ hp(i) may suffer while executing during
the response time of a lower priority task τi is computed as
follows

ρdirj,i = dmem ×

∣

∣

∣

∣

PCB j ∩
(

⋃

∀τk∈hep(i)\τj

ECBk

)

∣

∣

∣

∣

(6)

where PCB j is the set of PCBs of τj ,
⋃

∀τk∈hep(i)\τj
ECBk

is the set of ECBs of all tasks in hep(i) \ τj and dmem is
the time required to reload one PCB from the main memory
(see [1] for a formal proof of Eq. (6)). The bound resulting
from Eq. (6) is sound for a direct-mapped cache where each
ECB of tasks in hep(i) \ τj can evict at most one PCB of τj .
However, using Eq. (6) to calculate the CPRO of τj under a
set-associative cache may result in underestimating the CPRO
of τj due to the cascading effect mentioned in the introduction,
i.e., several/all PCBs of task τj may be evicted due to a single
ECB of another task mapped to the same cache set (see Fig. 1).
Considering that in a set-associative cache, each cache set s
can be analyzed independently, a sound estimate of the CPRO
suffered by one job of task τj due to a cache set s ∈ S can be
obtained by using the two following properties: (1) PCBs of
τj mapped in cache set s may be evicted and hence participate
to the CPRO of τj during the response time of another task τi,
only if one or more ECB(s) of tasks in hep(i)\τj are mapped
to the same cache set s, i.e., the disturbance τj may suffer due
to all tasks in hep(i)\τj in a cache set s must be greater than
or equal to one, and (2) the participation of a cache set s to
the CPRO of τj is upper bounded by the number of PCBs of
τj in that cache set multiplied by dmem , i.e., dmem ×|PCBs

j |.
Therefore, the CPRO one job of task τj may suffer due to

cache set s is upper bounded by ρset,sj,i , where

ρset,sj,i = dmem ×

{

|PCBs
j | if Ds

j,i ≥ 1

0 otherwise
(7)

where Ds
j,i is the disturbance all tasks in hep(i)\τj may cause

on PCBs of τj in a cache set s. By definition, the maximum
disturbance task τj may suffer due to all tasks in hep(i) \ τj
is upper bounded by

∑

∀τk∈hep(i)\τj
|ECBs

k|, i.e., the total

number of ECBs of tasks in hep(i) \ τj mapped to cache set
s. Therefore, Ds

j,i ≤
∑

∀τk∈hep(i)\τj
|ECBs

k|. The rationale of

using ECBs of all tasks in hep(i) \ τj to bound Ds
j,i is to

account for nested/multiple execution of tasks in hep(i) \ τj
between two jobs of task τj . Since, in the worst-case all tasks
in hep(i) \ τj may sequentially execute between two jobs of
τj , the cumulative impact of tasks in hep(i) \ τj on PCBs of
τj is upper bounded by

∑

∀τk∈hep(i)\τj
|ECBs

k|.
Note that Eq. (7) accounts for the cascading effect by

considering that a single ECB of tasks in hep(i) \ τj mapped
to a cache set s may evict all PCBs of τj in that cache set.

The total CPRO one job of τj may suffer during the
response time of τi is given by

ρsetj,i =
∑

∀s∈S

ρset,sj,i (8)

B. ResilienceP Analysis

The PCB-ECB approach presented above assumes that if
one ECB of any task in hep(i)\ τj is mapped to a cache set s
then all the PCBs of τj in s will be evicted. This assumption
is safe but very pessimistic. To illustrate, consider the example
depicted in Figure 4. It shows a sequence of cache references

Fig. 4: Highlighting the pessimism in the PCB-ECB approach

during the execution of a task τj (from left to right) assuming
that τj has 4 PCBs in cache set s, i.e., PCBs

j = {a, b, c, d}.
We also assume that the value of disturbance Ds

j,i is equal
to 1, i.e., only one ECB of tasks in hep(i) \ τj is mapped to
cache set s. Using |PCBs

j | = 4 and Ds
j,i = 1 in Eq. (7) (i.e.,

PCB-ECB approach) the CPRO of τj due to cache set s is
calculated to be 4× dmem . However, we can see in Figure 4
that only one cache reference of τj will be a miss after the
execution of tasks in hep(i) \ τj . Therefore, the actual CPRO
of τj due to cache set s is only 1× dmem .

The ResilienceP analysis removes excessive pessimism in
the PCB-ECB approach by finding PCBs of task τj that may
remain cached (and therefore does not contribute to the CPRO)
even after the execution of tasks in hep(i) \ τj thanks to their
resilience. Based on the definition of resilience in Section II,
the resilience of a PCB mj of task τj is given by the maximum
value of disturbance Ds

j,i that mj can endure before being
evicted from the cache due to the execution of tasks in hep(i)\
τj .

