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Memory bus contention strongly relates to the numberof main memory requests generated by tasks running 
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multiple jobs of a task may not alwaysbe equal to its worst-case memory access demand in isolation.Analysis of 
the variable memory access demand of tasks due tocache persistence leads to significantly tighter worst-case 
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single-core to multicore systems. In particular,we focus on analyzing the impact of cache persistence on 
thememory bus contention suffered by tasks executing on a multicoreplatform considering both work conserving 
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analyses of bus arbitrationpolicies increase the number of task sets deemed schedulableby up to 70 percentage 
points in comparison to their respectivecounterparts that do not account for cache persistence. 

 



Cache Persistence-Aware Memory Bus Contention
Analysis for Multicore Systems

Syed Aftab Rashid, Geoffrey Nelissen, Eduardo Tovar
CISTER, ISEP, Polytechnic Institute of Porto, Portugal

Abstract—Memory bus contention strongly relates to the num-
ber of main memory requests generated by tasks running on
different cores of a multicore platform, which, in turn, depends on
the content of the cache memories during the execution of those
tasks. Recent works have shown that due to cache persistence the
memory access demand of multiple jobs of a task may not always
be equal to its worst-case memory access demand in isolation.
Analysis of the variable memory access demand of tasks due to
cache persistence leads to significantly tighter worst-case response
time (WCRT) of tasks.

In this work, we show how the notion of cache persistence can
be extended from single-core to multicore systems. In particular,
we focus on analyzing the impact of cache persistence on the
memory bus contention suffered by tasks executing on a multi-
core platform considering both work conserving and non-work
conserving bus arbitration policies. Experimental evaluation
shows that cache persistence-aware analyses of bus arbitration
policies increase the number of task sets deemed schedulable
by up to 70 percentage points in comparison to their respective
counterparts that do not account for cache persistence.

I. INTRODUCTION

Ensuring the timing correctness of multicore systems is

considerably more complex than for single-core ones. This is

mainly because of the difficulty to bound the amount of cross-

core interference on shared resources, e.g., last-level caches

(LLC), common interconnect (i.e., memory bus) and DRAM

memory, generated by tasks concurrently running on different

cores of a multicore system. For example, the latency of a read

operation from the main memory in Freescale P4080 varies

between 40 to 600 cycles depending on the number of tasks

competing to access that memory [1]. Since data/instructions

are transferred from the main memory to the requesting core

over a memory bus and because the memory bus is shared

between cores, requests by a task τi running on one core

may be delayed by tasks executing on other cores, thereby

increasing its WCRT. This increase in the WCRT depends

on many factors such as (i) the number of main memory

requests generated by τi and all other tasks running on the

same core, (ii) the number of main memory requests generated

by all tasks executing on different cores than τi and (iii) the

memory bus arbiter. One of the main aspects that impact (i)

and (ii) is the number of cache misses suffered by each task

during its execution. Indeed, the number of main memory

requests generated by a task strongly depends on whether

the instructions and data it requires are available in the cache

memory (cache hit) or not (cache miss). If all data/instructions

used by a task τi are already available in the cache, τi may

not access main memory, effectively suffering no memory bus

contention. However, if the data/instructions required by τi
are not available in the cache (i.e., due to limited cache space

or evictions by other tasks), τi will access main memory and

hence τi may cause and be subjected to bus contention.

Under fixed-priority preemptive scheduling (FPPS), the

number of main memory accesses by a task τi may increase

due to preemptions by higher priority tasks. This happens

when cache blocks used by τi are evicted from the cache

due to preemptions by higher priority tasks. Upon resumption,

τi may need to reload the evicted cache blocks from the

main memory which results in increasing the number of main

memory accesses. The delay caused by these additional main

memory accesses is called Cache-Related Preemption Delay

(CRPD). There exist approaches in literature that account for

CRPDs [2] when bounding the memory bus contention in mul-

ticore systems. Recent works [3], [4] have also shown that the

use of caches may reduce the worst-case main memory access

demand of tasks due to cache persistence. Cache persistence

refers to the re-use of cache blocks between different job

executions of the same task which may result in reducing its

number of accesses to the main memory.

