

Bounding(SDRAM(Interference:(Detailed(
Analysis(vs.(Latency<Rate(Analysis(

(

Technical Report

CISTER-TR-130105

Version: 1.0

Date: 01-15-2013

Hardik Shah

Alois Knoll

Benny Åkesson

Technical Report CISTER-TR-130105 Bounding SDRAM Interference: Detailed Analysis vs. Latency-Rate Analysis

© CISTER Research Unit
www.cister.isep.ipp.pt

1(
!

Bounding SDRAM Interference: Detailed Analysis vs. Latency-Rate Analysis
Hardik Shah, Alois Knoll, Benny Åkesson

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
The transition towards multi-processor systems with shared resources is challenging for real-time systems, since
resource interference between concurrent applications must be bounded using timing analysis. There are two
common approaches to this problem: 1) Detailed analysis that models the particular resource and arbiter cycle-
accurately to achieve tight bounds. 2) Using temporal abstractions, such as latency-rate (LR) servers, to enable
unified analysis for different resources and arbiters using well-known timing analysis frameworks. However, the
use of abstraction typically implies reducing the tightness of analysis that may result in over-dimensioned systems,
although this pessimism has not been properly investigated.

This paper compares the two approaches in terms of worst-case execution time (WCET) of applications sharing an
SDRAM memory under Credit-ControlledStatic-Priority (CCSP) arbitration. The three main contributions are: 1) A
detailed interference analysis of the SDRAM memory and CCSP arbiter. 2) Based on the detailed analysis, two
optimizations are proposed to the LR analysis that increase the tightness of its interference bounds. 3) An
experimental comparison ofthe two approaches that quantifies their impact on the WCET of applications from the
CHStone benchmark.

Bounding SDRAM Interference:

Detailed Analysis vs. Latency-Rate Analysis

Hardik Shah1, Alois Knoll2, and Benny Akesson3
1fortiss GmbH, Germany, 2Technical University Munich, Germany, 3CISTER-ISEP Research Centre, Portugal

Abstract—The transition towards multi-processor
systems with shared resources is challenging for real-
time systems, since resource interference between con-
current applications must be bounded using timing
analysis. There are two common approaches to this
problem: 1) Detailed analysis that models the partic-
ular resource and arbiter cycle-accurately to achieve
tight bounds. 2) Using temporal abstractions, such as
latency-rate (LR) servers, to enable unified analysis for
di↵erent resources and arbiters using well-known tim-
ing analysis frameworks. However, the use of abstrac-
tion typically implies reducing the tightness of analysis
that may result in over-dimensioned systems, although
this pessimism has not been properly investigated.

This paper compares the two approaches in terms
of worst-case execution time (WCET) of applications
sharing an SDRAM memory under Credit-Controlled
Static-Priority (CCSP) arbitration. The three main
contributions are: 1) A detailed interference analysis of
the SDRAM memory and CCSP arbiter. 2) Based on
the detailed analysis, two optimizations are proposed
to the LR analysis that increase the tightness of its
interference bounds. 3) An experimental comparison of
the two approaches that quantifies their impact on the
WCET of applications from the CHStone benchmark.

I. Introduction

The challenge of designing embedded real-time systems
is increasing, as stringent power and performance re-
quirements cause a transition to complex multi-processor
systems with shared resources. One important problem
is bounding interference between applications in shared
resources using timing analysis, which is essential to de-
termine the worst-case execution time (WCET) of real-
time applications. Common approaches to this problem
can be classified in two categories: 1) Detailed analysis
that models resources and arbiters in a cycle-accurate or
cycle-approximate manner [1], [2] to achieve tight bounds
on interference. 2) Analysis based on abstractions that
capture the timing behavior of the shared resource at a
higher level [3]–[5] to enable unified analysis for di↵erent
resources and arbiters using well-known timing analysis
frameworks, such as network calculus or data-flow anal-
ysis. The use of abstraction typically implies pessimistic
analysis, increasing the di�culty of satisfying deadlines
and potentially resulting in over-dimensioned systems.
However, this pessimism has not been properly investi-
gated and quantified, which makes it di�cult to determine
if and when the use of abstraction is appropriate.