The resilience-analysis proposed in [3] can be used to
determine the resilience of all memory blocks used by a task
τj , at every program point P during the execution of τj .
However, using the resilience-analysis [3] to determine the
resilience of PCBs may result in overestimating the resilience
of PCBs. This is mainly because the resilience-analysis [3]
was proposed to calculate the resilience of UCBs instead of
PCBs. By definition, UCBs of a task τj may only be reused
during the same job execution of τj and hence it is sufficient to
consider the execution of only one job of τj when bounding the
maximum LRU-age of its UCBs. However, PCBs are different
from UCBs considering that PCBs may be reused during the
execution of the same job and/or any next job of τj . Therefore,
to have a sound estimate of the resilience of PCBs of τj
it is necessary to calculate the maximum LRU-age of PCBs
after any execution sequence of jobs of τj . See Figure 3 that
shows that considering only one job of task τi may result in
underestimating the maximum LRU-age (i.e., overestimating
the resilience) of memory blocks m2, m3 and m4.

The ResilienceP analysis uses the approach described in
Section III to determine the resilience of PCBs of each task.
Let PersistentAgeP (mj) denote the LRU-age of a PCB
mj at any program point P during the execution of task
τj resulting from the analysis detailed in Section III. Then,
the maximum LRU-age max -age(mj) of mj is calculated

by maximizing PersistentAgeP (mj) over all program points
during the execution of τj , i.e.,

max -age(mj) = max
∀P∈P

PersistentAgeP (mj) (9)

where P is the set of all program points. Consequently, the
resilience of PCB mj is then given by resPCB (mj) = (k −
1)−max -age(mj).

Therefore, the ResilienceP analysis upper bounds the CPRO
that may be suffered by one job of task τj due to cache set s
by ρres,sj,i , where ρres,sj,i is computed as follows

ρres,sj,i = dmem ×
∣

∣

∣
PCBs

j \
{

mj |resPCB (mj) ≥ Ds
j,i

}

∣

∣

∣
(10)

where resPCB (mj) is the resilience of a PCB mj ∈ PCBs
j

and Ds
j,i is the maximum disturbance all tasks in hep(i) \ τj

may cause to a cache set s.
Note that Eq. (10) excludes PCBs of τj that remain cached

after the execution of tasks in hep(i)\τj (i.e., those for which
resPCB (mj) ≥ Ds

j,i) from the CPRO. Therefore, it provides
a tighter bound on the CPRO than the PCB-ECB approach.

The total CPRO of one job of task τj executing during the
response time of another task τi is thus bounded by

ρresj,i =
∑

∀s∈S

ρres,si,j (11)

Finally, knowing from [1] that in a time interval of length t

at most
⌈

t
Tj

⌉

−1 jobs of τj may suffer CPRO, the total CPRO

of task τj in a time interval of length t is bounded by

ρ̂j,i(t) =

(⌈

t

Tj

⌉

− 1

)

× ρj,i (12)

where ρj,i can be calculated either using the PCB-ECB
approach or the ResilienceP analysis (i.e., by using Eq. (8)
or Eq. (11)).

V. MULTI-PATH RESILIENCEP ANALYSIS

The ResilienceP analysis always considers the worst-case
(i.e., minimum) resilience for every PCB and for every job
of τj that may execute in a time interval of length t. This
assumption is exact in the case where τj has only a single
execution path as shown in Fig. 3b. However, if τj has multiple
execution paths, the resilience of PCBs may vary depending
on the actual execution paths taken by two successive jobs
of τj . Therefore, always considering the minimum resilience
of PCBs over all job executions of τj may overestimate the
total CPRO τj may suffer. To illustrate this, Fig. 5a shows the
CFG of a task τj with two execution paths and four possible
execution flows between two jobs of τj , i.e., p1 → p2, p2 →
p1, p1 → p1 and p2 → p2. The cache content along each
execution flow is also shown in Fig. 5a. We assume that all
memory blocks of τj except m0 and m5 map to the same
cache set s of a 4-way set-associative cache. For simplicity,
we only focus on PCB m1.

