
  

 

 

 

 

Data-Agnostic Model Poisoning against 

Federated Learning: A Graph Autoencoder 

Approach  

 

 
 

 

Journal Paper 

*CISTER Research Centre  

CISTER-TR-240201 

 

2024 

Kai Li* 

Jingjing Zheng* 

Xin Yuan 

Wei Ni 

Ozgur B. Akan 

H. Vincent Poor  

 



Journal Paper CISTER-TR-240201 Data-Agnostic Model Poisoning against Federated Learning: A  ... 

© 2024 CISTER Research Center 
www.cister-labs.pt   

1 

 

Data-Agnostic Model Poisoning against Federated Learning: A Graph Autoencoder 

Approach 

Kai Li*, Jingjing Zheng*, Xin Yuan, Wei Ni, Ozgur B. Akan, H. Vincent Poor 

*CISTER Research Centre 

Polytechnic Institute of Porto (ISEP P.Porto) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail: kai@isep.ipp.pt, zheng@isep.ipp.pt, xin.yuan@data61.csiro.au, Wei.Ni@data61.csiro.au, oba21@cam.ac.uk, poor@princeton.edu 

https://www.cister-labs.pt 

 

Abstract 

This paper proposes a novel, data-agnostic, model poisoning attack on Federated Learning (FL), by designing a 

new adversarial graph autoencoder (GAE)-based framework. The attack requires no knowledge of FL training data 
and achieves both effectiveness and undetectability. By listening to the benign local models and the global model, 

the attacker extracts the graph structural correlations among the benign local models and the training data 
features substantiating the models. The attacker then adversarially regenerates the graph structural correlations 

while maximizing the FL training loss, and subsequently generates malicious local models using the adversarial 
graph structure and the training data features of the benign ones. A new algorithm is designed to iteratively train 

the malicious local models using GAE and sub-gradient descent. The convergence of FL under attack is rigorously 
proved, with a considerably large optimality gap. Experiments show that the FL accuracy drops gradually under the 

proposed attack and existing defense mechanisms fail to detect it. The attack can give rise to an infection across 
all benign devices, making it a serious threat to FL. 
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Abstract—This paper proposes a novel, data-agnostic,
model poisoning attack on Federated Learning (FL), by
designing a new adversarial graph autoencoder (GAE)-based
framework. The attack requires no knowledge of FL training
data and achieves both effectiveness and undetectability. By
listening to the benign local models and the global model, the
attacker extracts the graph structural correlations among the
benign local models and the training data features substanti-
ating the models. The attacker then adversarially regenerates
the graph structural correlations while maximizing the FL
training loss, and subsequently generates malicious local
models using the adversarial graph structure and the training
data features of the benign ones. A new algorithm is designed
to iteratively train the malicious local models using GAE and
sub-gradient descent. The convergence of FL under attack
is rigorously proved, with a considerably large optimality
gap. Experiments show that the FL accuracy drops gradually
under the proposed attack and existing defense mechanisms
fail to detect it. The attack can give rise to an infection across
all benign devices, making it a serious threat to FL.

Index Terms—Federated learning, model poisoning attack,
graph autoencoder, feature correlation.

I. INTRODUCTION

The use of mobile edge computing is increasingly preva-

lent, especially in catering to user devices that come

with a multitude of sensors. These sensors produce vast

amounts of data, like images recording human activities or

the real-time locations of vehicles, as seen in smart city

scenarios [1], [2]. However, transferring this training data

from the user’s device to a server can pose a threat to data

privacy leakage. Federated Learning (FL) is an emerging

distributed machine learning approach that gains traction as

a solution to mitigate data privacy concerns [3]. With FL,
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user devices can jointly train a machine learning model

without having to disclose their private data to a server.

The user devices, acting as clients, iteratively train their

local models on their private data and send the local model

updates to a server. At the server, a global model is updated

without collecting private data from the user devices. The

global model is then sent back to the user devices, allowing

them to continue training their local models based on the

global model and their local data [4]. This process helps

to support data privacy and allows for real-time processing

capabilities at the edge of networks, making FL a significant

aspect of mobile edge computing.

Despite the fact that FL can help prevent attackers from

accessing the private data of user devices, an attacker (in

most cases, a malicious user device) can potentially launch

model poisoning or data poisoning attacks to manipulate

FL and propagate the attacks into benign user devices [5],

[6], resulting in a failure of FL training. Specifically, model

poisoning aims to send malicious local model updates to

the server during an aggregation process. The malicious

update can introduce specific vulnerabilities in the global

model or simply degrade FL performance. By contrast,

data poisoning attempts to inject malicious data or modify

existing data on user devices to misguide local model

training, thus compromising local model updates. Existing

data poisoning attacks generally require an attacker to have

some knowledge of the datasets used for FL training [7], so

that it can extract and manipulate the features of the datasets

for effective attacks [8]. By launching model poisoning

attacks [9] or data poisoning attacks [10], an attacker could

manipulate either the hyperparameters of the local models

or the training datasets of benign users to compromise

learning accuracy.

Much less constrained and potentially more threatening

model poisoning attacks on FL would result if they could

be based solely on the benign local models overheard by

an attacker and the global models broadcast by the aggre-

gator; i.e., when the attacker has no access to the training

data. However, without training data, it is challenging for

the malicious local models to strike a balance between

effectiveness and undetectability [11]. To the best of our

knowledge, such attacks are new and have not been reported

in the literature.

In this paper, we propose a new, data-agnostic, model

poisoning attack on FL systems, where an adversarial

graph autoencoder (GAE) [12], [13] is designed to generate

malicious local models solely based on the benign local
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models overheard and capturing the correlation features of

the benign local and global models. Specifically, an attacker

overhears the benign local models uploaded by the user

devices, and the global model broadcast by the server.

GAE is adept at capturing complex relationships and struc-

tures inherent in graph-structured data. It can efficiently

encode graph information into a lower-dimensional latent

space, while preserving the essential topological features

of a graph. Using GAE, the attacker extracts the graph

structure capturing the correlations between the benign

local models (that could be transmitted over a transport

layer security (TLS) protocol), and decouples the graph

structure from underlying data features substantiating the

local models. The attacker first regenerates manipulatively

the graph structure to retain the structural features of the

local models and maximize the FL training loss using the

GAE, and then generates malicious local models using

the regenerated graph structure to the data features of

the benign local models. As a result, the malicious local

models can effectively compromise the global model, while

remaining compatible with the benign models and hence

reasonably undetectable.

The contributions of the paper are summarized below.

• A new design of data-agnostic, malicious local models,

which manipulates the correlations of benign local

models and retains the genuine data features substan-

tiating the benign local models;

• A new GAE framework, which is trained together with

sub-gradient descent to regenerate manipulatively the

correlations of the local models while keeping the

malicious local models undetectable; and

• A rigorous analysis, which proves the convergence

of the global model under attack, but to an inferior

optimality gap.

• The proposed GAE-based attack is implemented ex-

perimentally based on the standard MNIST, fashion-

MNIST, and CIFAR-10 datasets. It is shown that the

GAE-based attack significantly compromises the FL

performance, where the training accuracy falls below

50% at the user devices. The source code of the

proposed GAE-based, data-agnostic, model poisoning

attack is available on GitHub.