In this work, we extend the analysis in [3], [4] from single-

core to multicore platforms. The three main contributions of

this work are: 1) we extend the notion of cache persistence be-

tween different jobs of a task to multicore systems. This allows

us to capture the reduction in the number of main memory

accesses by tasks executing on different cores due to re-use of

cache content between multiple executions of the same task.

2) We evaluate the impact of cache persistence on memory

bus contention in multicore platforms considering both work

conserving and non-working conserving bus arbitration poli-

cies. 3) We present an experimental evaluation that shows that

cache persistence-aware analyses of bus arbitration policies

increase the number of task sets deemed schedulable by up to

70 percentage points in comparison to their counterparts that

do not consider cache persistence.

II. SYSTEM MODEL

We consider a multicore platform with m identical timing-

compositional cores π1 to πm. By timing-compositional we

mean that it is safe to separately account for interference from

different sources such as cores, caches and memory bus [5].

Each core has a local direct-mapped instruction cache using

the Least-Recently-Used (LRU) replacement policy. The cache

is connected via a shared bus to the global main memory. Note

that we assume that data accesses to memory are performed

via a separate bus. Moreover, since we only consider single-

level caches the proposed analysis is independent of the cache

inclusion policy. The worst-case time for one access to the

main memory is denoted by dmem . We consider a set of n



sporadic constrained deadline tasks {τ1, τ2, ...τn}. Each task

τi is defined by a quadruple (PD i, MD i, Di, Ti) where PD i

is the worse-case execution time of a job of τi considering

that every memory access is a cache hit. Consequently, it

only accounts for execution requirements of the task and does

not include the time needed to fetch data and instructions

from main memory. MD i is the worst-case memory access

demand of a job of τi, i.e., the maximum number of main

memory request generated by any job of τi. Note that the

values of PD i and MD i are calculated assuming τi executes

in isolation. Di is the relative deadline of τi and Ti is the

minimum-inter arrival time between two jobs of τi. We assume

that tasks are scheduled with a partitioned task-level fixed

priority scheduling algorithm where each task is statically

assigned to a core at design time. Tasks assigned to a core

πx are denoted by Γx. Tasks can be assigned priorities using

any fixed priority assignment scheme (e.g., Rate or Deadline

Monotonic [6]). Furthermore, we assume that the priority of

each task is unique thus providing a global priority order

such that τ1 has the highest priority and τn the lowest. Ri

denotes the WCRT of task τi and is defined as the longest

time between the arrival and the completion of any of its jobs.

For notational convenience, we use hp(i) and lp(i) to denote

the set of tasks with priorities higher, respectively lower, than

that of τi. We use hep(i) and aff(i, j) as short notations for

hep(i) = hp(i)∪{i}, and aff(i, j) = hep(i)∩ lp(j). The latter

denoting the set of intermediate tasks that may preempt τi but

may themselves be preempted by some higher priority task τj .

III. BACKGROUND

The total number of bus accesses that may affect the

execution of a task τi ∈ Γx in a time interval of length t
depends mainly on two factors; (i) the total number of bus

accesses BAS
x
i (t) that can occur due to task τi and all higher

priority tasks in hp(i) executing on core πx during that time

interval, and (ii) the total number of bus accesses generated

by all tasks running on other cores than πx during the same

time interval of length t. It is proved in [2] that

BAS
x
i (t) ≤ MDi +

∑

∀τj∈Γx∩hp(i)

⌈

t

Tj

⌉

× (MDj + γi,j,x) (1)

where γi,j,x denotes the CRPD suffered by task τi due to

preemptions by higher priority task τj executing on the same

core πx. In this work, γi,j,x is calculated as in [2] using the

ECB-union approach [7]. The ECB-union approach provides

a reasonably precise bound on the CRPD using the notion

of useful and evicting cache blocks (i.e., UCBs and ECBs).