We can see in Fig. 5a that the resilience of m1 is minimum,
i.e., resPCB (m1) = 0, if the first job of τj follows path p1
and the next job follows path p2. Now consider the example
schedule shown in Fig. 5b showing four jobs of τj executed

(a) Variation in the resilience of PCBs of task τj

(b) Different job executions of τj and τk

Fig. 5: Highlighting the pessimism in the ResilienceP analysis

together with three jobs of a task τk ∈ hep(i) \ τj such that
ECBs

k = {mx}, i.e, Ds
j,k = 1. Fig. 5b shows the contents of

cache set s after the execution of every job of τj and τk.

Since the minimum resilience of m1 is 0 and Ds
j,k >

resPCB (m1), the ResilienceP analysis (i.e., Eq. (10)) implies
that every time τk preempts τj or executes between two
subsequent jobs of τj , m1 will be evicted. This results in a
CPRO equal to 3×dmem . However, we can see in Fig. 5b that
this is not true. In fact even when we maximize the number
of jobs of τj following the execution flow with the minimum
resilience (i.e., p1 → p2), m2 is evicted and reloaded only two
times resulting in a CPRO of 2 × dmem . The reason behind
this result is that if the first two jobs of τj execute according
to the execution flow p1 → p2, then the second and third jobs
of τj can either follow the execution flow p2 → p1 or p2 → p2
In both cases, the actual resilience of m1 is equal to 1 (instead
of 0 as assumed by the ResilienceP analysis).

The multi-path ResilienceP analysis reduces the pessimism
of the ResilienceP analysis by considering the variation in the
resilience of PCBs across different job execution flows of a
same task τj . It computes the total CPRO task τj may suffer in
a time interval of length t by first creating a CPRO-table (See
Table I) for all PCBs of τj in each cache set. The CPRO-
table determines how many times each PCB mj ∈ PCBs

j

can be evicted in an interval of length t considering a given
disturbance D and the maximum number of jobs J released
by τj in the interval of length t. Given the values of D and
J , one entry in Table I tells us how many times PCB mj may
be evicted and must therefore be reloaded.

TABLE I: CPRO-table for every PCB mj of task τj

Number of jobs of τj (J)

2 3 ...
⌈

t
Tj

⌉

1 ρj,mj
(1, 2) ρj,mj

(1, 3) ... ρj,mj
(1,

⌈

t
Tj

⌉

)

2 ρj,mj
(2, 2) ρi,j(2, 3) ... ρj,mj

(2,
⌈

t
Tj

⌉

)

D
is

tu
rb

an
ce

D

...

≥ W 1 2 ...
⌈

t
Tj

⌉

− 1

Algorithm 1 Building the CPRO-table for PCB mj of task τj
Input: Interval length t; PCB mj ; Set of all possible execution paths EPj

of τj .
Output: All ρj,mj

(D, J) entries in Table I.

1: F lows :=PathsPermutations(τj , |EPj |)
2: for D := 1 to W − 1 do
3: PossibleF lows :=FindPathsCombinations(mj , F lows, D)
4: L :=FindLongestFlow(PossiblePaths)

5: for J := 2 to
⌈

t
Tj

⌉

do

6: if |PossibleF lows| = 0 then
7: ρj,mj

(D, J) := 0;
8: else
9: MaxCPRO := J − 1

10: if L ≥ MaxCPRO then
11: ρj,mj

(D, J) := MaxCPRO;
12: else

13: ρj,mj
(D, J) := MaxCPRO −

⌊

J
L+1

⌋

;

14: end if
15: end if
16: end for
17: end for

A. Building the CPRO-table

In this subsection we discuss how a CPRO-table can be built
for PCBs.

First, we make use of a couple of simple properties to bound
the size of that table:

1) It is proved in [1] that if a task τj releases J jobs in a
time interval of length t, the maximum number of times
each PCB mj ∈ PCBs

j can be evicted is upper bounded
by J − 1.

2) If the disturbance D suffered by a PCB mj is greater than
or equal to the number of ways W in the cache (i.e., D ≥
W) then the entire cache set s will be filled by the ECBs
of disturbing tasks and PCB mj will be evicted after every
job execution i.e., it will be evicted J − 1 times.

We use that information to fill all the CPRO-table entries such
that D ≥ W (see Table I).

The remaining entries (noted ρj,mj
(D, J)) are calculated

using Algorithm 1. Algorithm 1 uses the set of all possible
execution paths EPj of task τj and the maximum length
t of the interval in which its PCB mj may be evicted as
input. It then fills row-wise all entries in Table I. The function
PathsPermutations(·) at line 1 returns a set that con-
tains all possible executions paths combinations between two
jobs of τj . Given that task τj has |EPj | possible execution
paths, the size of Flows is 2|EPj |.