Extensive experiments indicate that the FL accuracy drops

gradually under the proposed attack, and the existing poi-

soning defense mechanisms can hardly detect the attack.

Since the malicious local models are uploaded to the server

for global model aggregation, the proposed attack gives rise

to an epidemic infection across all benign devices.

The proposed GAE-based attack on FL involves attackers

intentionally poisoning malicious local models, aiming to

degrade or manipulate the performance of the global model.

The attack challenges the security, privacy, and robustness

of FL. While security is threatened by unauthorized ac-

cess or malicious insiders tampering with local models,

privacy concerns arise when the attackers try to reverse-

engineer or glean information about the benign devices’

data. Moreover, robustness, which is the ability of FL to

TABLE I: Notation and definition

Notation Definition

J The total number of benign user devices
ωωωg(t) The global model of FL in the t-th commu-

nication round
ωωω
a
g(t) The global model under attack

fi(ωωωj(t);x
i
j , y

i
j) The training loss function of device j

Fj(ωωωj(t)) The local loss function of device j
F (ωωωj(t)) The weighted loss function of FL
η The learning rate of the local model
TL The number of training iterations per FL

communication round
dT Euclidean distance threshold
A The adjacency matrix for the local models of

user devices
F The feature matrix
bA The reconstructed adjacency matrix gener-

ated at the decoder
L The Laplacian matrix based on the benign

weights
bL The Laplacian matrix regenerated by the at-

tacker
bF The malicious local model

consistently produce reliable and accurate results, can be

directly undermined, as poisoned local models compromise

the integrity and efficacy of FL. To this end, the proposed

GAE-based attack poses a comprehensive threat to the

security, privacy, and robustness of FL.

The rest of this paper is organized as follows. Section II

introduces the background of adversarial attacks against

wireless systems and FL. Section III discusses FL with

benign user devices and server, as well as the eavesdrop-

ping model. The proposed GAE-based epidemic attack is

delineated in Section IV. Performance analysis is conducted

in Section V. Section VI concludes the paper. Table I lists

the notation used in the paper.

II. RELATED WORK

This section reviews the literature on adversarial attacks

against wireless systems as well as FL, including model

and data poisoning attacks. On the one hand, because of

their broadcast nature, wireless channels are particularly

vulnerable to eavesdropping attacks. An attacker is likely

to overhear the local model updates transmitted by the other

benign users in wireless FL. On the other hand, the model

poisoning attack considered in this paper has not been

studied in the literature. Instead, existing attacks on wireless

FL have focused primarily on building an adversarial data

classification/label model for attackers, according to the

data packets and features overheard, e.g., [14] and [15].

There is clearly an opportunity for the new attack to strike.

A. Adversarial Attacks on Wireless Systems

In [16], an adversarial attack was studied to manipulate

the measurement of smart meters in residential homes.

Smart meter data could inform residents of which appli-

ances consumed the most electricity and adjust energy

production. The attacker employed deep learning to train

a power usage pattern classification model and generated

malicious data that was indistinguishable from the true
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data. In [14], machine learning was used to generate an

adversarial attack for targeting data fusion or aggregation.

The attacker infiltrated some devices and learned the de-

cision process and data fusion settings by observing data

exchanges between the devices and the data center.

In [17], the authors analyzed targeted adversarial attacks

that aimed to manipulate the output of a convolutional

neural network (NN)-based classifier. They also evaluated

non-targeted adversarial attacks against convolutional NN-

based device identification. To evaluate these attacks, the

authors used combined indicators of logits to increase the

perturbation levels and iterative steps, resulting in a high

success rate of adversarial attacks. In [18], researchers

used deep learning to recognize COVID-19 symptoms by

training on medical data from user devices. They evaluated

several adversarial attacks that aimed to falsify the data

and symptom recognition. The study found that existing

deep learning algorithms were vulnerable to these attacks,

highlighting the need for advanced security measures.

In [15], an adversarial attack was developed to deacti-

vate graph-based intrusion detection in a targeted wireless

system. The attack began by building a shadow graph

based on overheard data packets and features. A random

walk algorithm was then used to evaluate each node in

the attacker’s graph, selecting the node with the largest

weight to attack. The attack would perturb data features and

alter classification labels. In [19], an adversarial attack was

developed to utilize graph embedding and augmentation to

misclassify system malware samples as benign. The graph-

based attack aimed to embed a target malware sample into

benign software. By combining the benign code sample

and the target malware sample in the graph, the adversarial

attack could learn complex features, resulting in a high

misclassification rate at the user device.

In [20], a study was conducted on a Sybil-based data

poisoning attack against deep reinforcement learning-based

service placement in the Internet of Vehicles (IoV). The

attack targeted the agent that is responsible for learning the

service quality and deciding on service placement based on

delay. A Sybil attacker, which is a malicious vehicle, used

data poisoning techniques to masquerade as a legitimate

vehicle by stealing or borrowing its identity. The attacker

then maliciously sent false data to other vehicles.

Unfortunately, it is difficult for the attacker to formulate

the adversarial data classification/label model in FL systems

since the benign user devices can collaboratively conduct

model training without sharing their private data.

B. Poisoning Attacks on FL

In order to corrupt the FL, the attacker can launch

either a data poisoning or a model poisoning attack. In the

data poisoning attack, the attacker injects fake data with

manipulated features and flips labels into the benign user

devices. In the model poisoning attack, the attacker submits

malicious local models to the server. Both attacks aim to

corrupt the FL by introducing false information.

In [11], the authors systematically categorized the ex-

isting threat models associated with poisoning attacks on

FL, where practical boundaries of numerous parameters

pertinent to FL robustness were delineated. An array of

untargeted model and data poisoning attacks on FL was an-

alyzed to encompass the existing attack strategies. A model

poisoning attack was developed using gradient ascent to

fine-tune the global model and increase its loss on benign

data. The model poisoning attack adjusts the L2-norm of

the poisoned model update to circumvent the robustness

criterion of the model aggregation.

In [21], an adversarial attack mitigation scheme based

on clustering was studied. The scheme aimed to protect FL

by using unsupervised weight training to split and merge

weight clusters at the server to filter out malicious local

models that were uploaded by the user devices without

identity verification. In [22], malicious local models were

derived from mislabeled data to manipulate the global

model. The study found that this attack could result in a

significant drop in classification accuracy, and that it was

difficult to detect due to its negative impact on the target

device and minimal impact on other benign devices.

In [23], an inference model was formulated to take

local models as input and output the categories of data.

A malicious local model based on a differential selection

strategy was used to select two adjacent categories. To

approximate the benign local model, a category inference

attack was studied, in which the attacker learns the data

features underlying benign local models.

The authors of [24] presented a backdoor attack against

FL in mobile edge computing (MEC), which targeted the

tail of the input data distribution at the local devices.

The attack used projected gradient descent to maintain the

distance between the malicious local model and the global

model, to misclassify the targeted samples and bypass

defense mechanisms.

In [25], generative adversarial networks (GANs) were

utilized to construct data poisoning attacks against FL. The

attacker trained the GAN to replicate the local data of the

benign devices. Since the attacker had no information about

the local data, the GAN-based data poisoning updated the

global model to re-select the potential targeted devices.