This paper addresses this problem by comparing de-
tailed analysis and the latency-rate (LR) server abstrac-
tion [6] in terms of WCET of concurrently executing ap-
plications for the case of an SDRAM shared under Credit-

Controlled Static-Priority (CCSP) arbitration [7]. The
three main contributions of this paper are: 1) A detailed
analysis of shared SDRAM interference under CCSP arbi-
tration. 2) Two optimizations to LR analysis derived from
the detailed analysis to tighten the interference bounds.
3) The cost of using the LR abstraction is quantified
through experimental evaluation of the two approaches
and comparison of their impact on WCET of applications
from the CHStone benchmark [8]. Conservativeness of
both analyses is also demonstrated by comparing results
to the observed execution time on an FPGA board.

The rest of the paper is organized as follows. Sec. II
discusses related work. Sec. III provides necessary back-
ground before a detailed interference analysis of a shared
SDRAM resource under CCSP arbitration is presented in
Sec. IV. Two optimizations are then proposed to the LR
analysis in Sec. V, based on observations from the detailed
analysis. The two approaches are experimentally evaluated
in Sec. VI before conclusions are drawn in Sec. VII.

II. Related Work

There are several works on shared resource interference
analysis using detailed analysis and LR analysis. This sec-
tion discusses related work in the two categories separately.

Detailed interference analysis uses cycle-accurate or
cycle-approximate models of a particular resource and
arbiter. The number of works in this area is large, since
each model is customized to a specific resource and arbiter
combination to achieve tight bounds. We hence discuss
work related to shared memory interference analysis only.
The works in [9], [10] use models of concurrent applications
for detailed interference analysis on shared memories for
WCET estimation. In contrast, [1], [2] perform indepen-
dent analyses of tasks sharing memories, assuming worst-
case interference under round-robin arbitration and Prior-
ity Based Budget Scheduler [11] (PBS), respectively. This
makes the analyses less tight than [9], [10], but they are
independent of the concurrent applications.

The LR server abstraction [6] is a simple linear lower
bound on the service provided by a resource. The model
was originally developed for analysis of networks, but has
gained popularity in the context of real-time embedded
systems in recent years. Example uses of the model in-
volve modeling buses [3], networks-on-chips [4], and SRAM
and SDRAM memories [5]. The abstraction has two key
benefits: 1) It enables resource interference to be bounded
for the many arbiters belonging to the class [6], such
as Weighted Round-Robin, Time-Division Multiplexing,
PBS, and several varieties of Fair Queuing, thereby ad-
dressing the diversity of arbitration in complex systems in978-3-9815370-0-0/DATE13/ c�2013 EDAA

R RW

Interference

tR tR tW
R

E
Q

DATA

tRl

Response Time

W WR

tWtW tR

DATA

Response Time

R
E

Q

Interference

Fig. 1: Response times: (a) read request (b) write request.

a unified manner. 2) It supports formal performance anal-
ysis using approaches based on well-known frameworks,
such as network calculus or data-flow analysis.

Despite the many works on detailed analysis and LR
analysis, the two approaches have not been compared in
terms of the resulting WCET of real-time applications.
This paper addresses this issue by comparing the two
analyses for a shared SDRAM under CCSP arbitration and
identifying and quantifying their sources of pessimism.

III. Background
This section provides a high-level overview of the consid-

ered system, the LR abstraction, and the CCSP arbiter,
to facilitate the discussions in later sections.

A. System Model

We consider multi-processor systems with shared
SDRAMs that are free from timing anomalies [12]. The
memory controller can be any real-time controller with a
close-page policy, such as [1], [2], [5]. The benefit of this
policy is that it reduces dependencies between requests
and maximizes the guaranteed bandwidth. However, a
small dependency still exists between consecutive requests,
as the SDRAM data path is bi-directional and requires a
few cycles to switch from read to write and vice versa.
For conservative analysis, we must hence consider that
the interference on the shared SDRAM is produced by
alternating read/write requests. This is illustrated for both
read and write requests in Fig. 1. Fig. 1(a) shows that
a read request su↵ers interference from a sequence of
requests from other masters. Once a read request is sched-
uled, it requires maximum tR clock cycles to complete its
execution in the memory controller and another tR

l

clock
cycles to receive all data from the memory. Since the data
of write requests is delivered along with the request, it just
requires a maximum of tW cycles to finish, as indicated
in Fig. 1(b). The parameters tR

l

, tR, and tW depend on
the type of SDRAM and its frequency.

SDRAMs store data as a charge on its internal array of
capacitors. These capacitors must be periodically refreshed
every tREFI cycles for a duration of tRFC cycles for
data retention. During this time, SDRAM cannot be used,
stalling any processor that accesses the SDRAM.