The external loop (lines 2 to 17) is used to iterate over
all disturbance values D between 1 and W − 1 (all table
entries for D ≥ W are already filled). As previously dis-

cussed, the resilience of a PCB mj may vary depending on
the specific combination of execution paths taken by two
successive jobs of τj (see Fig. 5a). Therefore, the function
FindPathsCombinations(·) (line 3) returns the set of
paths combinations of two successive jobs of τj for which
the resilience of mj is less than D. By the definition of
resilience, the memory block mj may be evicted only for those
paths combinations. Function FindLongestFlow(·) then
generates (at line 4) the longest execution flow composed of
path combinations in PossibleF lows. For example, assuming
PossibleF lows contains the three paths combinations p1 →
p2, p3 → p1 and p3 → p2. The longest execution flow that may
be generated by FindLongestFlow(·) is p3 → p1 → p2.
The function thus returns 2 as the length L of that flow.
Note that by definition of PossibleF lows, there exists a
(possibly different) program point P in each paths composing
that execution flow for which the resilience of mj is less
than D. Therefore, if the maximum disturbance D is applied
at each of those program points, then mj will be evicted
L times. Moreover, since FindLongestFlow(·) generates
the longest such execution flow, there cannot be more than L
successive evictions of mj . The nested loop (lines 5 to 16) is
then used to upper bound how many times mj will be evicted
for every possible value of J (note that for sporadic tasks, at

most
⌈

t
Tj

⌉

jobs of τj may be released in any interval of length

t, thus J ≤
⌈

t
Tj

⌉

). If the set of possible paths combinations

returned by the function FindPathsCombinations(·) is
empty, then mj cannot be evicted for the disturbance value
D and hence ρj,mj

(D, J) is equal to 0 (line 6). Otherwise, if
there exists some paths combinations for which mj may be
evicted with a disturbance D, i.e., |PossibleF lows| > 0, then
two cases must be considered:

1) If L ≥ J −1, then we know from Lemma 2 of [1] that the
CPRO suffered by J successive jobs of a task τj is upper
bounded by J −1 and thus ρj,mj

(D, J) = J −1 (line 11).
2) If L < J − 1, then, by the definition of L, mj may be

evicted at most L times in every execution flow composed
of L + 1 successive jobs of τj . Therefore, the maximum
number of times mj may be evicted for a succession of J

jobs is bounded by (J − 1)−
⌊

J
L+1

⌋

(line 13).

Example. Consider memory block m1 in Fig. 5. Applying
Algorithm 1 with Ds

j,k = 1 (i.e., |ECBs
k| = 1), L=1 (i.e., the

execution flow p1 → p2) and J={2, 3, 4}, we get ρj,m1
(1, 2) =

1, ρj,m1
(1, 3) = 1 and ρj,m1

(1, 4) = 2 which is consistent
with the scenario depicted in Fig. 5b.

B. Bounding the CPRO

After creating the CPRO-table of every PCB of task τj using
Algorithm 1, the total CPRO that task τj may suffer in a time
interval of length t can be bounded using Algorithm 2. The
inputs to Algorithm 2 are the CPRO-tables of every PCB mj of
task τj , the maximum disturbance task τj may suffer for every
s ∈ S due to the execution of tasks in hep(i)\τj , i.e., Ds

j,i and
the length of time interval t. The output of Algorithm 2 is the
total CPRO of task τj in a time interval of length t denoted by

Algorithm 2 Computing the total CPRO of task τj in a time
interval of length t
Input: Interval length t; CPRO-table of every PCB mj of task τj ;
Disturbance Ds

j,i for every s ∈ S

Output: The total CPRO of task τj in a time interval of length t, i.e., ρ̂mul
i,j (t).

1: J :=
⌈

t
Tj

⌉

2: ρ̂mul
i,j (t) := 0

3: for ∀s ∈ S do
4: ρ

mul,s
i,j := 0

5: D := Ds
j,i

6: for ∀mj ∈ PCB
s
j do

7: ρ
mul,s
i,j := ρ

mul,s
i,j + ρj,mj

(D, J)
8: end for
9: ρ̂mul

i,j (t) := ρ̂mul
i,j (t) + ρ

mul,s
i,j

10: end for

ρ̂mul
i,j (t). Given the length t of the time interval, J :=

⌈

t
Tj

⌉

upper bounds the number of jobs τj may execute in t (line 1).
For every cache set s ∈ S, the value of D is set using Ds

j,i

(line 5). Given the values of D and J the inner loop (lines 6
to 8) iteratively computes the CPRO of task τj in every cache

set s ∈ S, i.e., ρmul,s
i,j , using values from the CPRO-table of

every PCB mj ∈ PCBs
j . The outer loop (lines 3 to 10) then

sums up the values of ρmul,s
i,j for all s ∈ S to bound ρ̂mul

i,j (t).