In [26], a GAN-based FL poisoning attack was studied,

where the attacker posed as one of the benign devices and

trained the GAN to mimic the dataset of the benign devices.

The malicious data generated by the attacker were trained

to compromise the global model. In [27], a malicious server

deployed a GAN-based reconstruction attack against FL

to tamper with the private data of the user devices. The

malicious server discriminated the devices’ identities and

data representatives to supervise the training of GANs and

generate malicious data for each specific device. In [28],

the authors focused on a device-level privacy leakage attack

launched by a malicious server. A GAN-based framework

was presented to discriminate the data category and device’s

identity and recover the private data of the device. The

attack could associate the data features from different

devices to re-identify the local models.

Unfortunately, the existing data poisoning or model poi-

soning attacks have not exploited the implicit relationship
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between local models [29], [30]. Moreover, the existing

poisoning attacks generally require the attacker to have the

knowledge of (part of) the datasets used for FL training.

III. SYSTEM MODEL

In this section, we first describe an FL training process,

e.g., for image classification. Next, we present the threat

model, where malevolent devices can act as attackers. An

attacker creates and uploads malicious local model updates

to progressively contaminate the global model of the FL. At

last, we describe an attacker detection model that the server

can adopt to discern malicious local models by measuring

the Euclidean distances between the models.

A. Federated Learning

We assume there are J benign user devices and an

authorized (legitimate) but malicious user device (or an

attacker) in the FL training process. A benign user de-

vice j 2 [1, J ] has Dj(τ) amount of data at the τ -

th iteration. Let xi
j and yij denote the input of the cap-

tured images and the output of the FL model at device

j, respectively. i 2 [1, Dj(τ)]. A training loss function

of device j, denoted by fi(ωωωj(τ);x
i
j , y

i
j), captures ap-

proximation errors over the input xi
j and the output yij .

Here, ωωωj(τ) is the weight parameter of the loss func-

tion in the model being trained by the FL. For instance,

fi(ωωωj(τ);x
i
j , y

i
j) can be modeled by linear regression,

i.e., fi(ωωωj(τ);x
i
j , y

i
j) = 1

2 (ωωωj(τ)
Txi

j � yij)
2; or logistic

regression, i.e., fi(ωωωj(τ);x
i
j , y

i
j) = yij log

ã
1 + exp

�
�

ωωωj(τ)
Txi

j

�;
� (1� yij) log

ã
1� 1

1+exp
�
�ωωωj(t)T xi

j

�
;

. Here,

(·)T denotes transpose. Given Dj(τ), the local loss function

of the FL at device j for the τ -th iteration is

Fj(ωωωj(τ))=
1

Dj(τ)

Dj(τ)X

i=1

fi(ωωωj(τ);x
i
j ,y

i
j)+µg(ωωωj(τ)), (1)

where g(·) is a regularizer function that represents the

effect of the local training noise, and µ 2 [0, 1] is a

coefficient [31].

The local model of user device j is updated by

ωωωj(τ + 1) = ωωωj(τ)� ηrFj(ωωωj(τ)), (2)

where η is the learning rate.

After every TL local updates (or iterations), there is a

communication round where the benign user devices upload

their local models to a server. The server aggregates the

local models to update the global model and broadcasts

the global model to all user devices. While selecting the

user devices with large training datasets can help improve

the learning accuracy of FL, it often results in the fast

depletion of the batteries at the user devices. On the other

hand, selecting the user devices with small datasets can

save the battery energy of the devices, but the accuracy of

the global model could suffer. Existing resource allocation

policies, such as those developed in [32] and [33], can be

applied to balance the learning accuracy of FL and the

energy consumption of the user devices.

B. Threat Model

We consider a new data-agnostic model poisoning attack,

where malicious local models are generated solely based

on the benign local models overheard and the correlation

features of the benign local and global models. This attack

could be particularly severe in FL systems under wireless

settings, due to the broadcast nature of radio. As shown

in Fig. 1, an attacker within the vicinity of benign user

devices and equipped with radio transceivers can passively

eavesdrop on the local models transmitted by some (if not

all) of the benign user devices, extracting their features and

generating malicious local models. A similar threat model

has also been considered in the recent literature [34]–[36],

where an attacker within proximity of benign user devices

overhears the local and global models in an attempt to

recover, at least partially, the private data of the benign user

devices. Although cryptography can prevent eavesdropping

to some extent, existing techniques, such as those developed

in [37]–[39], have demonstrated the possibility of decipher-

ing encrypted information with limited initial data.

The attacker creates and uploads a malicious local model,

denoted by ωωωa(t), to contaminate the global model ωωωg(t),
and subsequently the local models of the benign users, i.e.,

ωωωj(t), 8j 2 [1, J ], where t indicates the t-th communi-

cation round. ωωωa(t) is adversarially created based on the

benign local model parameters overheard by the attacker in

the t-th communication round.

Unaware of the ill-intentioned attacker, the server ag-

gregates the local models of all user devices, including

both the benign and malicious local models, and unin-

tentionally creates a contaminated global model, denoted

by ωωωa
g(t), at the t-th communication round. The total

size of the local training data reported to the server is

D(t) =
PJ

j=1 Dj(t) +Da(t), where Da(t) is the claimed

data size of the attacker at the t-th communication round.

Then, the contaminated global model is given by

ωωωa
g(t) =

JX

j=1

Dj(t)

D(t)
ωωωj(t) +

Da(t)

D(t)
ωωωa(t), (3)

The server broadcasts ωωωg(t) to all user devices.

To this end, the FL training process in essence trains the

global model based on the local datasets of all user devices,

including the nonexistent dataset claimed by the attacker,

by minimizing the following global loss function:

min
ωωωa

g(t)
F (ωωωa

g(t))=
JX

j=1

Dj(t)

D(t)
Fj(ωωω

a
g(t))+

Da(t)

D(t)
Fa(ωωω

a
g(t)),

(4)

where Fa(·) is the claimed local loss function of the

attacker, which is claimed to conform to (1).

To attack the FL training process, the attacker aims to

maximize F (ωωωa
g(t)), while keeping ωωωa(t) undetectable by

the server that typically constantly assesses the similarities

among all local models and rules out those substantially

different from the rest, e.g., Krum or multi-Krum [40]. As

a result, the attacked global model diverges in a direction

opposite to the one intended in the absence of the attack.
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Fig. 1: The proposed data-agnostic model poisoning attack, where
the attacker overhears the global model and the local models
uploaded by the benign user devices. Next, the attacker generates
a malicious local model to contaminate the global model and the
benign local models.

At the t-th communication round, the attacker formulates

a data-agnostic, model poisoning attack problem:

max
ωωωa(t)

F (ωωωa
g(t)) (5a)

s.t. d(ωωωa(t),ωωωa
g(t)) ÿ dT , (5b)

where d(ωωωa(t),ωωωa
g(t)) evaluates the Euclidean distance be-

tween ωωωa(t) and ωωωa
g(t), and dT is a pre-specified threshold

that ensures the generated malicious local model is close

to the global model in the Euclidean space to escape the

scrutiny of the server.