We assume a trace of SDRAM requests representing
the application under analysis is available, where the
i

th memory request is represented as (⌧
i

,RequestType

i

).
Where ⌧

i

is processing time before the request is issued
and RequestType

i

is the type of the request (read/write).

B. Latency-Rate Servers

We now introduce the concept of latency-rate (LR) [6]
servers as a shared-resource abstraction and its applica-
bility to SDRAMs. In essence, a LR server guarantees a

A
cc

u
m

u
la

te
d

re
q
u
e
st

s

Clock cycles

service bound

provided service

busy line

requested service

busy period

t

a

(!k) t

s

(!k) tf(!k) = t̂

s

(!k+1)

s(!k)

⇥

⇢

l(!k)

Fig. 2: A LR server and its associated concepts.

master a minimum allocated rate (bandwidth), ⇢, after a
maximum service latency (interference), ⇥, as shown in
Fig. 2. This linear service guarantee bounds the amount
of data that can be transferred during any interval inde-
pendently of the behavior of other masters. The values of
⇥ and ⇢ depend on the arbiter and its configuration.

The LR service guarantee is conditional and only ap-
plies if the master produces enough requests to keep the
server busy. This is captured by the concept of busy

periods, which intuitively are periods in which a master
requests at least as much service as it has been allocated
(⇢) on average. This is illustrated in Fig. 2, where the mas-
ter is busy when the requested service curve is above the
dash-dotted reference line with slope ⇢ that we informally
refer to as the busy line. The figure also shows how the
service bound is shifted when the master is not busy.

We proceed by showing how scheduling times and fin-
ishing times of requests are bounded using the LR server
guarantee. From [13], the worst-case scheduling time, t

s

, of
the k

th request from a master, m, is expressed according
to the first term (the max-expression) in Equation (1),
where t

a

(!k) is the arrival time of the request and tf(!k�1)
is the worst-case finishing time of the previous request
from master m. The worst-case finishing time is then
bounded by adding the time it takes to finish a scheduled
request of size s(!k) at the allocated rate, ⇢, of the master,
which is called the completion latency and is defined as
l(!k) = s(!k)/⇢. This is expressed in Equation (1) and is
visualized for request !k in Fig. 2.

tf(!
k) = max(t

a

(!k) +⇥, tf(!
k�1)) + s(!k)/⇢ (1)

Both ⇥ and l(!k) are expressed in abstract service cy-

cles, where each service cycle correspond to the execution
time of a request on the particular resource. To be useful
in a concrete timing analysis, the service cycles must be
converted to clock cycles. Here, we follow the approach
in [14] that considers SDRAM memories with variable
execution times of requests. Intuitively, this means always
considering an interfering refresh and then alternating
between interfering write (tW) and read requests (tR), as
previously mentioned in Sec. III-A. An extra interfering
request is also added to the service latency to consider
blocking in the case where a request arrives just one clock
cycle after a scheduling decision has been made. For the
completion latency, the average time of a read and a write,
plus a small penalty of tRFC cycles to compensate for
a refresh once every tREFI cycles, are considered. This
’refresh tax’ ensures that refresh is correctly accounted for
if a master has a busy period longer than tREFI [14].

C. CCSP Arbitration

This paper uses a CCSP arbiter [7], which comprises a
rate regulator and a static-priority scheduler. The regula-
tor provides accounting and enforcement and determines
which requests are eligible for scheduling at a particular
time, considering the allocated service of the masters. The
service allocated to a master m consists of two parameters:
allocated burstiness (�

m

) and allocated rate (⇢
m

). For a
valid allocation, two conditions must hold: 1) �

m

� 1, for
the interference bound of the arbiter to be valid, and 2)P

8m ⇢

m

 1, to prevent over-loading the resource.
The two allocation parameters are used by the CCSP

accounting mechanism, shown in Equation (2), to compute
the number of credits, c

m

(t), of a master m at time t.
The equation is evaluated after each scheduling decision,
so credits are updated per service cycle as opposed to per
clock cycle. The intuition behind the mechanism is that a
master starts with �

m

credits. The credits are incremented
by ⇢

m

at every scheduling decision and one credit is
removed when the master is scheduled (�(t) = m). Lastly,
to prevent masters from accumulating credits during long
periods of idleness and later starve lower-priority masters,
credits are saturated at the initial value, �

m

, if the master
is not scheduled and does not have any backlogged requests
(b

m

= 0). It has been shown in [7] that the service latency
in number of service cycles, ⇥

m

, of a master m under
CCSP arbitration is computed according to Equation (3),
where M