VI. WCRT ANALYSIS

The WCRT analysis for FPPS that accounts for both CRPDs
and CPRO considering direct-mapped caches was proposed
in [1], [2]. It uses Eq. (13) to calculate the WCRT Ri of a
task τi (see [1] for a formal proof of Eq. (13)).

Ri = Ci +
∑

∀j∈hp(i)

min

{

⌈

Ri

Tj

⌉

Cj ;

⌈

Ri

Tj

⌉

PDj+

M̂Dj(Ri) + ρj,i(Ri)

}

+
∑

∀j∈hp(i)

γi,j(Ri)

(13)

where Ci and Cj are the worst-case execution times of τi and
τj , respectively. PDj is the worst-case processing demand of

τj and M̂Dj(Ri) is calculated using Eq. (4) and is an upper
bound on the total memory access demand (in terms of time)
of all jobs of τj that may execute during the WCRT Ri of
τi. γi,j(Ri) and ρj,i(Ri) are upper bounds on the CRPD and
CPRO considering the pair of tasks τi and τj , respectively.

Eq. (13) can also be used to calculate the WCRT Ri

of a task τi when considering set-associative caches; (i) by
calculating the CPRO ρj,i(Ri) using any of the approaches
presented in Sections IV and V, and (ii) by calculating the
CRPD γi,j(Ri) using the state-of-the-art resilience-analysis
[3]. The WCRT Ri of task τi is then calculated by using simple
fixed-point iteration on Ri, where Ri is initialized to Ci. In
every iteration, the values of ρj,i(Ri) are updated based on
the chosen approach. For example, if multi-path ResilienceP
analysis is used, Algorithm 2 is executed at every iteration
to update the total CPRO suffered by the tasks based on the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1

Taskset Utilization

No CRPD/CPRO
SoA Resilience Analysis (Only CRPD)

PCB-ECB Approach
ResilienceP Analysis

Multi-Path ResilienceP Analysis

~22%

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Number of Tasks

No CRPD and CPRO
SoA Resilience Analysis (Only CRPD)

PCB-ECB Approach
ResilienceP Analysis

Multi-Path ResilienceP Analysis

(b)

Fig. 6: Task sets schedulability by varying (a) total task set utilization and (b) the total number of tasks in a task set

CPRO-tables previously built using Algorithm 1. To reduce
computation time, the CPRO-table of every PCB of each task
can be built only once by setting t = Dn in Algorithm 1,
where Dn denote the deadline of the lowest priority task τn in
the task set. The iteration stops as soon as Ri does not evolve
anymore or Ri > Di (i.e., the task is deemed unschedulable).

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate how our proposed approaches
that account for both cache persistence (i.e., CPROs) and
CRPDs perform in terms of schedulability in comparison to
the state-of-the-art resilience-analysis [3] that only considers
CRPDs when analyzing set-associative caches. We performed
experiments using synthetic task sets where tasks parameters
Ci, PD i, MD i, UCB i, ECB i and PCB i were taken from
Table 1 of [2]. Each task in the task set was randomly assigned
the values Ci, PD i, MD i, UCB i, ECB i and PCB i of one of
the benchmarks referred in that table. The system was setup
to model a MIPS R2000/R3000 architecture assuming a 8-
way set-associative cache with 64 sets, a line size of 32 Bytes
(i.e., a total cache size of 16kB) and a memory reload time
dmem = 10µs.

The default number of tasks in a task set was 10 with task
utilizations generated using UUnifast [9]. Task periods and
deadlines were set such that Di=Ti=Ci/Ui. Task priorities
were assigned in a deadline monotonic order. Furthermore,
to evaluate the performance of the multi-path ResilienceP
analysis each task was randomly assigned between 1 to 4
execution paths.

We performed different experiments by varying the total
core utilization, number of tasks, number of cache ways and
memory reload time dmem . A WCRT based schedulability
analysis is performed using the same task sets for all the
analyzed approaches.

