
  

 

 

 

 

CAP: Context-Aware Programming for Cyber 
Physical Systems  

 

 
 

 

Conference Paper 

CISTER-TR-190623 

 

 

Shashank Gaur 

Luis Almeida 

Eduardo Tovar 

Radha Reddy  



Conference Paper CISTER-TR-190623 CAP: Context-Aware Programming for Cyber Physical Systems 

© 2019 CISTER Research Center 
www.cister-labs.pt   

1 
 

CAP: Context-Aware Programming for Cyber Physical Systems 

Shashank Gaur, Luis Almeida, Eduardo Tovar, Radha Reddy 

CISTER Research Centre 

Polytechnic Institute of Porto (ISEP P.Porto) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail:  

https://www.cister-labs.pt 

 

Abstract 

Context-awareness is a prominently desired featurein computing systems. Smartphones, smart cards or tags, 
wearables,sensor nodes, and many other devices enable a system tocompute context for different users and 
environment. With everincreasing advances in hardware for such devices, the interactionswith users are 
increasing every day. This enables the collectionof a large amount of data about users, systems, and 
physicalenvironment. With such data available to be leveraged, contextawarenesswill soon become a necessity. 
Such type of data collectionhappens most frequently in sensing applications enabled bywireless sensor network 
(WSN) devices. This paper discusses theconcept of context for sensing applications, specifically related toCyber 
Physical Systems (CPS). The paper highlights key aspectsof context and its definition. This paper proposes, to the 
bestof the author 19s knowledge, the first programming approach tobuild context-aware applications for WSN-
based CPS. This paperprovides a proof of concept for a framework to detect, manageand deploy context-aware 
applications. 

 



CAP: Context-Aware Programming for Cyber

Physical Systems

Shashank Gaur

CISTER Research Centre

ISEP, Polytechnic Institute of Porto

Porto, Portugal

sgaur@isep.ipp.pt

Luis Almeida

CISTER Research Centre

FEUP, University of Porto

Porto, Portugal

lda@fe.up.pt

Eduardo Tovar, Radha Reddy

CISTER Research Centre

ISEP, Polytechnic Institute of Porto

Porto, Portugal

emt, reddy@isep.ipp.pt

Abstract—Context-awareness is a prominently desired feature
in computing systems. Smartphones, smart cards or tags, wear-
ables, sensor nodes, and many other devices enable a system to
compute context for different users and environment. With ever
increasing advances in hardware for such devices, the interactions
with users are increasing every day. This enables the collection
of a large amount of data about users, systems, and physical
environment. With such data available to be leveraged, context-
awareness will soon become a necessity. Such type of data collec-
tion happens most frequently in sensing applications enabled by
wireless sensor network (WSN) devices. This paper discusses the
concept of context for sensing applications, specifically related to
Cyber Physical Systems (CPS). The paper highlights key aspects
of context and its definition. This paper proposes, to the best
of the author’s knowledge, the first programming approach to
build context-aware applications for WSN-based CPS. This paper
provides a proof of concept for a framework to detect, manage
and deploy context-aware applications.

Index Terms—Cyber Physical System, Wireless Sensor Net-
work, Context Awareness, Dynamic Reconfiguration, Adaptabil-
ity, Middleware

I. INTRODUCTION

Sensors are used to monitor events in their environment for

various applications such as healthcare, structural monitoring,

data centers, agriculture, process and production industry etc.

A network of such devices, commonly known as Sensor

Network, is able to collect data and exchange processed

information with other devices to provide new services to

the user. With evolution in technology, the devices in sensor

network became more advanced to collect data, communicate

over wireless network, and process the data into useful infor-

mation. This has significantly changed the way computation

and communication of the data happens, particularly, in the

so-called Wireless Sensor Networks (WSN)s. WSN devices

with sufficient processing and storage capabilities enable the

user to perform sensing related tasks over an extensive period

of time. In addition, WSN also enable different interactions

between the environment and the user.

Such WSN devices are prominently used in Cyber Physical

Systems, specially in Industrial CPS. For example, in a ware-

house smart RFID tags are used to keep track of the movement

of an object. Motion sensors in a production plant can allow

efficient HVAC operations across occupied areas in real time.

Such complex use cases with WSN-bsed CPS already exist [1].

In the recent years, there has been efforts to enable efficient

use of WSNs in industrial CPS domains such as Manufacturing

Automation, Process Automation, Production Management,

etc.