+
m

is the set of higher priority masters.

c

m

(0) = �

m

c

m

(t+ 1) =

8
><

>:

c

m

(t) + ⇢

m

� 1 �(t) = m

c

m

(t) + ⇢

m

�(t) 6= m ^ b

m

> 0

min(c
m

(t) + ⇢

m

,�

m

) �(t) 6= m ^ b

m

= 0
(2)

⇥
m

=

P
8mj2M

+
m
�

mj

1�
P

8mj2M

+
m
⇢

mj

(3)

IV. Detailed Analysis

This section explains the detailed analysis method for
bounding the WCET of an application sharing an SDRAM
under CCSP arbitration. Here, N denotes total number
of masters, m the master under investigation, and rw

the type (read/write) of interfering requests. Priorities are
assigned in ascending order, masters N ! (m + 1) have
higher and (m� 1)! 1 have lower priority than m.

Equation (4) defines the replenishment period, P
x

, of
master x, which is the number of clock cycles (⇡ nearest
integer) required to accumulate one credit in the arbiter.
The equation considers that 1/⇢

x

scheduling decisions are
required by the arbiter to replenish a credit given the
allocated rate of the master and the average time it takes
to serve a request in the worst-case sequence of alternating
reads and writes. The variable ⌘

x

is used to store the clock
cycle when master x receives its next credit.

P

x

=

�
1

⇢

x

⇥ (tR+ tW)

2

⇡
, 8x 2 [N, 1] (4)

We now present four intuitions about the worst-case
response time (WCRT) of a memory request: I) Interfering

Algorithm 1 Detailed Analysis

1: TopLevel()
2: tRef tREFI # initial refresh
3: c[N!1] �[N!1] # initial credits
4: for request i = 1! TotalAccesses do
5: LatRead WCRT (t,m,RequestType

i

, read)
6: LatWrite WCRT (t,m,RequestType

i

, write)
7: Lat max(LatRead,LatWrite)
8: tRef tRef+ Lat+ ⌧

i

9: if tRef � tREFI then
10: Lat Lat+ tRFC
11: tRef (tRef� tREFI) + tRFC
12: ⌘[1!N] ⌘[1!N] + tRFC
13: end if
14: t t+ Lat+ ⌧

i

15: end for

16: WCRT(Time t, Master m, RequestType at, Interference rw)
17: T t
18: while c

m

= 0 OR T < t do
19: T ⌘

m

20: UpdateCredit(T, [1! N], s = 1)
21: end while
22: if m 6= 1 then
23: T T +Delay(rw)
24: rw ¬rw
25: UpdateCredit(T, [N ! m], s = 0)
26: end if
27: HighPrioCredit HighPrioCredit+ c[N!m+1]
28: while HighPrioCredit > 0 do
29: for master x = N ! m+ 1 do
30: for credit j = c

x

! 0 do
31: c

x

 c
x

� 1
32: HighPrioCredit HighPrioCredit� 1
33: T T +Delay(rw)
34: rw ¬rw
35: UpdateCredit(T, [(x� 1)! m], s = 0)
36: end for
37: end for
38: UpdateCredit(T, [N ! m+ 1], s = 1)
39: HighPrioCredit HighPrioCredit+ c[N!m+1]
40: end while
41: T T +Delay(at)
42: if at = read then
43: T T + tR

l

44: end if
45: c

m

 c
m

� 1
46: lat = (T � t) -

47: UpdateCredit(Time T , Master x, Saturate s)
48: if (c

x

� �
x

) and (s = 1) then
49: ⌘

x

 T + P
x

in saturation
50: else
51: if T � ⌘

x

then
52: add 1 + (T � ⌘

x

) / P
x

53: c
x

 c
x

+ add
54: rem (T � ⌘

x

) mod P
x

55: ⌘
x

 T + P
x

� rem
56: end if
57: if (c

x

> �
x

) and (s = 1) then
58: c

x

 �
x

in saturation
59: end if
60: end if -

requests and the request from m itself form an alternating
sequence of read and write, which maximizes SDRAM
latencies (Sec. III-A). II) All masters use their credits
only to interfere with m. When m is not backlogged
or not eligible (c

m

< 1), other masters do not request
and accumulate as many credits as possible. As soon as
m becomes eligible and backlogged, all higher priority
masters (N ! (m+1)) request simultaneously, maximally
delaying scheduling of the request from m. III) One of the
lower priority masters ((m � 1) ! 1) requests one clock

cycle before m becomes eligible and backlogged. Hence,
this lower priority master blocks all higher priority masters
and m. IV) One refresh interferes at every tREFI.