1. Core Utilizations: In this experiment, we varied the total
core utilization from 0.025 to 1 in steps of 0.025 and randomly
generated 1000 tasksets at every value of the core utilization.
Fig. 6a show the number of task sets that were deemed

schedulable by all the analyzed approaches. The plot also
show the number of task sets that were deemed schedulable
without considering any CRPD and CPRO (i.e., green line).
Note that we only show cropped version of the plot starting
from a utilization of 0.6 as all approaches produce identical
results below this utilization. Fig. 6a shows that our approaches
that also account for cache persistence (i.e., CPROs) along
with CRPDs dominate the state-of-the-art resilience-analysis
that only consider CRPDs and does not account for cache
persistence. Among the three proposed approaches, the PCB-
ECB approach has the least number of task sets that were
deemed schedulable. This is intuitive, since the PCB-ECB
approach pessimistically assume that every PCB of a task
in a cache set will be evicted if one or more ECBs of any
other task are mapped to the same cache set. This pessimism
is reduced by the ResilienceP analysis by considering the
resilience of PCBs which results in accepting more task
sets. Finally, the multi-path ResilienceP analysis was able to
schedule even more task sets than the ResilienceP analysis
by considering the variation in the resilience of PCBs over
multiple job executions. Our proposed approaches improve
task set schedulability by 6 to 22 percentage points over
the state-of-the-art analysis. Note that on an Intel core i-7
processor (3.4GHz) the average computation time to generate
the plot shown in Fig. 6a was 210 seconds.

2. Number of Tasks: In this experiment, we varied the total
number of tasks in a task set between 5 to 25 in steps of 5
keeping default values of all other parameters. Since we varied
both the number of tasks and core utilizations we have used
the weighted schedulability measure defined in [10] to plot
the results in Fig. 6b. The weighted schedulability measure
reduces what would otherwise be a 3-dimensional plot to
2-dimensions by eliminating the axis of task set utilization.
This performance metric gives more weight to task sets with
higher utilization. We can see in Fig. 6b that by increasing the
number of tasks the total number of task sets that were deemed
schedulable by all the approaches decreases. Indeed, this is
due to an increasing number of cache evictions and reloads

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 4 8 16 32

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Number of Cache Ways (W)

No CRPD and CPRO
SoA Resilience Analysis (Only CRPD)

PCB-ECB Approach
ResilienceP Analysis

Multi-Path ResilienceP Analysis

(a) Varying the number of cache ways

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

6 8 10 12 14 16

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Memory Reload Time (dmem)

No CRPD and CPRO
SoA Resilience Analysis (Only CRPD)

PCB-ECB Approach
ResilienceP Analysis

Multi-Path ResilienceP Analysis

(b) Varying memory reload time dmem

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

1 2 4 6 8

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Maximum number of execution Paths

ResilienceP Analysis
Multi-Path ResilienceP Analysis

(c) Varying number of execution paths

Fig. 7: Weighted schedulability results

leading to higher CRPD and CPRO. However, we can still
observe that our approaches always dominate the state-of-the-
art analysis. Note that by increasing the number of tasks, all
the three proposed approaches tend to produce similar results.
This is mainly because by increasing the number of tasks,
the number of ECBs of tasks sharing cache space with PCBs
of other tasks also increases, i.e., the disturbance is increased.
Therefore, even if PCBs of some tasks have a greater resilience
they might still be evicted due to a higher disturbance.

3. Number of Cache Ways (W): The number of ways W
defines how many memory blocks can be mapped to one cache
set. We increased the number of cache ways from 2 to 32,
keeping default values for all other parameters. The results
are shown in Fig. 7a. We can see in Fig. 7a that by increasing
the number of cache ways the total number of schedulable
task sets decreases. This is mainly because we assume that the
total cache size is constant hence by increasing the number of
cache ways the number of cache sets decreases. This results in
more tasks sharing the same cache sets which in turns leads
to higher CRPD and CPRO. However, we can still see that
all the three proposed approaches dominate the state-of-the-
art resilience-analysis. In fact due to lower CPRO, for a cache
associativity of 2 and 4, the performances of our analyses
are considerably better. In all our experiments we assume a
sequential layout of tasks in memory (and in cache), however,
task layout optimization techniques, e.g., as proposed in [11],
can also be used to improve task set schedulability.

4. Memory Reload Time dmem : we varied the value of
memory reload time dmem from 6µs to 16µs in step of 2µs.
The results are presented in Fig. 7b. We can see in Fig. 7b that
for lower values of dmem the difference between the weighted
schedulability of our approaches and the state-of-the-art anal-
ysis is significantly higher. This is mainly because for lower
values of dmem the reduction in memory accesses demand due
to cache persistence dominates the CPRO. We also note that
for dmem ≥ 12µs the performances of the PCB-ECB approach
and the state-of-the-art analysis are identical. This is due to the
excessive pessimism in PCB-ECB approach which is removed
by the ResilienceP (and multi-path ResilienceP) analysis.