Internet

Zigbee

6LowPAN

Ethernet

RFID

Fig. 1: WSN in Industrial CPS

Due to the broad potential, there has been tremendous

progress to enable these WSN-based CPS. On the hardware

front, the devices are powerful enough to execute and process

multiple tasks with help of various onboard sensors. Protocols

such as Zigbee and 6LoWPAN allow devices to communicate

without the Internet [2], [3]. On the software front, many

solutions are available for users to write applications [4], [5].

Such progress also yields an increase in expectations from

the industry. An easier way to program the applications and

better interactions with other devices are desired. Several

research works have been carried out towards satisfying such

expectations in various scenarios [6], [7].

On the other hand, Cyber Physical Systems have become

much more pervasive and ubiquitous. A single device can col-

lect different type of sensor data such as location, temperature,

motion, etc. Such semantic expansion of data allows for a

better understanding of the ecosystem. It is possible to deduce

various contexts and also adapt based on such deductions. This

is generally known as Situational-Aware or Context-Aware

Computing.

This paper discusses how context-awareness can be enabled

in CPS, especially with help of WSN devices. The paper

also proposes novel programming solutions and operational

framework, which allows the user to leverage such property.



This work examines the requirements and essential design

features for such programming solutions.

This paper is organized as follows. Section II describes the

concept of context awareness and its relevance. Section III

discusses possible programming solutions and their features

to enable context awareness. Section IV presents the imple-

mentation of the proposed programming solution. Section V

evaluates the implementation and examines the benefits of

those proposed features. Section VI discusses relevant work

and Section VII provides a conclusion and future direction for

this work.

II. CONTEXT-AWARENESS

Context awareness [8] can help in building a true pervasive

Cyber Physical System. It can anticipate the needs of a

user/environment and act accordingly. This is an effort to free

everyday users from manually configuring a system for all

possible needs. A simple example of context-awareness can

be found in the Cyber Physical Production Systems [9]. In

production systems context can change depending on the type

of product, time, temperature, etc. For example, a cooling liq-

uid is used to control temperature of manufacturing machines,

which is supplied based on the temperature detected by the

sensors. However, some adaptation is required based on the

time taken by cooling process and change in the temperature.

There can be complex scenarios where type of the product

being manufactured may also affect the cooling process. Such

a cooling application is using a wide variety of contexts to

provide this service.

Context itself has multiple definitions in different use

cases [10]–[12]. The definition by Abowd et al. [13] is the

closest to a desired operational definition for this work. The

context can include information related to three aspects of the

ecosystem:

• User such as location, motion, nearby users, etc.

• System such as applications, connectivity, energy, nearby

devices, etc.

• Physical Environment temperature, time, noise, etc.

With help of information about these three aspects, Context

can be defined. Especially in the case of WSNs, precise data

extracted from sensor devices can help in defining the context

for the system.

Definition: Context is the information that can be used to

characterize the situation of the ecosystem. A Context can

be determined based on information from a person, place or

object that is relevant to the users and their applications.

Once a context is determined for that system, it is possible

to execute certain applications which satisfy the user needs

for that particular context. Such context-awareness can help

in anticipating the changes in the ecosystem and adapt itself

accordingly.

To better understand the need for Context-Awareness, let

us consider a manufacturing line at a production plan using

multiple robotic arms. Both arms are capable of performing

operations for various products. From time to time, the arms

may need to perform operations in series or parallel, as shown

in the figure below.

Fig. 2: Use case for context-awareness

The operations performed by these arms may require dis-

tinct configurations for multiple contexts. One type of product

may require both arms to work together while another may

require one arm to perform operation before another arm. In

another instance, only one arm may be required for a certain

operation. Also time of the day may play certain role, as during

certain hours required productivity might be higher. All these

configurations can be provided by the user in advance and as

the context changes, the arms may adapt by itself.

This use case is used just to introduce the intuition of

context-awareness, but the basics for context can exist in many

other foreseeable scenarios. Some relevant research work for

the similar application already exists [14].

There can be multiple ways to provide context-awareness. In

principle, the system needs to determine context with changes

occurring in the user, system or physical environment. Once

the context is determined, the system must decide on which

applications to execute for a particular context. Once the set

of desired application is identified, these applications must be

deployed across various mobile devices and sensing nodes.