Formally, “a memory block m is called a useful cache block

at program point P, if it is cached at P and will be reused at

program point Q that may be reached from P without eviction

of m [8]”. Similarly, all cache blocks used by the task during

its execution are called evicting cache blocks (ECBs) [8]. The

ECB-union approach uses the set of UCBs of tasks that may be

preempted by τj during the response time of τi, i.e., aff(i, j)
and the union of the ECBs of all tasks in hep(j), i.e., it

assumes τj itself is preempted by all higher priority tasks.

Under the ECB-union approach, γi,j,x is then given by

γi,j,x = max
∀g∈Γx∩aff(i,j)

{∣

∣

∣
UCBg ∩

(

⋃

∀h∈Γx∩hep(j)

ECBh

)∣

∣

∣

}

(2)

Detailed description and proof for Eq. (2) can be found in [7].

When bounding the total number of bus accesses generated

by all tasks running on cores other than πx, no assumption can

be made about the synchronization of tasks w.r.t the release of

τi on core πx. Therefore, for a task τl executing on some core

πy 6= πx, the worst-case number of bus accesses generated

by τl in a time interval of length t are obtained by assuming

that the first job of τl executes as late as possible, i.e., just

before its WCRT, while all subsequent jobs of τl execute as

early as possible. Let BAO
y
k(t) be an upper bound on the total

number of bus accesses due to all tasks having priority k or

higher executing on core πy . It is proven in [2] that

BAO
y

k
(t) ≤

∑

τl∈Γy∩hep(k)

W
y

k,l
(t) +W

y

k,l,cout
(t) (3)

with
W

y

k,l
(t) = N

y

k,l
(t)× (MD l + γk,l,y) (4)

W
y

k,l,cout
= min

(⌈

t+Rl − (MD l + γk,l,y)× dmem −N
y

k,l
(t)× Tl

dmem

⌉

;MD l + γk,l,y

)

(5)

and where Ny
k,l(t) is an upper bound on the maximum number

of jobs of τl that may fully execute in an interval of length t
on core πy , i.e.,

N
y

k,l
(t) =

⌊

t+Rl − (MD l + γk,l,y)× dmem

Tl

⌋

(6)

Using Eq. (1) and (3), the total number of bus accesses BATx
i

that may delay the execution of τi on core πx can be bounded

for Fixed-Priority (FP), Round-Robin (RR) and TDMA bus

arbitration policies as presented below.
For a FP bus, where bus accesses inherit the priority of the

task that generate them, BATx
i (t) is given by

BAT
x
i (t) = BAS

x
i (t)+

∑

∀πy 6=πx

BAO
y
i (t) + 1 (7)

+min
(

BAS
x
i (t);

∑

∀πy 6=πx

BAO
y

i,low
(t)
)

where BAO
y
i,low(t) =

∑

∀τl∈Γy∩lp(i) W
y
i,l(t) +W y

i,l,cout , i.e.,

to account for bus accesses from tasks having a lower priority

than τi.
Similarly, for a RR bus, BATx

i (t) is upper bounded by

BAT
x
i (t) = BAS

x
i (t)+

∑

∀πy 6=πx

min
(

BAO
y
n(t); s×BAS

x
i (t)

)

+1 (8)

where s denotes the number of memory access slots per core

and n is the index of the task with the lowest priority. Under

a TDMA bus, BATx
i (t) is given by

BAT
x
i (t) = BAS

x
i (t) + ((L− 1)× s)× BAS

x
i (t) + 1 (9)

where the length of one TDMA cycle is L × s. Detailed

description of Eq. (1) and Eq. (3)-(9) can be found in [2].
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Fig. 1: Execution of task τ1 and τ2 on core πx and task τ3
on core πy . Task parameters of interest are: PD1=PD3 =

4, PD2= 32, MD1=MD3 = 6, MD2 = 8, MD
r
1=MD

r
3 = 1,

ECB1=ECB3 = {5, 6, 7, 8, 9, 10}, ECB2 = {1, 2, 3, 4, 5, 6},

PCB1=PCB3 = {5, 6, 7, 8, 10} and UCB2 = {5, 6}.