Algorithm 1 estimates the WCET of the provided trace
based on above mentioned intuitions. The algorithm has
three functions. 1) Lines 1-15: TopLevel takes care of
refresh interference and initial credits (�) of all masters.
2) Lines 16-46: WCRT calculates the worst-case response
time of a single request. 3) Lines 47-60: UpdateCredit

tracks credits of all masters and calculates their ⌘ variables
according to Equations (2) and (4).

The TopLevel function initializes a refresh counter
(tRef) to tREFI to consider an interfering refresh that
may occur together with the first request. It then calls the
WCRT function for all requests in the provided trace one
by one. At this stage, the length of the alternating inter-
fering sequence (Intuition I) for any request is unknown (it
depends on the current credits of other masters). Hence,
for every request, the WCRT function is called twice
considering an alternating sequence starting with a read
request and a write request, respectively. The maximum
of them is the WCRT of that request, which is then added
to the refresh counter together with processing time (⌧

i

)
(Line 8). As soon as tRef exceeds tREFI, refresh interfer-
ence tRFC, is added to the latency (Line 10, Intuition IV)
and ⌘ as well, since masters are not replenished during
refresh. At the end, the variable t contains the WCET of
the given trace.

The WCRT function, at first, checks if m has at least
one credit to be eligible for scheduling. If not, then time is
forwarded to ⌘

m

when m receives its next credit (Lines 17-
21). Moreover, we assume that during this forwarded time,
T � t, other masters do not request and accumulate as
many credits as possible (Intuition II). However, their
credits are saturated at maximum (�) since they are
assumed not to be backlogged (Equation (2)). We call
the UpdateCredit function with s = 1 if the master
is assumed to be “not backlogged” and with s = 0 if
the master is assumed to be “blocked” by other masters.
According to Intuition III, after being eligible, at Line 22,
mmust assume interference from one lower priority master
(provided that m itself is not the lowest priority master,
m 6= 1). Delay() simply returns the value of tR or tW

depending on if the request is a read or a write. For
each interfering request, we assume the next interfering
request to be of opposite type (rw ¬rw) to form an
alternating sequence of read/write requests (Intuition I).
We also assume that all high-priority masters request
simultaneously when m becomes eligible and backlogged
(Intuition II). Thus, the low-priority request (Line 22)
blocks all high-priority masters andm. Hence, their credits
are replenished in Line 25 using the UpdateCredit method,
which allows credits to exceed the � boundary (s = 0).

Lines 27-40 consider interference from all higher priority
masters. After each high-priority request, the credits of
the scheduled master x is reduced by one (Line 31) and
the credits of all “blocked” masters, (x � 1) ! m, are
replenished (Line 35). It may be possible that during these
high-priority requests, some of the higher priority masters
become eligible again and interfere once more. Hence,

credits of all higher priority masters are re-calculated
(Lines 38-39) and their interference is iteratively consid-
ered.

After considering interference from one lower priority
master and all higher priority masters, the request from
m itself is scheduled (Line 41). For a read request, an
additional latency of tR

l

(Fig. 1) is added on Line 43.

V. Latency-Rate Optimizations
The LR server abstraction assumes that service is

provided in a fluid and continuous manner, which is not
the case for shared resources in multi-processor systems.
This section learns from the detailed analysis in Sec. IV
and proposes two improvements to the LR server analysis
to tighten the WCRT of requests by capitalizing on the
fact that service is provided in discrete chunks that are
served in a non-preemptive manner. In the case of our
shared SDRAM, this corresponds to that only complete
memory requests (e.g. cache lines) are scheduled and are
then served non-preemptively until completion.

A. Reduced CCSP Service Latency Bound

The first improvement is specific to the CCSP arbiter
and considers an improved bound on the service latency
(interference), ⇥. The bound in Equation (3) does not
consider that a master must have one full credit to pay
for a complete resource access to be scheduled. Instead, it
lets higher priority masters sum up their fractional credits
as well, over-estimating the worst-case interference.