Fig. 3: Adapt applications for different contexts

To determine the context, the system needs to collect the

data from all the devices and perform regular computation

on the collected data. In the case of WSN devices, this

computation can be a set of simple rules on the sensing data.

More complex methods, such as machine learning, may be

required to recognize more detailed information about user,

system or physical environment. For example, information

about the social activity of a user may require complex



methodologies to determine such context. However, this work

concerns mostly with WSN devices. The context-awareness in

this work is achieved using a set of specific rules applied to

the data collected from WSN devices.

III. CONTEXT-AWARE PROGRAMMING (CAP)

To support context-awareness, it is important to provide

the user with appropriate tools to write the applications.

There have been many efforts to provide better programming

support for users [15], including some support for adaptation

in WSN [7]. The main goal of such programming approach

should be to let the user express the desired goals without re-

quiring knowledge about specific resources. Resource-agnostic

programming and mobility of applications over resources can

support context-awareness.

In addition to enhancing the programming, it is important

to develop a better understanding of the context. This can be

achieved by defining the context for different scenarios related

to security, energy, communication, user behavior, etc.. For

any system, these context scenarios can change with time or

multiple scenarios can exist at the same time. To adapt to new

context scenarios the system must take actions. These actions

can be the deployment of new applications across the network

or re-configuration of an existing application for a different

resource.

This paper proposes a declarative approach to program user

applications, named Context-Aware Programming (CAP). In

this approach, a user can write self-contained blocks of code,

which can process a predefined type of input and provide a

certain type of output. We draw upon three essential features

from existing state of the art and propose an approach to bring

these together.

• Abstraction allows the user to write code without worry-

ing about low-level details.

• Modularity allows the user to write code that is reusable

in modules to provide specific functions.

• Mobility allows the user to write code which can be

moved around the network across any suitable device.

To understand these features in a better way, let us take a

look at a simple example for HVAC operation shown in Figure

4. Application A takes input from the two temperature sensors

and provides the average temperature as output. Application

B checks for user presence using the input from a motion

sensor and the average temperature from Application A, and

if conditions are satisfied actuation for appropriate heating

or cooling takes place. Application A is deployed on one of

the temperature sensors and Application B is deployed on the

actuation device for the HVAC. There are two motion sensors

available which can be used by Application B.

Fig. 4: Features for Context-Aware Programming

Assume the motion sensor provided by the wearable device

becomes unavailable in the network, either due to low energy

levels or connectivity. Application B can still use another

motion sensor available via the smartphone. In order to accom-

modate this change, the code for Application B must not be

bound to the hardware address of one motion sensor. The user

should be able to write the required input without specifying

each device to be used, but just the input data required. This

is where Abstraction feature is required for CAP. Similarly,

the complete HVAC application to detect user presence and

calculate an average temperature could be written all together,

and usually would be done in that way using traditional WSN

programming tools such as Contiki. However, dividing this

objective into two self-contained applications provides the

ability to change the input sensors for one application of

the whole objective without interrupting another application.

Modularity helps in providing such ease of access for the

system. In another scenario, one of the temperature sensors

hosting Application A may become unavailable in the network.

In that case, Mobility allows the system to deploy Application

A on the other device such as the smartphone to get the

temperature as an input.

Abstraction, Modularity, and Mobility, altogether enable

the user to write applications for different contexts. When

a context change occurs, the system can make appropriate

adaptations without any manual configurations by the user.

IV. IMPLEMENTATION

In order to implement CAP, this work takes inspiration

from some of the existing implementations for programming

support in WSN. This work is an adaptation of such im-

plementations towards achieving a solution to accommodate

context-awareness in mobile sensing systems. One of such

prime inspirations for this work is T-Res [7].

T-Res is an abstraction for programming applications,

specifically designed for the Internet of Things. In T-Res, each

application (i.e. T-Res Task) consists of four components as

following:

• Input Source (/is) collects input data from other devices

for the T-Res Task.

• Processing Function (/pf) is the code to process input for

the T-Res Task itself.

• Output Destinations (/od) is the destination devices where

output of T-Res Task is posted.



• Last Output (/lo) stores the most recent output generated

by T-Res Task.

IPV6 based URI addresses are used to assign Input and

outputs to /is and /od. A compiled file T-Res Task is provided

to /pf. T-Res uses CoAP operations such as Put, Get, Post and

Observe to perform these actions.