IV. PERSISTENCE-AWARE BUS CONTENTION ANALYSIS

The analysis presented in [2] (i.e., Eq. (1) and (3)) provides

a safe upper bound on the memory bus delay suffered by tasks

executing on a multicore platform. However, since the analysis

in [2] does not consider the variation in the memory access

demand of tasks due to cache persistence, it may overestimate

the actual number of accesses that compete for the bus during

the response time of the task under analysis. Cache persistence

refers to the re-use of persistent cache blocks (PCBs) between

different job executions of the same task. PCBs are defined

as [3] “memory blocks used by a task that, once loaded in the

cache, will never be evicted or invalidated by the task itself”

(see [3] for details on how to find PCBs of a task). If all PCBs

of a task τi were loaded in the cache by a previous job of τi,
the memory access demand of all subsequent jobs of τi can

be much lower than the worst-case memory access demand

of τi in isolation. This type of memory demand is called the

residual memory access demand MD
r
i of τi and is defined

as [3] “the worst-case memory access demand of any job of

a task when assuming all its PCBs are already loaded in the

cache”. According to this definition, a PCB is loaded only once

from the main memory when a task τi executes in isolation.

Therefore, the total number of bus accesses generated by ni

jobs of τi executing in isolation is given by

M̂Di(ni) = min (ni ×MDi ;ni ×MD
r
i + |PCB i|) (10)

We now consider the schedule and task parameters shown

in Fig. 1 to show how Eq. (10) may be used to reduce the

pessimism of [2]. We have three tasks τ1, τ2 and τ3 with τ1
and τ2 executing on core πx and τ3 executing on core πy .

We assume τ1 has the highest priority and τ3 the lowest. The

worst-case main memory access demands MD1, MD2 and

MD3 are 6, 8 and 6 respectively. Memory blocks in Fig. 1

that are pattern filled are those that are loaded/reloaded from

the main memory during the task executions. We focus on τ2
and use BAT

x
2(R2) to denote the total number of bus accesses

that may be generated during its response time. Assuming the

memory bus arbitration policy is RR with a slot size s equal

to 1, BATx
2(R2) can be bounded using Eq. (8) such that

BAT
x
2 (R2) = BAS

x
2 (R2) + min

(

BAO
y
3(R2);BAS

x
2 (R2)

)

(11)

where

BAS
x
2 (R2) = MD2+3× (MD1+γ2,1,x) = 8+3× (6+2) = 32 (12)

BAO
y
3(R2) = N

y
3,3(R2)×MD3 = 4× (6) = 24 (13)

Note that γ2,1,x in Eq. (12) is derived using Eq. (2). Moreover,

since τ2 is the lowest priority task on core πx, Eq. (12) does

not have a trailing +1 as in Eq. (8) (see [2] for details).

However, by comparing the result of Eq. (12) with the

cache contents of core πx in Fig. 1 we can see that Eq. (12)

overestimates the value of BASx
2(R2). Fig. 1 shows that only

the first job of τ1 needs to load all its ECBs from the main

memory and hence has a worst-case memory access demand

MD1 = 6. Moreover, since all PCBs of τ1 were loaded in

the cache by the first job of τ1, the memory access demand

of the next two jobs of τ1 only corresponds to the reloading

of memory block {9}, i.e., MD
r
1 = 1. Consequently, the

actual number of memory accesses made by the three jobs of

τ1 executing during the response time of τ2 are respectively

MD1 +MD
r
1 +MD

r
1 = 6+ 1+ 1 = 8, which is much lower

than 3×MD1 = 18 accounted for in Eq. (12).