C. Defense Model for Attacker Detection

In response to the prevalent threat of model poisoning

in FL, an attacker detection model residing on the server

can be applied, which leverages the Euclidean distance

metric to discern malicious local models, for instance, [8]

and [41]. By measuring the straight-line distance between

each incoming local model and the aggregated global

model, this model aims to identify anomalous deviations

indicative of malicious intent. The underlying rationale is

that genuine local models from benign devices are expected

to cluster within a certain proximity in the model space,

while malicious local models, designed to sabotage the

global model’s integrity, would exhibit more pronounced

deviations. By setting a distance threshold, local models

that exceed this threshold can be flagged or discarded,

effectively isolating and mitigating the impact of malicious

local models on the global model’s integrity. This server-

side defense mechanism underscores the potential of geo-

metric measures, like Euclidean distance, as powerful tools

in safeguarding FL systems from adversarial attacks.

IV. PROPOSED DATA-AGNOSTIC MODEL POISONING

ATTACK ON FL

In this section, we elaborate on the proposed data-

agnostic model poisoning attack, where adversarial GAE

is designed to extract the feature correlation among the

local models of the benign user devices and reconstruct an

adversarial adjacency matrix. With the adjacency matrix,

the attacker trains the GAE to generate malicious local

models without being detected by the server.

A. GAE Model for Data-Agnostic Model Poisoning

The arbitrary features of ωωωa(t) and those of the benign

local models may have a low feature correlation, which can

be potentially detected by the server. To address this, we

develop a new GAE model for the novel, data-agnostic,

model poisoning attack.

The optimization problem in (5) can be transformed

using the Lagrangian method [42]. Let λ denote the dual

variable. The Lagrange function is given by

L(ωωωa(t),λ) =F (ωωωa
g(t)) + λ(dT � d(ωωωa(t),ωωωa

g(t))). (6)

The Lagrange dual function is

D(λ) = max
ωωωa(t)

L(ωωωa(t),λ). (7)

The dual problem of the problem in (5) is given by

min
λ(t)

D(λ). (8)

At the t-th communication round, given λ = λ(t), the pri-

mary variable ωωωa(t) of the data-agnostic model poisoning

attack can be optimized by solving

ωωωa(t)
å
= argmax

ωωωa(t)
{F (ωωωa

g(t))� λ(t)d(ωωωa(t),ωωωa
g(t))}. (9)

With obtained ωωωa(t)
å
, the sub-gradient descent method can

be taken to update λ(t) by solving the dual problem (8).

Specifically, λ(t) is updated by [43]

λ (t+ 1) =
å
λ(t)� ε

�
d(ωωωa(t)å,ωωωa

g(t))� dT
�å+

, (10)

where ε is the step size, τ is the index to the iterations, and

[x]
+

= max (0, x). At initialization, λ(t) is non-negative,

i.e., λ(1) � 0, to ensure (10) converges.

We propose to solve (9) by developing a new GAE

model, followed by the sub-gradient descent to update (10).

These two steps are performed in an alternating manner, as

illustrated in Fig. 2. Specifically, we propose to decompose

the local model parameters of the benign devices into a

graph capturing the correlations (or similarity) between the

benign local models, and the underlying spectral-domain

data features that the local models capture. Then, we re-

generate the graph with the GAE in a manipulative manner

and subsequently compose malicious local models with the

regenerated graph and the original, genuine data features.

The rationale of this design is provided as follows.

• By regenerating the graph with the GAE, we retain

and manipulate the correlations between the local

models, and also deter the convergence of the global

model, i.e., by maximizing (9). The decoder of the

GAE reproduces the correlations while satisfying con-

straint (5b). This suppresses structural dissimilarity

between the malicious and benign local models.
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Fig. 2: The proposed GAE model for generating data-agnostic, malicious local models, where the attacker overhears ωωωg(t) and
ωωωj(t), ∀j and applies the GCN-based encoder to create Z

M . The output of the encoder, i.e., the feature representations, is input to
the decoder for feature reconstruction.

• By using the genuine underlying spectral-domain data

features, the malicious local models are substantiated

by the genuine data features. Hence, they are less

likely to be detected by the server.

1) GAE for Malicious Model Generation: The attacker

aims to construct ωωωa(t) without knowing any data of the

benign devices. As illustrated in Fig. 2, a graph, denoted by

G(V, E,F), is used to formulate the benign local models

in FL, where V , E, and F represent vertexes, edges, and

the feature matrix of the graph, respectively.

Let F = [ωωω1(t), · · · ,ωωωj(t),ωωω
a(t)] collect all local mod-

els of both benign and malicious devices. ωωωj(t),ωωω
a(t) 2

R
1æD, 8j. Also, let A 2 R

JæJ denote the adjacency

matrix that describes the correlation among the local mod-

els of the user devices. At the t-th communication round

of the FL, the (j, j0)-th element of A, denoted by ωj,j0

(j, j0 2 [1, J ]), measures the inner product between ωωωj(t)
and ωωωj0(t) [44], as given by

ωj,j0 =
ωωωj(t) ·ωωωj0(t)

kωωωj(t)k · kωωωj0(t)k
. (11)

According to A, the topological structure of the graph G
can be constructed.

The GAE consists of an encoder and a decoder, where

the encoder encodes the graph data with the features and

the decoder takes the encoder’s output as the input to

reconstruct G(V, E,F) [45].

• Encoder: The encoder in the proposed GAE is re-

sponsible for mapping G(V, E,F) to a lower-dimensional

representation. We build the encoder based on an M -layer

graph convolutional network (GCN) architecture, which

learns a representation that captures the underlying features

of G(V, E,F). The encoded representation is then used

as input to the decoder, to reconstruct the original graph

from the lower-dimensional representation to obtain the

malicious local model ωωωa(t
å
) in (9).

The encoder takes A as its input to its M -layer GCN.

The output at the M -th layer is

ZM = fG(Z
M�1,A|wM ), (12)

where fG(·, ·|·) is a spectral convolution function and wM

defines the weight matrix at the M -th layer of the GCN.

With the identity matrix I 2 R
JæJ , we define eA = A+I

and Ajj =
P

j0
eAjj0 . To generate a feature representation

of the graph, the encoder can be written as

fG(Z
M�1,A|wM ) = Φ

M (A
�

1

2 eAA
�

1

2ZM�1wM ), (13)

where ΦM (·) represents a nonlinear activation function,

e.g., tanh(·) or ReLU(·); and A
�

1

2 eAA
�

1

2 is the symmet-

rically formulated adjacency matrix [44], [46].

• Decoder: The decoder is responsible for taking the

lower-dimensional representation generated by the encoder,

i.e., ZM in (12), and mapping it back to the original

G(V , E,F). This can be viewed as the inverse operation

of the encoder. The decoder aims to generate the original

graph from its reduced representation. The output of the

decoder is compared with the original input graph to eval-

uate a loss. The encoder and decoder are trained together

to minimize the loss.

A reconstructed adjacency matrix is generated at the

decoder, which is defined as

bA = sigmoid
ã
ZM

�
ZM

�T;
. (14)

where the Sigmoid function is defined as

sigmoid(x) = 1/(1 + exp(�x)). The larger the inner

product (ZM
�
ZM

�T
), the more likely the vertexes j and

j0 are connected in the graph [47].