TABLE I: T-Res task with its components and CoAP methods

Tasks Sub-resources Possible actions CoAP methods

Task Name input sources (/is) fetch/update GET, PUT, POST

processing function (/pf) fetch/update GET, PUT

output destinations (/od) fetch/update GET, PUT, POST

last output (/lo) fetch/observe GET

T-Res is able to keep input and output parameters separate

from the application code. This is an extremely useful feature,

which is used to implement CAP as well. T-Res has similar

abstraction between the code written by the user and devices to

be used for the code. Another example of similar separation is

PyFuns [16], which also inspired the implementation of CAP.

CAP strives to provide the three features altogether for

context-awareness: Abstraction, Modularity and Mobility.

CAP is divided into three components as shown in Figure 5,

Application Manager, Resource Administrator and Context

Manager. The Context Manager collects information on the

context and compiles a list of applications associated with

each context. The Application Manager collects code from

the user for each application and also keeps track of active

applications. The Resource Administrator deploys the code to

host devices, assigns the input and output devices and keeps

track of any changes in the system.

CAP is implemented using Python and Django program-

ming languages. The code for applications is written in nesc

by the user, similar to T-Res and many other popular pro-

gramming solutions. Due to its popularity, nesc allows familiar

users to use CAP without learning another new programming

language or syntax. CAP utilizes multiple Python scripts to

iterate through the code provided by the user. CAP adds

additional flags to the nesc code and compiles the binary file

to be deployed on the devices using CoAP operations. With

help of these flags across the code, whenever there is a context

change, the code can be recompiled and deployed again for

the appropriate resource. However, these actions are performed

autonomously by CAP to assure continuous execution of the

applications, without intervention from the user. CAP utilizes

an open source library txthings [17], to provide support for

the CoAP operations in Python.

A. Context Manager

The Context Manager is enabled by a set of Python

scripts named context-dict, context-input and context-track.

These scripts altogether keep track of every context and the

applications associated with each context. For an application

to be associated with a context, it must have been already

created using the Application Manager. A context is created

using dictionary data type in Python. Each context has four

keys:

• id is used for identification using an integer value.

• group denotes the ranking of individual context, which is

used to resolve conflicts between multiple contexts.

• applications contains a list of all associated applications.

• triggers is a list of items which can affect the context,

such as output of devices, application, or user inputs. A

separate list is created with the conditions for each of

these triggers.

With help of these, the scripts are able to detect and inform

other components about a change in context.

B. Application Manager

The Application Manager utilizes a web form to collect

code from the user for each task.This form is built using

Django and has a backend in Python to refresh the list of

applications. This form has four input fields: input, output,

host and code.

• Input is the type of input required for the application.

User can perform an abstract selection from all the

available resources using a dropdown list. There is no

need to provide an address or details of a particular

device, just the type of resource is required. For example,

if there are two temperature sensors, three motion sensors,

and one pressure sensor available for the user, the web

form will show the user a drop down menu with just three

choices: temperature; motion and pressure.

• Output is the output destination for the application. It is

similar to the Input field.

• Code is the nesc code written in an abstraction similar to

T-Res.

• Host is the devices where the Code will be executed. It

is similar to the Input and Output field.

These four fields are enough to complete an independent

application. Sometimes more information about the devices

may be required such as time bounds, spatial limits, etc.

C. Resource Administrator

The Resource Administrator is also enabled via Python

scripts, which also provide automated CoAP operations (such

as PULL, PUSH, GET, and OBSERVE). As shown in Figure

5, Resource Administrator creates and regularly updates two

tables. First table is about status of all the devices available

and resources provided by those devices.1

After the user submits an application via the provided web

form by the Application Manager, the Resource Administrator

takes decisions on which resources to use to host the code,

take input and provide the output. It creates a dictionary with

the list of acceptable resources for each decision, using the

first table. If any of these lists are not created or are empty,

the framework notifies users that the desired resources are

not available. Once the decision is finalized, the Resource

Administrator creates a second table with these decisions, as

shown in Figure 5.