Fig. 1 also shows an overlap between PCBs {5, 6} of τ1 and

ECBs {5, 6} of τ2 in cache. This overlap may lead to evictions

of PCBs {5, 6} between two subsequent executions of τ1. By

definition a task can not evict its own PCBs. However, PCBs

of a task can be evicted due to interleaved or preemptive

execution of other tasks in the system, leading to what is called

cache persistence reload overhead (CPRO). CPRO of a task

τj ∈ hp(i) executing during the response time of τi on core

πx is formally defined as “the overhead suffered by a task τj
during the response time of another task τi due to evictions of

its PCBs by tasks in hep(i)\ τj [3]”. CPRO can be calculated

using any of the approaches presented in [3], [4]. In this work

we use the CPRO-union approach [3]. The additional number

of bus accesses generated by nj successive jobs of τj due to

CPRO is upper bounded by

ρ̂j,i,x (nj) = (nj − 1)×
∣

∣PCBj ∩
(

⋃

∀τs∈Γx∩hep(i)\τj

ECBs

)
∣

∣ (14)

where PCBj is the set of PCBs of task τj (that may be

evicted) and
⋃

∀τs∈hep(i)\τj
ECBs is the union of ECBs of

all tasks that may evict PCBs of τj . See [3] for a detailed

description of Eq. (10) and (14).

Consequently, for the schedule in Fig. 1, the additional bus

accesses due to CPRO suffered by task τ1 during the response

of task τ2 are 4, i.e., ρ̂1,2,x(3) = 2× 2 = 4. Therefore, due to

cache persistence, the actual number of bus accesses during

the response time task τ2 on core πx are given by

MD2 +MD1 + 2×MD
r
1 + ρ̂1,2,x(3) + 3× γ2,1,x = 26 (15)

which is much lower than the value of BAS
x
2(R2) = 32

calculated using Eq. (12). This leads to the following lemma.

Lemma 1. The total number of bus accesses by a single job
of task τi ∈ Γx and all higher priority tasks in Γx ∩ hp(i)
executing in a time interval of length t are upper bounded by
ˆBAS

x

i (t), where

ˆBAS
x

i (t) =
∑

∀τj∈Γx∩hp(i)

min
(

Ej(t) × MDj ; M̂Dj(Ej(t)) + ρ̂j,i,x(Ej(t))
)

+
∑

∀τj∈Γx∩hp(i)

Ej(t) × γi,j,x + MDi with Ej(t) =

⌈

t

Tj

⌉

(16)



Proof. We prove that in a time interval of length t, ˆBAS
x

i (t) is

an upper bound on the total number of bus accesses generated

by task τi ∈ Γx and all higher priority tasks in Γx ∩ hp(i).
1. By assumption, only one job of τi must be considered.

Hence, the total number of bus accesses generated by τi are

upper bounded by its worst-case memory access demand MD i.

2. Any task τj ∈ Γx∩hp(i) can release at most Ej(t) =
⌈

t
Tj

⌉

jobs in a time window of length t. Therefore, it follows from

Eq. (1) that Ej(t) × MDj is an upper bound on the total

number of bus accesses generated by task τj ∈ Γx ∩ hp(i)
in isolation. Moreover, the additional bus accesses due to

preemptions of task τi by task τj in a time interval of length

t are upper bounded by Ej(t)× γi,j,x (see Eq. 1). Hence, the

sum MD i +Ej(t)×MDj +Ej(t)× γi,j,x is an upper bound

on the total number of bus accesses generated by task τi ∈ Γx

and any higher priority task τj in Γx∩hp(i) in a time interval

of length t.
3. Recall from Eq. (10) and (14) that M̂Dj(Ej(t)) is an upper

bound on the total number of bus accesses due to Ej(t) jobs of

τj executing in isolation and ρ̂j,i,x(Ej(t)) is an upper bound

on the additional bus accesses due to CPRO suffered by all

those jobs of τj . Therefore, the sum MD i + M̂Dj(Ej(t)) +
ρ̂j,i,x(Ej(t)) + Ej(t) × γi,j,x is also an upper bound on the

total number of bus accesses generated by task τi ∈ Γx and

any higher priority task τj in Γx ∩ hp(i) in a time window

of length t considering both CRPD and CPRO. Thus, the

minimum between MD i +Ej(t)×MDj +Ej(t)× γi,j,x and

MD i + M̂Dj(Ej(t)) + ρ̂j,i,x(Ej(t)) + Ej(t) × γi,j,x is also

an upper bound. The lemma follows.