The output of the decoder is the reconstructed adjacency

matrix bA. A reconstruction loss function that measures the

difference between V and bA can be formulated as [48]

φloss = EfG(ZM�1,G|wM )

h
log p( bA | ZM )

i
, (15)
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where p( bA | ZM ) at the decoder indicates the correlation

among the embedding vertexes, and is given by

p( bA | ZM ) = Π
J
j=1Π

J
j0=1p(

bAjj0 | Z
M
j ,ZM

j0 ), (16)

where

p( bAjj0 = 1|ZM
j ,ZM

j0 ) = sigmoid
ã
ZM

j

�
ZM

j0

�T;
. (17)

• Malicious Model Generation: A graph signal pro-

cessing module is designed to decompose the correlation

features of the benign local models, and the data features

substantiating the local models, as described earlier. A

Laplacian matrix [49] is built based on the adjacency matrix

of the benign models, i.e., A, as given by

L = diag(A)�A. (18)

By applying singular value decomposition (SVD) [50] to L,

i.e., L = BΣBT , we can obtain a complex unitary matrix

B 2 R
JæJ , also known as graph Fourier transform (GFT)

basis, that is used to transform graph data, e.g., F , to its

spectral-domain representation. Σ is a diagonal matrix with

the eigenvalues of L along its main diagonal.

As a result, the attacker can obtain a matrix S that

contains the spectral-domain data features of all benign

local models, by removing the correlations among the

models and subsequently focusing on the data features

substantiating the local models. S is given by

S = B�1F . (19)

Likewise, the attacker can use the graph signal processing

module to produce a Laplacian matrix based on the output

of the GAE, as given by

bL = diag( bA)� bA. (20)

The corresponding GFT basis, denoted by bB, can be

obtained by applying SVD to bL. With reference to (19),

the malicious local model that follows A in the GAE can

be determined by

bF = bBS, (21)

where bF 2 R
JæD. The vector ωωωa(t) in bF is selected as

the malicious local model and uploaded by the attacker

to the aggregator for global model aggregation in the t-th
communication round.

Since the attacker aims to generate the malicious local

models to disorient FL, the proposed GAE is constructed

and trained to maximize L(ωωωa(t),λ(t)) � φloss. As a

consequence, the malicious local model ωωωa(t) progressively

and increasingly contaminates the FL training process with

the increase in global model aggregations, i.e., t = 1, 2, · · · .

B. Training Algorithm of the Proposed GAE Model

Algorithm 1 summarizes the training process of the

proposed GAE-based, data-agnostic, model poisoning at-

tack model, which operates along with the FL training of

the benign devices and the server. Specifically, in every

FL communication round, i.e., the t-th round, the server

Algorithm 1 The proposed GAE-based, data-agnostic

model poisoning attack against FL

1: 1. Initialize: G(V, E ,F), TL, J , dT , ωωωa
g(t), ωωω

a(t), and

λ(1) � 0.

% Adversarial FL:

2: for round t = 1, 2, 3, ... do

3: for Local iteration number tL = 1, · · · , TL do

4: All benign user devices train the benign local

model ωωωj(t), j = 1, · · · , J .

5: end for

6: All benign user devices upload their benign local

models ωωωj(t), j = 1, · · · , J to the server, and the

attacker overhears the benign local models.

7: The attacker carries out the proposed GAE, i.e.,

GAE(ωωωj(t), 8j,F ,λ(t)), and obtains ωωωa(t), as fol-

lows.

8: · Calculate the adjacency matrix A = {ωj,j0} 2
R

JæJ according to (11), and input A and F
into the GAE.

9: · Train the GAE to maximize the reconstruction

loss L(ωωωa(t),λ(t))� φloss to obtain bA.

10: · Obtain S based on (18) and (19), next obtain
bF based on (20) and (21), and then determine

ωωωa(t) based on bF .

11: Update λ(t), according to (10).

12: The attacker uploads the malicious local model ωωωa(t)
to the server.

13: The server aggregates all the local models to obtain

the global model under attack ωωωa
g(t) by (3), and

broadcasts ωωωa
g(t).

14: All benign user devices update their local models

with the global model, i.e., ωωωj(t) ωωωa
g(t), 8j.

15: end for

broadcasts ωωωa
g(t). The benign devices apply the Local-

Training start(ωωωa
g(t)) function to train their local models

ωωωj(t), 8j = 1, · · · , J ; see Steps 3 – 5 in Algorithm 1.

On the other hand, the attacker overhears the local

model ωωωj(t), 8j from the benign devices at the t-th FL

communication round, and recall the global model ωωωa
g(t�1)

overheard from the server at the (t�1)-th round. The GAE

is trained to maximize the data-agnostic model poisoning

attack problem in (5) with V and F . Specifically, the

problem in (5) is transformed into a primal and a dual

problem using the Lagrangian method. Given the dual

variable λ(t), ωωωa(t) is optimized using the GAE; see Steps

8 – 10 in Algorithm 1. With the obtained ωωωa(t)
å
, the sub-

gradient descent method is taken to update λ(t) by (10); see

Step 11. At the output of the GAE, the attacker achieves the

optimal malicious local model, i.e., ωωωa(t). Next, ωωωa(t) is

uploaded to the server for the next round of the FL training.

As ωωωa(t) is highly correlated with ωωωa(t) from the benign

user devices, the server is unable to identify the attacker.
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C. Convergence Analysis of FL under Attack

We derive the convergence upper bound for the FL under

the proposed, data-agnostic, model poisoning attack. The

following assumptions are made before the analysis, as

typically considered in the literature [51]–[53].

Assumption 1: 8m 2M,

1) The gradient of Fj(ωωωj) is L-Lipschitz continu-

ous [54], that is, krFj(ωωωj(t+ 1))�rFj(ωωωj(t))k ÿ
L kωωωj(t+ 1)�ωωωj(t)k , 8ωωωj(t + 1),ωωωj(t), with L
being a constant depending on the loss function so

that the gradient of the global loss function is also

L-Lipschitz continuous;

2) Fj(ωωωj) is Lc-Lipschitz continuous; in other words,��Fj(ωωωj)� Fj(ωωω
0

j)
�� ÿ Lc

��ωωωj �ωωω0

j

�� , 8ωωωj ,ωωω
0

j ;

3) The learning rate is η ÿ 1
L

;

4) At device j, the expected squared norm of

the stochastic gradients is uniformly bounded by

E krFj(ωωωj(t))k
2
ÿ κkrF (ωωωg(t))k

2, 8j,κ � 0;

5) With ρ � 0, Fj(ωωω) fulfills the Polyak-Lojasiewicz

requirement [55], indicating that F (ωωωg) � F (ωωωå

g) ÿ
1
2ρ krF (ωωωg)k

2
, where ωωωå

g = argminωωωg
F (ωωωg);

6) F (ωωωg(0)� F (ωωωå

g) = Θ, where Θ is a constant.

Under Assumption 1, we develop the following theorem

that provides the convergence bound of the gap between

ωωωg(t), 8t and ωωωå

g .

Theorem 1: At the t-th communication round, the con-

vergence upper bound of the attacked FL is obtained as

F (ωωωa
g(t))� F (ωωωå

g) ÿ Θζt +
1� ζt

1� ζ
·

ρηDDa

(D �Da)2
Fmax,

(22)

where ζ = 1 � ρηD2

(D�Da)2
, and Fmax is a maximum value

of F (ωωωa(t)) due to the constraint in (5a) and (5b), i.e.,

F (ωωωa(t)) ÿ Fmax.