1From here on resource defines ”sensing resource” per device, e.g. a
smartphone has multiple resources such as temperature, location, motion, etc.



nesc code

Application Manager

nesc code nesc code

Application A

Application B

Context Manager

Application A

Application B

Context A

Application A

Context B

Application B

Context C

Resource Administrator

Fig. 5: Components of Context-Aware Programming

Every time any of the tables is updated, the Resource

Administrator will execute the CoAP operations to deploy the

code on the selected host device and assign the input and

output devices using the URI addresses. For this it will choose

one of the options from each list with a predefined-criteria and

keep the selection saved for future references.

h o s t d e v i c e = r e s o u r c e [ h o s t t y p e ] [ a v a i l a b l e ]
i n p u t d e v i c e = r e s o u r c e [ i n p u t t y p e ] [ a v a i l a b l e ]
o u t p u t d e v i c e = r e s o u r c e [ o u t p u t t y p e ] [ a v a i l a b l e ]
a s s i g n ( i n p u t u r i , i n p u t d e v i c e )
a s s i g n ( o u t p u t u r i , o u t p u t d e v i c e )
a s s i g n ( c o d e u r i , open ( code ) . r e a d ( ) )
p o s t ( t a s k u r i , ” S t a r t ” )

Listing 1: CoAP operations to assign resources.

The CoAP operations such as PUT and POST are executed

to deploy the selections and run the task, respectively. The

GET operation is executed to make sure that selections are

made correctly, as it returns the status of each resource. This

can be seen in Listing 1, where resource is the dictionary

with lists of all acceptable resources. The host, input and

output are selected from this dictionary. The functions assign

and post refer to the CoAP requests for PUT and POST

respectively. The status of every assigned resource is changed

from available to active.

h o s t s t a t u s = c h e c k r e s o u r c e ( h o s t u r i , h o s t d e v i c e )
i n p u t s t a t u s = c h e c k r e s o u r c e ( i n p u t u r i , i n p u t d e v i c e )
o u t p u t s t a t u s = c h e c k r e s o u r c e ( o u t p u t u r i , o u t p u t d e v i c e )
i f h o s t s t a t u s != ” A c t i v e ” or i n p u t s t a t u s != ” A c t i v e ”

or o u t p u t s t a t u s != ” A c t i v e ” :
a p p l i c a t i o n . r e s t a r t ( )

Listing 2: Check status of resources.

As the application is deployed and execution starts, the Re-

source Administrator updates the status of all active resources

regularly. This is done by performing GET operations via the

Python function checkresource, as shown in Listing 2. At any

point, if any operation returns with an error, the framework

will once again execute the process to allocate resources.

However, this time it will use another available resource for

the corresponding error received earlier.

V. WORKING DEMONSTRATION

This work was tested using the TinyOS [5] and TelosB

sensor nodes. For the demonstration, a simple HVAC system

as an example is considered. There are four TelosB nodes as

shown in Figure 6. The functions of each node is as follows:

• Mote 1 acts as a border router node

• Mote 2 acts as a host temperature sensor node

• Mote 3 acts as a input temperature sensor node

• Mote 4 acts as an output heating actuator node

Both sensor nodes 2 and 3 can measure the same physical

parameter. The host sensor node 2 takes input from the sensor

node 3, divides the input values in half and provides output

to the actuator node 4.

Router

Temperature 

Sensor

Temperature

 Sensor

Heating 

Actuator

Task

CoAP

Instructions

Output

Input

Fig. 6: Four nodes with a simple HVAC application

In T-Res, these three devices have to be connected by a

PUT request of CoAP. The compiled code of the task is also

deployed using another PUT request to the uri path of host

node 2. To complete the deployment, a POST request to host

node 2 is required. In T-Res the user is required to issue all

these CoAP requests via the Copper CoAP [18] user agent for

Firefox. In CAP, the user can provide the same code using the

application form provided by the Application Manager. The

Resource Administrator takes care of all CoAP operations.

TABLE II: Status table during operation

Application Halve Task Running

Code halve.c Sent

Host coap://[aaaa::200:0:0:2]/tasks/halve Active

Input Source coap://[aaaa::200:0:0:3]/sensor Active

Output Device coap://[aaaa::200:0:0:4]/actuator Active



As soon as user submits the application, the CAP will return

the user with a success message for the deployment and a table

with status of nodes being used for the current deployment II.

This table is refreshed regularly via performing GET requests

in the backend. A time bound for those request can also be

provided by the user. User may also force a refresh via options

provided by CAP.