Continuing the example depicted in Fig. 1, we can see

that Eq. (13) also overestimates the value of BAO
y
3(R2).

In fact, due to cache persistence, the actual number of bus

accesses generated by task τ3 ∈ Γy that may contend for

the bus during the response time of task τ2 ∈ Γx are:

MD3 + 3 × MD
r
3 = 6 + 3 × 1 = 9, which is much lower

than the value of BAO
y
3(R2) = 24 calculated using Eq. (13).

Lemma 2. The total number of bus accesses by all tasks ∈
Γy with priority k or higher that may contend for bus access

with task τi ∈ Γx during a time window of length t is upper

bounded by

ˆBAO
y

k(t) =
∑

∀τl∈Γy∩hep(k)

Ŵ
y

k,l
(t) +W

y

k,l,cout
(17)

where

Ŵ
y

k,l
(t) = min

(

N
y

k,l
(t)×MD l;M̂D l(N

y

k,l
(t)) + ρ̂k,l,y(N

y

k,l
(t))
)

+N
y

k,l
(t)× γk,l,y (18)

and W y
k,l,cout and Ny

k,l(t) are given by Eq. (5) and (6).

Proof. Since Eq. (5) (i.e., W y
k,l,cout ) is proved in [2], we only

need to prove that Ŵ y
k,l(t) is an upper bound on the total

number of bus accesses by jobs of τl ∈ Γy ∩hep(k) that fully

execute in a time interval of length t.
1. It follows from Eq. (6) that Ny

k,l(t) is an upper bound

on the number of jobs that may be fully executed in an

interval of length t by any task τl ∈ Γy ∩ hep(k). There-

fore, Ny
k,l(t) × MD l upper bounds the total number of bus

accesses generated by τl in a time interval of length t in

isolation. Moreover, Ny
k,l(t) × γk,l,y is an upper bound on

the additional bus accesses due to CRPD suffered by task

τl ∈ Γy ∩ hep(k) in a time window of length t. Therefore,

the sum Ny
k,l(t)×MD l +Ny

k,l(t)× γk,l,y is an upper bound

on the total number of bus accesses by jobs of τl ∈ Γy∩hep(k)
that fully execute in a time interval of length t.
2. Using Ny

k,l(t) in Eq. (10) and (14) we get M̂D l(N
y
k,l(t))

which is an upper bound on the total number of bus accesses

due to Ny
k,l(t) successive jobs of τj executing in isolation and

ρ̂k,l,y(N
y
k,l(t)) which is an upper bound on the additional bus

accesses due to CPRO suffered by all those jobs. Hence, the

sum M̂D l(N
y
k,l(t)) + ρ̂k,l,y(N

y
k,l(t)) +Ny

k,l(t)× γk,l,y is also

an upper bound on the total number of bus accesses by jobs

of τl ∈ Γy ∩ hep(k) that fully execute in a time interval of

length t considering both CRPD and CPRO. Consequently,

the minimum between Ny
k,l(t) ×MD l +Ny

k,l(t) × γk,l,y and

M̂D l(N
y
k,l(t)) + ρ̂k,l,y(N

y
k,l(t)) + Ny

k,l(t) × γk,l,y is also an

upper bound. The lemma follows.

The worst-case response time Ri of a task τi ∈ Γx is given

by the smallest possible solution of the following expression

Ri = PDi +
∑

∀τj∈Γx∩hp(i)

⌈

Ri

Tj

⌉

× PDj + BAT
x
i (Ri)× dmem (19)

The term
∑

∀τj∈Γx∩hp(i)

⌈

Ri

Tj

⌉

×PDj upper bounds the total

core interference suffered by task τi due to preemptions by

higher priority tasks executing on the same core, whereas

the total memory bus interference that τi may suffer during

Ri is upper bounded by BAT
x
i (Ri) × dmem . Depending on

the bus arbitration policy, BATx
i (Ri) can be calculated using

Eq. (7), (8) or (9) with BAS
x
i (t) and BAO

y
k(t) computed

using Lemma 1 and Lemma 2, respectively. Note that since

the response time of each task may depend on the response

times of other tasks, we use an outer loop around a set of

fixed-point iterations to compute the response times of all the

tasks, and so deal with the apparent circular dependency. The

iteration on Ri starts by initiating Ri to PD i +MD i × dmem

and stops as soon as Ri does not evolve anymore or Ri > Di.

