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Abstract 
Electric mobility with all of its advantages has gained momentum during the last decade with increasing utilization 
by many sectors of the society. However, professional fleets 19 operators (e.g. taxis) are still conservative in 
switching  to this new mobility paradigm. In this paper, we empirically evaluate whether electric vehicles together 
with normal charging speeds could replace current internal combustion engine vehicles for taxi mobility and study 
the implications for the taxi business. To perform this study we resort to a detailed and large mobility dataset of a 
taxi fleet collected in a mid-sized European city. The results provide a first indication that such transition towards 
electric mobility is feasible for the vast majority of the vehicles of the fleet and that simple AC chargers at taxi 
stands could suffice to provide the necessary range autonomy. 
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Abstract—Electric mobility with all of its advantages has
gained momentum during the last decade with increasing uti-
lization by many sectors of the society. However, professional
fleets’ operators (e.g. taxis) are still conservative in switching to
this new mobility paradigm in many parts of the world. In this
paper, we empirically evaluate whether electric vehicles together
with conventional charging stations could replace current internal
combustion engine vehicles for taxi mobility and study the
implications for the taxi business. To perform this study, we
resort to a detailed mobility dataset of a taxi fleet collected in
a mid-sized European city. The results provide a first indication
that such transition towards electric mobility is feasible for the
vast majority of the vehicles of the fleet and that simple AC
chargers at taxi stands could suffice to provide the necessary
range autonomy.

Index Terms—Electric vehicles, Taxi mobility, Energy con-
sumption, Empirical data, Charging Infrastructure

I. INTRODUCTION

The electrification of car-based transportation has been

increasing rapidly over the last few years as the development

of technology has allowed a substantial decline on the cost of

batteries. In Europe, Internal Combustion Engine (ICE) cars

are set to disappear soon: all new registered vehicles are to

be zero-emission from 2035 [1] and many manufacturers have

already adjusted their strategies to meet this target. Electric

Vehicles (EVs) offer important advantages, namely in terms

of air pollution mitigation [2] or lower running costs of car

ownership [3]. These advantages have already influenced many

countries to define fiscal policies that further motivate the

migration from ICE vehicles to EVs.

Despite the noticeable success of this migration that is

revealed by the increasing share of EVs, professional fleets are

still very conservative in adhering to this type of mobility. The

main concerns are related to the limited range, high acquisition

cost and the long battery charging times, that are seen as

important disadvantages in terms of the economic efficiency

of a real-time transportation business. A limited (dedicated)

infrastructure of electric charging stations and the high costs

of using fast chargers (similar to diesel or petrol costs) further

contribute to a minimal share of EVs in taxi fleets1.

The recent increase in the cost of diesel and petrol is

substantially reducing the profit margin of professional fleets

that travel several thousands of kilometers per month. On the

more than 3000 taxis that are powered by Taxi-link, supporting

the study on this paper, this fuel cost normally represents

between 20 to 30% of the total taxi revenue. Theoretically,

EVs could reduce this cost to less than 10% of the revenue

generated, making it difficult to understand the current residual

share of EVs in taxi fleets. Furthermore, the mobility pattern

of taxis, with average speeds of 30 km/h and significant idle

times at taxi stands, seem suitable for the paradigm of electric

propulsion, contrary to what happens for instance in fleets that

essentially travel on highways at the maximum allowed speed.

The parking time at taxi stands also seems very suitable

for charging EVs, not with fast DC chargers, but with much

more common and less expensive AC chargers, identical to

those installed domestically. This alternative would have the

advantage of battery lifetime maximization and could prove

sufficient to the charging needs of taxi fleets. This paper

intends to study - based on a detailed, large-scale dataset of

a taxi fleet collected throughout a month - whether the 24 h

mobility of a taxi, together with the paradigm of AC chargers

at taxi stands is completely suitable for the current autonomy

and charging characteristics of EVs.

Prior works have addressed several topics in the transition

towards electric mobility (e.g. charging station planning [4]

[5]). Studies studying the technical [6] [7] or economic [8]

feasibility of fully electric taxi fleets are still scarce. Most of

these studies are either simulation-based [6] containing several

simplifying assumptions or make use of empirical data [7] but

resort to simple energy consumption models. In this work,

we combine real-world taxi operation data with a precise EV

consumption model to study more precisely the suitability of

EV and normal AC charging for everyday taxi operation.

1In September 2021, from the +3,000 taxis operated in Portugal using the
Taxi-link’s taxi dispatch system, only 19 of these were EVs (0.53%).