Router

Temperature 

Sensor

Temperature

 Sensor

Heating 

Actuator

Task

CoAP

Instructions

Output

Input

Input

X

Router

Temperature 

Sensor

Temperature

 Sensor

Heating 

Actuator

CoAP

Instructions

Output

Input

X

Task

(a) Input Node Failure (b) Host Node Failure

Fig. 7: Four nodes with a simple HVAC application

A. Change in Context

In this example we take a look at a change in context due

to energy failure. it is demonstrated the actions of CAP on

failure of two nodes, host and input, respectively as shown in

Figure 7. First, let us assume that after some time of operation,

input sensor node 3 fails due to battery depletion, causing

a switch in context as shown in Table III. The CAP will

automatically reinitialize the deployment by substituting the

node 3 with node 2. The Resource Administrator performs

PUT request for input source as node 2. After this, normal

execution of the application resumes. This new status is

represented in Table IV. The sequence of operations is shown

in the diagram in Figure 8.

TABLE III: Status table with failure status

Application Halve Task Halted

Code halve.c Running

Host coap://[aaaa::200:0:0:2]/tasks/halve Active

Input Source coap://[aaaa::200:0:0:3]/sensor Inactive

Output Device coap://[aaaa::200:0:0:4]/actuator Active

In a second case, host sensor node 2 may fail instead of

the input sensor node 3. In that case, the CAP will reinitialize

the deployment by substituting the node 2 with node 3 as

host node and assign itself as the input source as well.

Once again, this would be done by Resource Administrator,

which performs two PUT requests for both code and input

respectively.

TABLE IV: Status table after redeployment

Application Halve Task Running

Code halve.c Sent

Host coap://[aaaa::200:0:0:2]/tasks/halve Active

Input Source coap://[aaaa::200:0:0:2]/sensor Active

Output Device coap://[aaaa::200:0:0:4]/actuator Active

As we see in above example the user is not required to

intervene as the system was able to detect the context change

and adapt to that. Our implementation builds on top of the

support provided by T-Res, and extends it to support context-

awareness. Many features of the extension can be further

developed to enhance the context-awareness. For example the

time-bound for refresh on status table can be pre-defined by

the user or can be deduced by algorithms for better resource

management.

VI. RELATED WORK

Building programming abstraction for WSNs is a major

research direction. There has been significant contribution

towards macroprogramming, to name a few of them are

Regiment [19], Abstract Task Graph [20], Profun [21] and

Pyot [22]. Some of these efforts are limited to WSN devices

while others try to support mobile devices as well.

Regiment is a functional reactive programming model,

which treats the outputs of sensor nodes as Streams [19]. A

programmer can write functionalities based on these streams

instead of worrying about the nodes. There are some basic

functions such as rmap, rfilter, and rfold to operate on these

streams. The streams can be combined into groups which are

called regions. Due to a functional approach, the regiment

provides a high level of accuracy in performance.

While Regiment is a Functional approach, Abstract Task

Graph (ATaG) is a data driven approach. In ATaG, every

application is divided into three declarations: Abstract Tasks,

Abstract Data and Abstract Channels. Abstract Tasks represent

the type of processing in any application, Abstract Data

represents the type of data handled by the applications and

Abstract Channel associates the task declaration with data

declaration. Using these declarations any application can be

described by a model and then that model can be instantiated

any number of times throughout the sensor network. ATaG

provides abstraction because the number and the placement

of the application can be determined at compile or run time

according to the target devices.

The above mentioned efforts do not take into account the

diversity of the devices included in possible scenarios. Increase

in the mobile devices bring in a number of new challenges

such as in network processing, heterogeneity of software and

hardware platforms, resource management, etc. There are other

recent contributions that try to contribute towards solving

these challenges. Nano-CF [23] is another framework which

supports in-network processing and concurrent application that

share same resources. It batches multiple applications together

to optimize the resource and network usage.

Python-based framework (PyoT) [22], aims for the coordi-

nation of activities of a group of IoT agents based on CoAP.

These are namely discovery, monitoring, and storage. Pyot

also aims to coordinate triggering of devices and their data.