5. Number of execution paths: It is obvious from the results
that the multi-path ResilienceP analysis dominates all other
approaches. However, the performance of the multi-path Re-

silienceP analysis depends on the number of execution paths of
tasks and the resilience of PCBs along those paths. To evaluate
this, we varied the maximum number of execution paths in
each task between 1 to 8 and compared the performance of
ResilienceP and multi-paths ResilienceP analyses. The results
are presented in Fig. 7c. We can see in Fig. 7c that if tasks are
only allowed to have a single execution path, both ResilienceP
and multi-paths ResilienceP analyses produce identical results.
Moreover, for number of execution paths between 2 to 6 the
multi-path ResilienceP analysis tend to produce better results
than the ResilienceP analyses. However, for a further increase
in number of paths, the difference between the ResilienceP
and multi-paths ResilienceP analyses tend to disappear. The
is due to the fact that when the number of paths increase, it
becomes more probable that there exist several execution flows
for which the resilience of the PCBs is low. The function
FindPathsCombinations(·) of Alg. 1 will then more
easily return very long execution flows with low resilience.
This eventually leads to account for the same number of
evictions of PCBs as under the ResilienceP analysis.

VIII. RELATED WORK

Many different approaches have been proposed in the state-
of-the-art to bound cache overheads under preemptive schedul-
ing (see [12] for a comprehensive survey).

Lee et al. [7] introduced the notion of UCBs and used the
number of UCBs of the preempted tasks to bound CRPD
considering both direct-mapped and set-associative caches.
However, the resulting CRPD bounds were overly pessimistic
since their analysis doesn’t consider the preempting tasks.
Tomiyama and Dutt [6] used only the number of ECBs of
the preempting tasks to bound CRPD. However, their analysis
resulted in underestimating the CRPD suffered by the tasks.
Tan and Mooney [13] presented an approach to bound CRPDs
of tasks using UCBs of the preempted tasks and ECBs of
the preempting tasks. However, the analysis in [13] does
not account for the cascading effect in set-associative caches
and therefore results in unsound CRPD bounds. Burguiere et
al. [14] also presented a CRPD analysis for set-associative
caches that use the numbers of UCBs and ECBs of tasks.
The analysis in [14] gives a bound on the CRPD that is
sound but imprecise due to the assumption that every UCB
of the preempted task in a cache set s is considered to be

evicted if only one ECB of the preempting task maps to the
same cache set s. Altmeyer et al. [3] presented the resilience-
analysis that dominates all other method in the state-of-the-art
to compute CRPD. The resilience-analysis determines the set
of UCBs of the preempted tasks that are guaranteed to remain
in the cache even after the execution of the preempting tasks.
This set of UCBs cannot contribute to the CRPD suffered
by the preempted tasks leading to a tighter CRPD bound.
However, since the resilience-analysis doesn’t account for
cache persistence it may lead to pessimistic WCRT bounds.

Cache persistence has been extensively studied by several
works in literature, e.g., [8], [15]–[17], in the context of
WCET analysis. However, most of these existing works focus
on cache persistence within loops of a program which is
distinct from the type of cache persistence studied in this
work, i.e., between different jobs of the same task. In one
of the earlier works that focus on cache persistence between
jobs, Nemer et al. [18] presented an intra-task instruction
cache analysis to accurately estimate the number of cache
misses during the execution of tasks by considering task’s
entry and exit cache states. However, their approach is limited
to non-preemptive task sets under static scheduling and do
not apply to preemptive systems with commonly used priority
based scheduling schemes. Under FPPS, few existing works
that focus on cache persistence are [1], [2], [11], [19]. In [1]
authors formally introduced the notion of cache persistence
between different jobs of the same task and used it to reduce
pessimism in the computation of interference from multiple
jobs of a higher priority task in state-of-the-art WCRT anal-
ysis. Two analyses for CPRO were presented and integrated
into an improved response time analysis. In [2] authors showed
that the independent calculation of CRPD and CPRO may
result in overestimating the total memory overhead suffered by
tasks. An integrated approach to calculate CRPD and CPRO
is presented in [2] that removes some of the pessimism in the
CPRO analyses presented in [1]. In [11] authors evaluated the
impact of memory layout of tasks on the CPRO and showed
that an optimized layout of task in memory may result in an
improved task set schedulability. In [19] the impact of cache
persistence on memory bus contention in multicore system has
been analyzed. However, all these existing works focus on the
CPRO computation for direct-mapped caches.