This can be addressed by using the same interference
bound used in the detailed analysis in lines 28-40 of
Algorithm 1. This bound can be captured by an iterative
equation, as shown in Equation (5). A conservative bound
for a master m is computed by iteratively evaluating the
equation over the variable k, ⇥0

m

, ⇥1
m

, ⇥2
m

, etc., until
the equation converges and two consecutive iterations
produce the same result. This is guaranteed to happen
eventually, since the resource may not be overloaded, i.e.P

8mj2M

+
m
⇢

mj < 1.

⇥0
m

= 0, ⇥1
m

=
X

8mj2M

+
m

�

mj

⇥k

m

= ⇥k�1
m

+
X

8mj2M

+
m

⌅
(⇥k�1

m

�⇥k�2
m

)⇥ ⇢

mj

⇧ (5)

The intuition behind the bound is that all higher priority
masters start with �

mj credits, which is the worst case [7].
The iteration then considers the interference from these
credits, and computes the number of fully replenished
credits of each master during this time. The interference
resulting from these replenished credits are then consid-
ered in the following iteration until the equation converges.

B. Non-Preemptive Service

The second optimization applies to all resources where
requests are served in a non-preemptive manner and is
independent of which LR arbiter is being used. The key
insight is that a scheduled request in a non-preemptive
resource is temporarily served at the full capacity of the
resource ⇢

0 = 1 until it finishes and not at the allocated
rate, ⇢. It is hence guaranteed to be finished after one

service cycle, as opposed to after the completion latency
of 1/⇢ service cycles, suggested by the LR abstraction.
This is captured by the detailed analysis, which adds
a single read (tR) or write (tW) request on behalf of
the considered master after waiting for the worst-case
interference (Line 41 in Algorithm 1).

The irregular guarantee provided to a busy master by
a non-preemptive server and the di↵erence compared to
the original LR bound is shown in Fig. 3. However, the
irregular bound is not a LR guarantee, as it cannot be
represented using only the two parameters ⇥ and ⇢. It
is tempting to capture this by using the maximum rate
of the server, ⇢

0 = 1. However, this would make the
server believe that the master is always served at the
full rate of the resource through the dependency on the
previous finishing time in Equation (1), resulting in non-
conservative bounds. Similarly to [13], we instead reduce
the service latency to ⇥0 = ⇥ � (1/⇢ � 1) service cycles,
as shown in Fig. 3. An implication of this is that the
intuition behind the scheduling time is lost, as requests are
no longer guaranteed to be scheduled at t

s

, although the
scheduling time can still be computed using the original ⇥
if needed. More importantly, the bound on finishing time
is still conservative and tighter than before, as shown in
Fig. 3.

A
cc

u
m

u
la

te
d

re
q

u
e

st
s

finishing times
conservative

maximum rate

new LR bound

old LR bound

non−preemptive
behavior

Clock cycles

requested service

⇢

0 = 1⇢

⇥0

⇥

Fig. 3: Improved LR bound for non-preemptive resources.

VI. Experiments

This section experimentally evaluates the two analyses
presented in this paper. First, we explain the experimental
setup and then proceed with two experiments. The first
experiment quantifies the impact of both the analyses
on WCET for two applications. The second experiment
illustrates how the obtained results depend on the arbiter
configuration by varying the allocated rate.
A. Experimental Setup

The experiments consider six masters, implemented as
hardware tra�c generators to replay memory traces. The

: : :

CCSP Arbiter

Off-
Chip

Altera SDRAM HP 2
Controller

DDR2

m1 m6

(a) Setup

N
or

m
al

iz
ed

 to
 O

E
T

Allocated Bandwidth

0

1

2

3

4

5

6

7

8

1/6 0.1 0.05 0.04 0.03 0.02 0.01

LR LR bound LR np Det

(b) Results with reduced allocations.

Fig. 4

10
0

K
 C

lo
ck

 C
yc

le
s

0

5

10

15

20

25

30

35

m1 m2 m3 m4 m5 m6

LR LR bound LR np Det OET

(a) JPEG

0

1

2

3

4

5

6

7

m1 m2 m3 m4 m5 m6

LR LR bound LR np Det OET

(b) Motion Compensation

Fig. 5: Results with equal allocations in 100K Clock Cycles

masters are connected to a Micron DDR2-667 memory
through an SDRAM controller running at 125 MHz on an
Altera Cyclone III FPGA, as shown in Fig. 4a. The traces
are executed in a blocking manner. A memory request
thus stalls the tra�c generator and delays all subsequent
processing and memory requests by the memory latency.