V. EXPERIMENTAL EVALUATION

In this section, we compare the performance of FP, RR

and TDMA bus arbitration policies in terms of task set

schedulability with and without considering cache persistence.

We model a multicore platform with 4 cores each having a

private L1 instruction cache with 256 cache sets and a block

size of 32 Bytes. The default value of dmem is 5µs. All

experiments were performed using the Mälardalen benchmark

suite [9] with parameters PD i, MD i, MD
r
i , UCB i, ECB i

and PCB i extracted using the Heptane static WCET analysis

tool [3], [10]. Due to space constraints, Table I only shows

details of some of the benchmarks, with PD i, MD i and MD
r
i

given in clock cycles. A table with all benchmarks can be

found in [4]. Note that our simulator is available on demand.

The default task set size was 32 with 8 tasks per core.

Each task within the task set is randomly assigned parameters

from one of the benchmarks of the Mälardalen benchmark

suite. Task utilizations were generated using UUnifast [11]

assuming an equal utilization for each core. Task periods and
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Fig. 2: Schedulability ratio of different bus arbitration policies by varying total core utilizations

TABLE I: Task parameters for a selection of benchmarks from

the Mälardalen Benchmark Suite [9]

Name PDi MDi MD
r

i ECBi PCBi UCBi

lcdnum 984 1440 192 20 20 20
bsort100 710289 89893 88907 20 20 18
ludcmp 27036 8607 3545 98 98 98

fdct 6550 6017 819 106 22 58
nsichneu 22009 147200 147200 256 0 256
statemate 10586 18257 3891 256 36 256

deadlines were set such that Ti = Di = (PD i + MD i)/Ui.

Task priorities were assigned according to deadline monotonic.

We randomly generated task sets and determined their

schedulability using Eq. (19) for FP, RR, and TDMA buses

under different settings, i.e., by varying core utilizations,

number of cores, memory reload time dmem , cache size and

RR/TDMA slot size s that has a default value of 2.

1. Core Utilizations: In this experiment, we varied the per

core utilization between 0.05 to 1 in steps of 0.05. For every

value of core utilization, 1000 task sets were generated. Fig. 2

shows the number of task sets that were deemed schedulable

by FP, RR and TDMA bus arbitration policies with and

without considering cache persistence. Fig. 2 also shows a

line marked as “perfect bus” which assumes that there is no

interference on the memory bus when the bus utilization ≤ 1.

That line provides an upper bound on the actual number of

schedulable task sets at a particular core utilization. We can see

in Fig. 2 that bus arbitration policies that account for cache

persistence dominate their counterparts that do not consider

cache persistence. This improved performance mainly results

from a tighter bound on the number of bus request generated

by tasks executing on different cores. We can see in Fig. 2a that

for a FP bus, up to 70% more task sets were schedulable when

considering cache persistence. Similarly, we can also see huge

improvements for both RR (up to 65% more schedulable task

sets) and TDMA (up to 50% more schedulable task sets). Note

that the FP bus outperforms the RR and TDMA buses since

it provides a tightly bounded bus latency for single accesses

which is not the case with RR and TDMA.

2. Number of Cores: In this experiment, we varied the

number of cores between 2 and 10 in steps of 2 with all

other parameters set to the default values. We have used

the weighted schedulability measure defined in [12] to plot

the results in Fig. 3a. The weighted schedulability measure

reduces what would otherwise be a 3-dimensional plot to 2-

dimensions. We can see that by increasing the number of

cores the total number of schedulable task sets decreases.

This is mainly because by increasing the number of cores the

number of tasks also increases. This leads to an increases in

the interference on the memory bus. However, we can see that

analyses that account for cache persistence always dominate

their counterparts that do not account for cache persistence.