PyoT focused on sensing and actuation by hiding communi-

cation details as objects and supports in-network application

processing through T-Res. For task distributions, a message-

oriented middleware (Advanced Message Queuing Protocol



Input Node Failure

User Application Manager Context Manager Resource Administrator router node host node input node output node

Write halve.c

Create Context
 node failure

 Create status tables
 with each node

Confirm application

 Assign resources

 Deploy code

input

 halve.c

halve.c output

change detected

Provide status change

Change in status table
  input node failure

 Get new context

Check for application

Confirm application

Reassign resources
 host node as input

 Deploy code

 input

halve.c

halve.c  output

Host Node Failure

User Application Manager Context Manager Resource Administrator router node host node input node output node

Write halve.c

Create Context
 node failure

 Create status tables
 with each node

Confirm application

Assign resources

Deploy code

input

 halve.c

output

change detected

Provide status change

Change in status table
  host node failure

 Get new context

Check for application

Confirm application

Reassign resources
 input node as host

 Deploy code

 input

halve.c

output

Fig. 8: Sequence Diagram for CAP

standard) has been used. This is intended to provide scalability

and interoperability. There is no clear performance results on a

number of supporting nodes or network data throughput. PyoT

does not support group abstractions of 6LoWPAN and CoAP

which can decrease overall performance of WSN. PyoT is also

vulnerable for security issues due to CoAP implementation,

that does not support Datagram Transport Layer Security

(DTLS).

Python-based framework for ubiquitous networked sensors

(PyFUNS) [16], is built based on PyMite facilitates reprogram-

ming of virtual machines. That provides ease in application

level programming by abstracting low level and networking

functionalities. PyFUNS modifies network parameters accord-

ing to its application counterpart and calibrates the network en-

ergy efficiency. PyFUNS is restricted to ContikiOS application

level reconfigurations. The confined RESTful architecture i.e.

the CoAP protocol does not offer transportation layer security

and interoperability. The support of IPv6 and CoAP protocol

nearly saturates the RAM of WiSMote, that restricts PyFUNS

usage in complex tasks. Moreover, the trade-offs between

energy consumption with script execution time, and saturation

of RAM with communication failures were not studied.

Another contribution with similar focus is Code in the

Air [6]. CITA enables programmer to write re-usable code

which can be deployed in different energy based contexts.

CITA builds a catalog for the applications and client-server

approach is used to deploy the code.

These are some of the recent efforts, which can provide

a limited support for context-awareness. Many of these also

rely on CoAP operations, similar to the work presented in this

paper. While CoAP is not most secure solution, it is supported

by many other tools available for mobile systems, which makes

it very popular.

VII. CONCLUSION

This paper proposes Context-Awareness Programming

(CAP) for Cyber Physical Systems and describes its essential

features. CAP combines Python scripts with a Django based

web application to provide autonomous adaptations for differ-

ent contexts. The proposed approach, CAP, is demonstrated us-

ing TelosB sensor nodes and TinyOS software. CAP includes

three essential features, Abstraction, Modularity and Mobility.

In author’s best knowledge this has not been done by any of

the previous works.

The current implementation of CAP is limited to proof

of concept. In the future,It is important to provide faster

adaptation with switching between multiple contexts. Another

future goal would be to include complex data from multiple

devices such as a calendar or activity of a user and recognize

context with such data. Basic machine learning algorithms can

help in recognizing such context with more reliability. Efforts

to evaluate such contribution against existing context-aware

work in embedded systems would be critical as well.

In addition, this work can serve as a building block for a

complete framework to support context-awareness in WSNs.

Such a framework would include management of applications,

resources, and network. Each part proposes its own research

problems. For example, to design resource management, it

may be required to create a dynamic schedule for context-

awareness to provide assurance on deadlines for different

applications.



ACKNOWLEDGEMENT

This work was partially supported by National Funds

through FCT/MCTES (Portuguese Foundation for Science and

Technology), within the CISTER Research Unit (CEC/04234);

also by the Operational Competitiveness Programme and In-

ternationalization (COMPETE 2020) under the PT2020 Part-

nership Agreement, through the European Regional Develop-

ment Fund (ERDF), and by national funds through the FCT,

within project(s) POCI-01-0145-FEDER-029074 (ARNET);

and also by the EU ECSEL JU under the H2020 Framework

Programme, within JU grant nr. 737422 (SCOTT project,

www.scottproject.eu).

REFERENCES

[1] P. Leitão, A. W. Colombo, and S. Karnouskos, “Indus-

trial automation based on cyber-physical systems tech-

nologies: Prototype implementations and challenges,”

Computers in Industry, vol. 81, pp. 11–25, 2016.

[2] Z. Specification, “Zigbee alliance,” ZigBee Document

053474r06, Version, vol. 1, 2006.

[3] Z. Shelby and C. Bormann, 6LoWPAN: The wireless

embedded Internet. John Wiley & Sons, 2011, vol. 43.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a

lightweight and flexible operating system for tiny net-

worked sensors,” in Local Computer Networks, 2004.