Techniques from [2] were used to achieve predictable
behavior from the Altera SDRAM controller and to extract
the worst-case memory parameters in clock cycles for a
fixed request size of 32 B. For this combination of memory
and memory controller, the worst-case timing parameters
are: read access tR = 12, read latency tR

l

= 46, write
access tW = 14, refresh interval tREFI = 975, and refresh
time tRFC = 41 clock cycles. This setup hence delivers on
the system model presented in Sec. III-A.

The SDRAM traces were obtained by executing applica-
tions from the CHStone [8] benchmark on the Simplescalar
instruction set simulator [15] with 16 KB L1 D-cache,
16 KB L1 I-cache, 128 KB shared L2 cache and 32 B
cache line configuration. We filtered out the L2 cache
misses to obtain a trace of the access going to SDRAM.
The L2 cache is partitioned to avoid e↵ects of concurrent
applications on cache behavior. The trace is then fed to all
six masters emulating“same application, same path”being
executed on six separate processors. We then analyzed the
traces to estimate WCET of that execution path on all
masters using both detailed analysis and LR analysis.

In this paper, we study results of JPEG and motion
compensation applications, which are the least and most
memory intensive applications in the CHStone benchmark,
respectively. In Figures 4b and 5,“LR”denotes regular LR
analysis, “LR bound” LR analysis with improved service
latency bound for CCSP, “LR np” non-preemptive LR
analysis, “Det”detailed analysis, and“OET”Observed Ex-
ecution Time on FPGA. It should be noted that “LR np”
applies the non-preemptive optimization on “LR bound”
and hence contains both optimizations proposed in Sec. V.

B. Equal Allocations

In the first experiment, we allocate equal rates to all six
masters, ⇢ = 1/6. Fig. 5 depicts the results of the JPEG
and motion compensation applications. Although both
analyses appear conservative with respect to the OET
for all masters, results for JPEG are better than motion
compensation for both analyses, and the detailed analysis
produces better results than the others. The di↵erence
between the detailed analysis and the OET is explained
by that the actual execution has less than worst-case
interference and less read/write switches in the memory.

The regular LR analysis produces 1.7 and 3.8 times
larger WCET than the detailed analysis for the JPEG
and motion compensation applications for the lowest pri-
ority master, respectively. Having equal allocated rate
for all masters in this test, the di↵erences between the
two applications are attributed to their di↵erent memory
intensities. This leads to the obvious conclusion that a
tight memory interference analysis is more important for
memory intensive applications.

For the highest priority master, the regular LR analysis
produces 1.2 and 2.0 times larger bounds than the detailed
analysis. However, the tightness of LR analysis increases
with the proposed optimizations. The discrete bound on
service latency is especially helpful for low-priority mas-
ters, where it reduces the di↵erence with respect to the
detailed analysis for m1 from a factor 3.8 to 1.8 for the
motion application. In contrast to the discrete bound,
considering non-preemption in the LR analysis benefits
masters of all priorities equally, as it results in a constant
reduction in interference that is inversely proportional to
the allocated rate. With both optimizations applied, the
di↵erence with respect to the detailed analysis is reduced
to a factor 1.08 and 1.40, respectively, for the two appli-
cations. This di↵erence is due to the refresh management
of the LR analysis, where an interfering refresh is con-
sidered for every new busy period as it is included in the
service latency of all masters. This drawback is extremely
pronounced in this experiment, as the blocking nature of
the system combined with the particular allocated rate,
causes every single request to start a new busy period.