Proof: See Appendix A.

As stated in Theorem 1, despite the attack launched by

the attacker, the global model of FL can still converge, but

to an inferior global model. Specifically, as t ! 1, the

optimality gap would stabilize at 2DaLcdT

D�Da
, which cannot

be further reduced by training.

V. PERFORMANCE EVALUATION

In this section, we present the implementation of the pro-

posed GAE-based, data-agnostic, model poisoning attack in

PyTorch. We evaluate the testing accuracy of the local and

global models of FL under attack, using the MNIST [56],

fashionMNIST [57], and CIFAR-10 datasets. We also report

the detection rate of the attack, where the detection is

based on the Euclidean distances of the malicious local

models and the benign local models to the global models,

as typically done in the latest literature, e.g., [58], [59].

Moreover, we compare the proposed attack with the ex-

istent data-agnostic model poisoning (MP) attack that pro-

duces malicious local models by mimicking other benign

devices’ training samples to degrade the learning accuracy.

As discussed earlier in Section IV, our GAE-based attack

represents a novel type of attack, which only depends on

Label “0”

Label “6”

FL

Label “0”

Label “6”

0 0 0 6 0

6 0 0 0 0

0 0 0 0 6

6 6 6 6 6

6 6 0 0 0

6 6 0 6 0

(a) MNIST

Label “T-shirt”

Label “Shirt”

FL

T S T T T

T T T T S
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S S S S S

T S S T S

S S T S S

Label “T-shirt”

Label “Shirt”

(b) fashionMNIST

Label “Airplane”
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A A A A F

F A A F A

A A A F F

A A F A F

F F F F A

A F F F A

Label “Frog”

Label “Airplane”

(c) CIFAR-10

Fig. 3: An illustration of the local model of a user device trained
to classify images.

the benign local models overheard and the global models,

has no access to any of the training data, and attempts to

compromise FL training processes. Few existing techniques

can produce malicious models in such a way, i.e., based

solely on the overheard benign models, as most existing

techniques would require the knowledge of (part of) the

dataset used in the FL training processes, e.g., for a different

purpose, such as inserting a backdoor [58] or injecting

malicious traffic into the benign training dataset [60]. The

MP attack mechanism considered for comparisons with

our proposed new attack has been implemented in several

existing studies, e.g., [61] and [25], in which the attacker

manipulates the training process by injecting a fake device
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and sending fake local models to the server.

A. Implementation with PyTorch

The number of benign devices is set to J =
5, 10, 15, 20, 25. The number of iterations per communi-

cation round is set to TL = 10. The maximum number

of communication rounds is TFL = 200. By default, one

attacker is considered unless otherwise specified.

We implement the proposed GAE-based attack against

the FL on an SVM model using PyTorch 1.12.1, Python

3.9.12 on a Linux workstation with an Intel(R) Core(TM)

i7-9700K CPU@3.60GHz (8 cores) and 16 GB of DDR4

memory@2400 MHz.

The experiments are conducted on three datasets:

• The standard MNIST dataset comprises 60,000 train-

ing examples and 10,000 testing examples, which are

grayscale images of handwritten digits from 1 to 10;

• The fashionMNIST dataset, which contains Zalando’s

article images (i.e., 28 å 28 grayscale images) in ten

classes, including 60,000 examples for training and

10,000 examples for testing;

• The CIFAR-10 dataset, which contains 60,000 images

with the size of 32å32 in ten classes (6,000 per class),

50,000 for training and 10,000 for testing.

At each user device, we use a standard quadratic op-

timization algorithm to train the SVM models based on

the three datasets, namely, the standard MNIST, fash-

ionMNIST, and CIFAR-10. The loss function used for

training the SVM models is Fj(ωωωj(t)) = 1
2 kωωωj(t)k

2
2 +

1
Dj

PDj

i=1 max
�
0, 1� yij(βj +ωωωT

j (t)x
i
j)
 

, where βj is a

feature parameter based on ωωωj(t) [62]. The global model

ωωωa
g(t), which is trained at the server according to (3), is

broadcast to all user devices for the training of ωωωj(t+1) in

the next, (t+1)-th communication round. In particular, the

choice of model architecture, NNs or SVMs, for training at

benign user devices, does not alter the underlying principle

of the proposed data-agnostic model poisoning attack. This

is because the proposed attack hinges on the creation of

malevolent local models that, upon integration, deteriorate

the performance of the global model by augmenting the

FL training loss. Our attack model incorporates a new

adversarial GAE designed to fabricate these deleterious

local models by leveraging benign local models overheard.

The adversarial GAE is adept at extracting and utilizing the

correlation features inherent in both the benign local models

(which could be based on either NN or SVM architectures)

and the global model.

Fig. 3 illustrates an example of label classification with

the three datasets. In the MNIST dataset, three images

labeled as “0” are misclassified as “6” while five images

labeled as “6” are misclassified as “0”, resulting in an FL

accuracy of 73.3%. Similarly, the FL accuracy with the

fashionMNIST and CIFAR-10 datasets is 76.7% and 63.3%,

respectively. The FL is designed to improve classification

accuracy, while the proposed GAE-based attack aims to

reduce accuracy and cause label misclassification. The GAE

encoder is a two-layer GCN network (i.e., M = 2) with a

dropout layer to prevent overfitting. The GAE decoder is an

inner product. We use the Adam optimizer with a learning

rate of 0.01 to optimize the network. For all datasets, we

use the same encoder, decoder and SVM models.

B. Performance Analysis

1) FL Accuracy under Attack: Fig. 4 plots the accuracy

of the local models under the proposed GAE-based, data-

agnostic, model poisoning attack on the MNIST, fashionM-

NIST, and CIFAR-10 datasets, where there are five benign

devices (i.e., J = 5) and 100 communication rounds for the

FL. The state-of-the-art model poisoning (MP) attack [60]

is taken as the benchmark for our proposed attack, in which

the attacker manipulates the training process by injecting a

fake device and sending fake local models to the server.

Since the MP attack in [60] shares the same objective

as our proposed data-agnostic model poisoning approach,

i.e., reducing the accuracy of FL, a comparison with this

reference showcases the efficacy of our proposed method

in the context of prevailing model poisoning attacks. For

comparison purposes, Fig. 5 plots the accuracy of the

benign local models without any attacks. In this scenario,

the accuracy of the user device can be improved efficiently

by FL and rapidly converge to 96%.

In Figs. 4(a) and 4(b), we show that when using the

MNIST dataset, the accuracy of all five devices under

the proposed GAE-based attack gradually decreases and

fluctuates dramatically. The performance of devices 1 and 2

drops from 75% to 55% and from 92% to 59%, respectively.

The accuracy of the model drops from 91% to 80% when

exposed to the MP attack in which the performance of

the five devices follows a similar pattern. This is because

the new GAE-based attack reconstructs the adversarial

adjacency matrix according to the individual features of

the user devices. As a result, the attacker falsifies the local

models to maximize the FL loss; see (9).