IX. CONCLUSION

In this work, we proposed a solution to analyze the cache
persistence for set-associative caches in the context of the
WCRT analysis of FPPS. We showed how persistent cache
blocks of tasks can be determined when considering set-
associative caches. We then presented three different ap-
proaches to calculate the CPRO under set-associative caches.
Our first analyses, i.e., the PCB-ECB approach, is very coarse-
grain. To improve the analysis performance, we explained
how the resilience of PCBs can be computed and factored
in the analysis. Therefore, the resulting ResilienceP analysis
performs considerably better. Lastly, the multi-path Resilien-
ceP analysis uses the variation in the resilience of PCBs over
different job execution flows to derive an even tighter CPRO

bound. The experimental evaluation shows that our proposed
approaches result in up to 22 percentage point higher task set
schedulability than the state-of-the-art analyses.

As future work, we plan on extending our analysis to multi-
level set-associative caches. We also aim to extent this analysis
to multicore platforms having a shared last-level cache.

Acknowledgments. This work was partially supported by National Funds

through FCT/MCTES (Portuguese Foundation for Science and Technology),

within the CISTER Research Unit (UIDB/04234/2020); also by FCT and the

ESF (European Social Fund) through POPH (Portuguese Human Potential

Operational Program), under PhD grant SFRH/BD/119150/2016.

REFERENCES

[1] S. A. Rashid, G. Nelissen, D. Hardy, B. Akesson, I. Puaut, and
E. Tovar, “Cache-persistence-aware response-time analysis for fixed-
priority preemptive systems,” in ECRTS, 2016, pp. 262–272.

[2] S. A. Rashid, G. Nelissen, S. Altmeyer, R. I. Davis, and E. Tovar,
“Integrated analysis of cache related preemption delays and cache
persistence reload overheads,” in RTSS. IEEE, 2017, pp. 188–198.

[3] S. Altmeyer, C. Maiza, and J. Reineke, “Resilience analysis: Tightening
the crpd bound for set-associative caches,” in LCTES. ACM, 2010, pp.
153–162.

[4] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks: Past, present and future,” in OASIcs-OpenAccess
Series in Informatics, vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[5] D. Hardy, B. Rouxel, and I. Puaut, “The heptane static worst-case
execution time estimation tool,” in 17th International Workshop on
Worst-Case Execution Time Analysis (WCET 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[6] H. Tomiyama and N. D. Dutt, “Program path analysis to bound cache-
related preemption delay in preemptive real-time systems,” in CODES,
2000, pp. 67–71.

[7] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay
in fixed-priority preemptive scheduling,” Computers, IEEE Transactions
on, vol. 47, no. 6, pp. 700–713, 1998.

[8] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise wcet
prediction by separated cache and path analyses,” Real-Time Systems,
vol. 18, no. 2-3, pp. 157–179, 2000.

[9] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[10] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemp-
tion and migration delays: Empirical approximation and impact on
schedulability,” Proceedings of OSPERT, pp. 33–44, 2010.

[11] S. A. Rashid, G. Nelissen, and E. Tovar, “Trading between intra-and
inter-task cache interference to improve schedulability,” in Proceedings
of the 26th International Conference on Real-Time Networks and Sys-
tems, 2018, pp. 125–136.

[12] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on
static cache analysis for real-time systems,” Leibniz Transactions on
Embedded Systems, vol. 3, no. 1, pp. 05–1, 2016.

[13] Y. Tan and V. Mooney, “Timing analysis for preemptive multitasking
real-time systems with caches,” ACM TECS, vol. 6, no. 1, p. 7, 2007.

[14] C. Burguière, J. Reineke, and S. Altmeyer, “Cache-related preemption
delay computation for set-associative caches-pitfalls and solutions,” in
OASIcs-OpenAccess Series in Informatics, vol. 10. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2009.

[15] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems,” Real-Time Systems, vol. 17, no. 2-3,
pp. 131–181, 1999.

[16] F. Mueller, “Timing analysis for instruction caches,” Real-time systems,
vol. 18, no. 2-3, pp. 217–247, 2000.

[17] Z. Zhang and X. Koutsoukos, “Improving the precision of abstract
interpretation based cache persistence analysis,” ACM SIGPLAN Notices,
vol. 50, no. 5, pp. 1–10, 2015.

[18] F. Nemer, H. Cassé, P. Sainrat, and J. P. Bahsoun, “Inter-task wcet com-
putation for a-way instruction caches,” in 2008 International Symposium
on Industrial Embedded Systems. IEEE, 2008, pp. 169–176.

[19] S. A. Rashid, G. Nelissen, and E. Tovar, “Cache persistence-aware
memory bus contention analysis for multicore systems,” in DATE, 2020.