C. Reduced Allocations

The previous experiment revealed the importance of
memory intensive accesses for both analysis methods.
This experiment further demonstrates this by reducing
the allocated rate of the lowest priority master, who suf-
fered the largest pessimism, in the motion compensation
application. Results in Fig. 4b show that the WCET of
all techniques approach the OET as the allocated rate is
reduced. The reason for this is that reducing the allocated
rate enlarges the replenishment period (Equation (4)),
increasing the WCRT of requests and the WCET of the ap-
plication. This causes results from all methods to approach
the OET, since over-estimating the number of refreshes or
read/write switches becomes insignificant. However, the
detailed analysis approaches the OET faster and comes
very close already at ⇢ = 0.1, while LR with the proposed
optimizations comes close to OET at ⇢ = 0.05. At this
point, the reduction in allocated rate enables the master to
remain busy for the entire execution of the trace, causing
refresh interference to be estimated tightly. In contrast, the
default LR analysis does not come close to the OET even
for ⇢ = 0.01, due to its highly pessimistic bound on service
latency. From this experiment, we conclude that both anal-
yses produce tighter results for lower allocated rates, but
that the detailed analysis approaches the OET faster than
LR analysis. The allocated rate hence presents a trade-o↵
between high bounds and tight bounds. Furthermore, the
tightness of the WCET estimated by LR analysis depends
on the ability of the master to stay busy, as this results in
more accurate refresh interference analysis.

VII. Conclusion
This paper compares a detailed analysis and latency-

rate (LR) analysis of resource interference to assess the
impact of using temporal abstractions in timing analysis
of real-time embedded systems. A detailed analysis is
presented for an SDRAM shared under Credit-Controlled
Static-Priority (CCSP) arbitration. Based on the detailed
analysis, two improvements are proposed for the existing
LR analysis to reduce the estimated resource interference:
1) a tighter latency bound for the CCSP arbiter and 2) a
latency optimization for non-preemptive resources.

The two analysis approaches are experimentally com-
pared to each other and to an observed execution time
on FPGA to quantify their impact on worst-case execu-
tion times (WCET) of applications from the CHStone
benchmark. The experiments reveal that both methods are
conservative with respect to the observed execution and
that the WCET estimated by LR analysis is up to 3.8
times larger than that of detailed analysis. However, the
proposed optimizations reduce this factor to 1.4. As the
allocated rate is reduced, both analyses produce increas-
ingly tight results and the gap between them disappears.

Acknowledgment

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and
Technology) and by the EU ARTEMIS JU funding, within
the RECOMP project, ref. ARTEMIS/0202/2009, JU
grant nr. 100202. Also, partially funded by German BMBF
projects ECU (13N11936) and Car2X (13N11933).

References

[1] M. Paolieri et al., “An Analyzable Memory Controller for Hard
Real-Time CMPs,” Embedded Systems Letters, IEEE, 2009.

[2] H. Shah et al.,“BoundingWCET of Applications Using SDRAM
with Priority Based Budget Scheduling in MPSoCs,” in Proc.
DATE, 2012.

[3] J. Vink et al., “Performance analysis of SoC architectures based
on latency-rate servers,” Proc. DATE, 2008.

[4] A. Hansson et al.,“Enabling application-level performance guar-
antees in network-based systems on chip by applying dataflow
analysis,” IET CDT, 2009.

[5] B. Akesson and K. Goossens, “Architectures and modeling of
predictable memory controllers for improved system integra-
tion,” in Proc. DATE, 2011.

[6] D. Stiliadis and A. Varma, “Latency-rate servers: a general
model for analysis of tra�c scheduling algorithms,” IEEE/ACM
Trans. Netw., 1998.

[7] B. Akesson et al., “Real-Time Scheduling Using Credit-
Controlled Static-Priority Arbitration,” in Proc. RTCSA, 2008.

[8] “Chstone, a suite of benchmark programs for c-based high-level
synthesis.” [Online]. Available: http://www.ertl.jp/chstone/

[9] M. Lv et al., M. Lv, W. Yi, N. Guan, and G. Yu, “Combining
abstract interpretation with model checking for timing analysis
of multicore software,” in Proc. RTSS, 2010.

[10] R. Pellizzoni et al., “Worst case delay analysis for memory
interference in multicore systems,” in Proc. DATE, 2010.

[11] M. Steine et al., “A priority-based budget scheduler with con-
servative dataflow model,” in Proc. DSD, 2009.

[12] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses for
future architectures in time-critical embedded systems,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28,
no. 7, 2009.

[13] M. H. Wiggers et al., “Modelling run-time arbitration by
latency-rate servers in dataflow graphs,” in Proc. SCOPES,
2008.

[14] B. Akesson and K. Goossens, Memory Controllers for Real-
Time Embedded Systems. Springer, 2011.

[15] D. Burger and T. M. Austin, “The simplescalar tool set, version
2.0,” SIGARCH Comput. Archit. News, vol. 25, no. 3, 1997.