29th Annual IEEE International Conference on, IEEE,

2004, pp. 455–462.

[5] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.

Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.

Brewer, et al., “Tinyos: An operating system for sen-

sor networks,” in Ambient intelligence, Springer, 2005,

pp. 115–148.

[6] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and

S. Madden, “Code in the air: Simplifying sensing and

coordination tasks on smartphones,” in Proceedings of

the Twelfth Workshop on Mobile Computing Systems

and Applications (HotMobile), San Diego, California:

ACM, 2012.

[7] D. Alessandrelli, M. Petraccay, and P. Pagano, “T-

res: Enabling reconfigurable in-network processing in

iot-based wsns,” in IEEE International Conference on

Distributed Computing in Sensor Systems, 2013.

[8] B. Schilit, N. Adams, and R. Want, “Context-aware

computing applications,” in First Workshop on Mobile

Computing Systems and Applications, 1994..

[9] G. Settanni, F. Skopik, A. Karaj, M. Wurzenberger,

and R. Fiedler, “Protecting cyber physical produc-

tion systems using anomaly detection to enable self-

adaptation,” in 2018 IEEE Industrial Cyber-Physical

Systems (ICPS), IEEE, 2018, pp. 173–180.

[10] A. Ward, A. Jones, and A. Hopper, “A new location

technique for the active office,” IEEE Personal commu-

nications, vol. 4, no. 5, pp. 42–47, 1997.

[11] H. W. Gellersen, A. Schmidt, and M. Beigl, “Multi-

sensor context-awareness in mobile devices and smart

artifacts,” Mobile Networks and Applications, vol. 7,

no. 5, pp. 341–351, 2002.

[12] P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware

applications: From the laboratory to the marketplace,”

IEEE personal communications, vol. 4, no. 5, pp. 58–

64, 1997.

[13] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M.

Smith, and P. Steggles, “Towards a better understand-

ing of context and context-awareness,” in International

symposium on handheld and ubiquitous computing,

Springer, 1999, pp. 304–307.

[14] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski,

and R. Jafari, “Enabling effective programming and

flexible management of efficient body sensor network

applications,” Human-Machine Systems, IEEE Transac-

tions on, 2013.

[15] G. P. P. Luca Mottola, “Programming wireless sensor

networks: Fundamental concepts and state of the art,”

ACM Computing Surveys, vol. 43, no. 3, 2011.

[16] S. Bocchino, S. Fedor, and M. Petracca, “Pyfuns: A

python framework for ubiquitous networked sensors,”

in European Conference on Wireless Sensor Networks,

Springer, 2015, pp. 1–18.

[17] M. Wasilak. (2015). Txthings, [Online]. Available:

https://github.com/siskin/txThings/.

[18] M. Kovatsch, “Demo abstract: Human–coap interaction

with copper,” in Proceedings of the 7th IEEE Interna-

tional Conference on Distributed Computing in Sensor

Systems, 2011.

[19] R. Newton, G. Morrisett, and M. Welsh, “The regiment

macroprogramming system,” in Proceedings of the 6th

international conference on Information processing in

sensor networks, ACM, 2007.

[20] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The

abstract task graph: A methodology for architecture-

independent programming of networked sensor sys-

tems,” in Proceedings of the 2005 Workshop on End-

to-end, Sense-and-respond Systems, Applications and

Services.

[21] A. Elsts, F. H. Bijarbooneh, M. Jacobsson, and K. Sag-

onas, “Profun tg: A tool for programming and manag-

ing performance-aware sensor network applications,” in

Local Computer Networks Conference Workshops (LCN

Workshops), 2015 IEEE 40th, IEEE, 2015, pp. 751–759.

[22] A. Azzara, D. Alessandrelli, S. Bocchino, M. Petracca,

and P. Pagano, “Pyot, a macroprogramming framework

for the internet of things,” in Industrial Embedded Sys-

tems (SIES), 2014 9th IEEE International Symposium

on, 2014, pp. 96–103. DOI: 10 . 1109 / SIES . 2014 .

6871193.

[23] V. Gupta, J. Kim, A. Pandya, K. Lakshmanan, R. Rajku-

mar, and E. Tovar, “Nano-cf: A coordination framework

for macro-programming in wireless sensor networks,” in

8th Annual IEEE SECON, 2011, pp. 467–475.