3. Memory Reload Time dmem : For this experiment, we

varied the value of memory reload time dmem from 2µs to

10µs in step of 2µs. The results are presented in Fig. 3b. We

can see that for lower values of dmem the difference between

the weighted schedulability of cache persistence aware anal-

yses and their respective counterparts is higher. However, for

higher value of dmem the time spent by tasks in performing

memory operations increases and hence the schedulability of

all approaches decreases.

4. Cache Size: To evaluate the impact of cache size on the

performance of the analyses, we varied the size of the L1

cache of each core from 32 to 1024 cache sets, keeping

default values for all other parameters. The results are shown

in Fig. 3c. We can see that by increasing the cache size,

the number of schedulable task sets under bus arbitration

policies that account for cache persistence also increases. This

is mainly because by increasing the cache size the number of

PCBs of each task also increases, which results in gradually

improving the performance of the analyses that account for

cache persistence. Note that the increase in cache size also

reduce CRPD and thus increase the task set schedulability for

analyses that do not account for cache persistence, but at a

slower rate than for persistence aware analyses.

5. RR/TDMA slot size s: For RR/TDMA buses the number

of memory access slots per core, i.e., s, can greatly affect the

memory bus contention suffered by tasks. To evaluate this, we

varied the value of s between 1 to 6 and plotted the results

in Fig. 3d. The results show that for smaller values of s,

the difference between the weighted schedulability of cache

persistence aware analyses and their respective counterparts is

much higher. However, by increasing the value of s the task set

schedulability of all approaches decrease, which is intuitive,

considering the formulation of Eq. (8) and (9).

VI. RELATED WORK

Schliecker et al. [13] used event arrival curves to bound

the memory bus contention suffered by tasks. However, [13]

only supports an unspecified work-conserving bus arbitration

policy. Kelter et al. [14] and Chattopadhyay et al. [15] also

proposed WCRT analysis techniques to bound memory bus

contention in multicore systems considering a TDMA bus and

a L1 instruction cache. However, their methods have limited
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Fig. 3: Weighted schedulability of different bus arbitration policies by varying different parameters

applicability since they assume non-preemptive scheduling.

Dasari et al. [16] presented an analysis to bound the maximum

number of bus requests that can be made by a task in a

given time interval using performance counters. Consequently,

the bus contention suffered by the tasks is modeled as an

additional term in the WCRT analysis. This work was later

extended in Dasari et al. [17]. Although the analysis in [16],

[17] may be more accurate when it estimates the memory

access demand of tasks but, it uses non-preemptive scheduling

and assumes partitioned caches and therefore does not take

cache related effects into account. This makes the analysis

in [16], [17] less general than the one presented in this work.

Huang et al. [18] presented a WCRT analysis that applies to

multicore systems with one shared resource (e.g., memory bus)

using a fixed-priority arbitration. The WCRT analysis in [18]

has a speedup factor of 7 when used with a simple task-to-core

allocation algorithm. However, their model does not consider

the impact of caches on the shared resource access demand of

tasks which may potentially lead to optimistic results. Davis

et al. [2] explicitly modeled interference on cores, caches,

memory bus and the main memory in a multicore system. The

analysis in [2] accounts for CRPDs when bounding memory

bus delay suffered by the tasks under different bus arbitration

policies. However, since the bus contention analysis in [2]

does not account for cache persistence it may overestimate

the memory bus delay suffered by the tasks.

VII. CONCLUSION

In this work, we extend the notion of cache persistence from

single core to multicore systems. We built on the idea that

due to re-use of cache content between multiple executions

of the same task, the number of bus accesses generated by

the task may not always be equal to its worst-case memory

access demand. We show how the memory bus contention

suffered by tasks executing on a multicore platform can be

upper bounded in the presence of cache persistence. We then

evaluated the performance of cache persistence aware bus

arbitration policies against their respective counterparts that do

not account for cache persistence. Experimental results show

that cache persistence aware bus contention analyses was able

to deem up to 70% more task sets schedulable.
In future work, we plan to extend the proposed analysis to

multilevel shared caches.
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