As shown in Figs. 4(c) and 4(d), the accuracy of device

3 and device 5 drops significantly by 37% and 24%,

respectively, when using the fashionMNIST dataset and the

proposed GAE-based attack. However, while the accuracy

of devices 1 and 2 may slightly increase, their convergence

rates are greatly slowed in comparison to Fig. 5. Addition-

ally, the accuracy under the MP attack varies between 50%

and 80%, with a minimal decrease in accuracy observed.

In Fig. 4(e), it can be seen that the proposed GAE-

based attack with the CIFAR-10 dataset greatly hinders

the performance of FL, as the accuracy of all four user

devices falls below 50%. In contrast, the accuracy of all

five devices under the MP attack is above 50%, as shown in

Fig. 4(f). Furthermore, it can be observed that the accuracy

with the CIFAR-10 dataset is generally lower than the

performance with the MNIST and fashionMNIST datasets.

This is because the CIFAR-10 dataset contains a more

diverse set of images, which makes it more challenging to

differentiate and label, leading to lower overall accuracy.

Fig. 6 illustrates the accuracy of the global model at

the model aggregator. It can be observed that the proposed
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(a) The GAE-based attack with MNIST. (b) The MP attack with MNIST.
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(c) The GAE-based attack with fashionMNIST. (d) The MP attack with fashionMNIST.
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(e) The GAE-based attack with CIFAR-10. (f) The MP attack with CIFAR-10.

Fig. 4: Given 100 FL communication rounds and five benign user devices, we compare the local model testing accuracy under the
GAE-based attack and the existing MP attack on the MNIST, fashionMNIST, and CIFAR-10 datasets.
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Fig. 5: The local model testing accuracy with no attack.

GAE-based attack hinders the training convergence when

compared to the performance without the attack. As a result

of the infection of the local FL model, the accuracy with

the MNIST, fashionMNIST, or CIFAR-10 dataset fluctuates

around 82%, 81%, or 25%, respectively.

2) Detection of the Attack: Existing model poisoning

attacks on FL aim to maximize the training loss of FL

models. One way to detect these malicious attacks is to
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Fig. 6: The global model accuracy under the new attack.

compare the distances (or differences) between the local

models and the global model. A larger distance can be

considered as an indication of a malicious local model,

and the server can detect it accordingly. Both the Euclidean

distance and cosine distance are commonly used metrics to

assess the similarities between two vectors. Particularly, the

Euclidean distance provides a straightforward, geometric

measure of the absolute difference between vectors, which
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(c) The GAE-based attack with fashionMNIST. (d) The MP attack with fashionMNIST.
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(e) The GAE-based attack with CIFAR-10. (f) The MP attack with CIFAR-10.

Fig. 7: Taking FL with five devices as an example, the Euclidean distances between the local models and the global model are
presented, where device 1 is the attacker and launches the new GAE-based attack or the MP attack.

is useful in the considered scenarios since large deviations

in the magnitude of model updates are often indicative of

malicious model updates. For this reason, the Euclidean

distance is considered in this paper, which is consistent

with many recent studies, e.g., [8] and [41].

To evaluate the invisibility of the proposed GAE-based,

data-agnostic, model poisoning attack Fig. 7 presents the

Euclidean distance between the local models and the global

model, with device 1 being the attacker. It can be observed

that, in general, the local models with the MNIST dataset

have the smallest distance compared to the other two

datasets. This is expected as the handwritten digits in

MNIST are relatively simple to recognize or falsify.

As shown in Figs. 7(a), 7(c), and 7(e), the Euclidean

distances of the malicious local model (i.e., of device 1)

generated by the GAE-based attack are below that of the

benign local models. This makes it difficult for the aggre-

gator to identify the attacker and defend against the attack.

In contrast, the MP attack results in a significantly larger

Euclidean distance between the malicious local model and

the global model, making it easier to detect. This highlights

the key advantage of the proposed GAE-based attack, which

is designed to generate malicious local models based on

the feature correlation between the benign local and global

models, making the differences between the malicious local

model and the benign local models indistinguishable.

3) Impact of Benign Local Model Number: Figs. 8(a),

8(b), and 8(c) show the average accuracy of the local

models based on the MNIST, fashionMNIST, and CIFAR-

10 datasets, respectively. The number of attackers is Ja = 2
by default. Otherwise, Ja increases proportionally with

Ja : J = 2 : 5. It is observed that the new GAE-

based attack reduces the average accuracy. As the number

of devices increases, the average accuracy on MNIST,

fashionMNIST, and CIFAR-10 drops by about 20%, 37%,

and 12%, respectively, when J = 15.

It is observed in Fig. 8 that on the three considered

datasets, the average accuracy of FL under attack gradually

increases as J grows from 5 to 25, while Ja = 2. This con-

firms that increasing the number of benign users improves

the resistance of FL to the attacks. On the other hand, as the

ratio of attackers to benign devices, i.e., Ja : J , increases,

the proposed GAE-based attack can become increasingly

effective and destructive.
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Fig. 8: The average accuracy under the GAE-based attack based
on the MNIST, fashionMNIST, or CIFAR-10 datasets, where the
number of devices, i.e., J , ranges from 5 to 25. The number
of attackers is J

a = 2 by default. Otherwise, J
a increases

proportionally with J with J
a : J = 2 : 5.

4) Impact of Eavesdropped Local Models: Fig. 9 plots

the average accuracy of the local models under the GAE-

based attack based on the MNIST, fashionMNIST, or

CIFAR-10 datasets, where the number of benign user

devices that the attacker can eavesdrop on increases from 3

to 25. In general, the average accuracy of the local models

falls with the growth of the eavesdropped benign user

devices. The reason is that overhearing a greater number of

benign local models results in capturing more correlation

features of the models, leading to the generation of a

malicious model for more effective poisoning. The aver-

age model accuracy drops substantially by 13.6%, 11.2%

and 16.4% on the MNIST, fashionMNIST, and CIFAR-10

datasets, respectively.

5) Compared with Variational Autoencoder (VAE)-based

Alternative: Fig. 10 illustrates the effects of the VAE-

based attack on FL over 100 communication rounds, where

five user devices and the MNIST dataset are considered.

Fig. 10(a) reveals a consistent variation in local model

testing accuracy under the VAE-based attack, with all five

3 5 10 15 20 25
0

20

40

60

80

100

Fig. 9: The number of eavesdropped benign user devices’ ωωωj(t)
increases from 3 to 25, based on the MNIST, fashionMNIST, or
CIFAR-10 datasets.
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(b) The Euclidean distances between the local models and

the global model.

Fig. 10: The local model testing accuracy and the Euclidean
distances under the VAE-based attack.

devices demonstrating analogous patterns. This is consistent

with the observation made on the proposed GAE-based

attack in Fig. 4. Fig. 10(b) shows the Euclidean distances

between the local and global models under the VAE-based

attack. A striking observation is that the malicious local

model (from device 1) constructed via the VAE-based

attack possesses a significantly larger Euclidean distance

than the benign local models. This suggests that detecting

the VAE-based attacks on the server side is feasible by

assessing the Euclidean distance. The underlying reason

is that the VAEs are general autoencoders and can handle

high-dimensional and continuous data, such as images and

audio. They do not capture graph structures inside data, as

opposed to GAEs.

VI. CONCLUSION

In this paper, we have investigated a new, data-agnostic,

model poisoning attack to FL, where the proposed ad-
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versarial GAE gives rise to an infection of benign user

devices and the FL training accuracy gradually drops. The

adversarial GAE allows the attacker to extract the common

underlying data features of the benign local models as well

as their correlations to generate the malicious model with

which the FL training loss is maximized. Since the mali-

cious and benign local models are indistinguishable, it is

difficult to identify the GAE-based attack at the server. We

implemented the GAE-based attack against the FL on SVM

models using PyTorch. Performances were evaluated based

on the MNIST, fashionMNIST, and CIFAR-10 datasets.
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which concludes this proof.
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of Everything at Koç University), as well as the U.S

National Science Foundation under Grants CNS-2128448

and ECCS-2335876.

REFERENCES

[1] Z. Zhang, L. Wu, C. Ma, J. Li, J. Wang, Q. Wang, and S. Yu,
“LSFL: A lightweight and secure federated learning scheme for edge
computing,” IEEE Trans. Inf. Forensics Security, vol. 18, pp. 365–
379, 2022.

[2] K. Li, Y. Cui, W. Li, T. Lv, X. Yuan, S. Li, W. Ni, M. Simsek, and
F. Dressler, “When internet of things meets metaverse: Convergence
of physical and cyber worlds,” IEEE Internet Things J., vol. 10,
no. 5, pp. 4148–4173, 2022.

[3] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated
learning for internet of things: Recent advances, taxonomy, and open
challenges,” IEEE Comm. Surveys & Tutorials, vol. 23, no. 3, pp.
1759–1799, 2021.

[4] H. Zhou, G. Yang, Y. Huang, H. Dai, and Y. Xiang, “Privacy-
preserving and verifiable federated learning framework for edge
computing,” IEEE Trans. Inf. Forensics Security, vol. 18, pp. 565–
580, 2022.

[5] M. S. Jere, T. Farnan, and F. Koushanfar, “A taxonomy of attacks
on federated learning,” IEEE Security Privacy, vol. 19, no. 2, pp.
20–28, 2020.

[6] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of things
intrusion detection: Centralized, on-device, or federated learning?”
IEEE Network, vol. 34, no. 6, pp. 310–317, 2020.

[7] Z. Tian, L. Cui, J. Liang, and S. Yu, “A comprehensive survey on
poisoning attacks and countermeasures in machine learning,” ACM

Computing Surveys, vol. 55, no. 8, pp. 1–35, 2022.

[8] Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “FLDetector: Defending
federated learning against model poisoning attacks via detecting
malicious clients,” in Proceedings of the ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, 2022, pp. 2545–2555.

[9] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning
attacks to byzantine-robust federated learning,” in Proceedings of

the USENIX Security Symposium, 2020, pp. 1605–1622.

[10] L. Lyu, H. Yu, J. Zhao, and Q. Yang, “Threats to federated learning,”
in Federated Learning. Springer, 2020, pp. 3–16.

[11] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the drawing board: A critical evaluation of poisoning attacks
on production federated learning,” in Proceedings of the IEEE

Symposium on Security and Privacy. IEEE, 2022, pp. 1354–1371.

[12] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE

Trans. Knowledge Data Engineering, vol. 30, no. 9, pp. 1616–1637,
2018.

[13] K. Li, X. Yuan, J. Zheng, W. Ni, and M. Guizani, “Exploring
adversarial graph autoencoders to manipulate federated learning in
the internet of things,” in Proceedings of the IEEE International

Wireless Communications and Mobile Computing (IWCMC). IEEE,
2023, pp. 898–903.

[14] J. Zhao, H. Zhu, F. Wang, R. Lu, Z. Liu, and H. Li, “PVD-FL:
A privacy-preserving and verifiable decentralized federated learning
framework,” IEEE Trans. Inf. Forensics Security, vol. 17, pp. 2059–
2073, 2022.

[15] X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, I. Kevin, and
K. Wang, “Hierarchical adversarial attacks against graph-neural-
network-based IoT network intrusion detection system,” IEEE In-

ternet Things J., vol. 9, no. 12, pp. 9310–9319, 2021.

[16] A. Singh and B. Sikdar, “Adversarial attack for deep learning based
IoT appliance classification techniques,” in Proceedings of IEEE

World Forum on Internet of Things. IEEE, 2021, pp. 657–662.

[17] Z. Bao, Y. Lin, S. Zhang, Z. Li, and S. Mao, “Threat of adversarial
attacks on DL-based IoT device identification,” IEEE Internet Things

J., vol. 9, no. 11, pp. 9012–9024, 2021.



15

[18] A. Rahman, M. S. Hossain, N. A. Alrajeh, and F. Alsolami, “Ad-
versarial examples – security threats to COVID-19 deep learning
systems in medical IoT devices,” IEEE Internet Things J., vol. 8,
no. 12, pp. 9603–9610, 2020.

[19] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based IoT
malware detection systems,” in Proceedings of IEEE International

Conference on Distributed Computing Systems. IEEE, 2019, pp.
1296–1305.

[20] A. Talpur and M. Gurusamy, “Adversarial attacks against deep
reinforcement learning framework in internet of vehicles,” in Pro-

ceedings of IEEE Globecom Workshops. IEEE, 2021, pp. 1–6.
[21] Z. Chen, P. Tian, W. Liao, and W. Yu, “Zero knowledge clustering

based adversarial mitigation in heterogeneous federated learning,”
IEEE Trans. Network Science Engineering, vol. 8, no. 2, pp. 1070–
1083, 2020.

[22] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in Proceedings of the

European Symposium on Research in Computer Security. Springer,
2020, pp. 480–501.

[23] J. Gao, B. Hou, X. Guo, Z. Liu, Y. Zhang, K. Chen, and J. Li, “Secure
aggregation is insecure: Category inference attack on federated
learning,” IEEE Trans. Dependable Secure Computing, vol. 20, no. 1,
pp. 147–160, 2023.

[24] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal,
J.-y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes,
you really can backdoor federated learning,” Advances in Neural

Information Processing Systems, vol. 33, pp. 16 070–16 084, 2020.
[25] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “PoisonGAN:

Generative poisoning attacks against federated learning in edge
computing systems,” IEEE Internet Things J., vol. 8, no. 5, pp. 3310–
3322, 2020.

[26] J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning attack in
federated learning using generative adversarial nets,” in Proceedings

of the IEEE International Conference on Trust, Security and Privacy

in Computing and Communications/IEEE International Conference

on Big Data Science and Engineering. IEEE, 2019, pp. 374–380.
[27] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi,

“Beyond inferring class representatives: User-level privacy leakage
from federated learning,” in Proceedings of the IEEE Conference on

Computer Communications. IEEE, 2019, pp. 2512–2520.
[28] M. Song, Z. Wang, Z. Zhang, Y. Song, Q. Wang, J. Ren, and H. Qi,

“Analyzing user-level privacy attack against federated learning,”
IEEE J. Selected Areas Comm., vol. 38, no. 10, pp. 2430–2444,
2020.

[29] D. Caldarola, M. Mancini, F. Galasso, M. Ciccone, E. Rodolà, and
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