The remainder of this paper is organized as follows. Sec-

tion II presents the large-scale taxi mobility dataset collected

in the city of Porto, Portugal. The methodology to determine

the energy consumption of electric taxi fleets is given in

Section III. The analysis of the implications to transition

towards electric mobility is detailed in Section IV. Concluding

remarks and future work directions are given in Section V.

II. PORTO’S TAXI MOBILITY DATA

Data Acquisition. Mobility data is permanently being col-

lected by a fleet of 407 taxis in the city of Porto, Portugal,

for the operation of the taxi-link dispatch system. Vehicles

equipped with on-board devices (e.g. smartphone) collect

permanently taxi state information (e.g. Busy), and positioning

and timing data with a frequency of 1 Hz resorting to the

Global Positioning System (GPS), which are periodically

transferred to a central server for further processing and stor-

age. Specifically, each trip record has the following attributes:

i) taxi identifier, ii) taxi state, iii) trip start timestamp, iv) trip

end timestamp v) taxi stand identifier (only for Stand state)

and v) position that consists of a polyline that contains (lat,

lon) points of the vehicle trajectory. The taxi state is collected

from the taximeter or is an input from the driver. The taxi can

be in five main states, namely Busy (i.e. performing a service),

Free (i.e. roaming for new service), Pause (i.e. driver is off-

duty), Pickup (e.g. moving towards the assigned customer) and

Stand (i.e. vehicle stopped at taxi stand).

For this study, we resort to data collected by the fleet

of the largest taxi company in the city (18 vehicles) with

only combustion engine vehicles. This company was chosen

because all vehicles operate 24h per day (with 2 to 3 different

taxi drivers) and all are explored intensively, with service

arising mainly at taxi stands or from requests of private

clients or assigned by the main taxi central in the city. The

collected taxi trajectory data is then used to estimate the energy

consumption of vehicles (Section III-B).

Use case characterization. In this study, we resort to data col-

lected during the full month of October 2021, in a medium size

European city in northern Portugal. Porto has approximately

232 k inhabitants within a territory of 41.4 km2 lying in the

center of a metropolitan area with 1.737 million inhabitants.

Currently, there are 63 public charging stations in the city,

totaling 130 plugs for EV charging.

There is a total of 66 taxi stands spread throughout the

city but these are mainly concentrated in the city center and

commercial and business districts. The capacity of taxi stands

varies widely with the smallest and the largest holding 2 and

31 vehicles, respectively. Three main operational strategies are

followed to pick-up passengers: i) waiting for passengers in a

taxi stand, ii) responding to requests dispatched by a dispatch

central or private customers, or iii) hailing by a passenger

while roaming. Due to legal requirements, and as the demand

for taxi services is generally lower than the supply, drivers

mostly park (for significant amounts of time during some

periods of the day) in the available taxi stands.
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Fig. 1: Frequency distribution of travel time metric.
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Fig. 2: Frequency distribution of travel distance metric.

Dataset characterization. In the following, we characterize

the taxi service in the city of Porto for better understanding

the business operation in the period under analysis, specially

considering the operation of EVs. The dataset consists of

44838 trip records for different taxi states, which totals 5222

services for the 18 taxis, corresponding to an average of 290

services per taxi per month.

Two of the most important parameters to analyze (for

electric mobility) are travel time (i.e. time spent in Busy,

Pickup or Free state) and the travel distance, which are

presented in Fig. 1 and Fig. 2, respectively. The average travel

time in the Busy, Pickup, and Free states are approximately

14 min, 7 min and 10 min, respectively. The travel time with

onboard passengers is smaller than 15 min for 67.4% of the

trips. Note that these travel times are small as vehicles mostly

respond to requests arising within the city boundaries. Vehicles

are parked at taxi stands an average of 3.5 hours per day and

the average waiting time at taxi stands was almost 20 min,

which shows that taxi drivers are idle for large periods of

time allowing vehicle charging during these periods.

During one month, each taxi travelled on average a total of

4516 km of which 52.57% were travelled without passengers.

The average travel distance in the Busy, Pickup, and Free

states are approximately 1818 km, 324 km and 1993 km,

respectively. The results show that the travel distance with

Busy, Pickup, and Free did not exceed 10 km for 83.6%, 96.3%

and 94.8% of the trips, respectively.

To summarize, we observe that i) travel time and distance



are relatively short, ii) the likelihood of performing long

services is very small and iii) taxis are parked for long periods

at taxi stands. These factors combined can potentially make

the operation of EVs in this medium-sized European city very

appealing.

III. METHODOLOGY

A. Goals & Setting

This work assesses the feasibility of resorting to elec-

tric mobility for operating taxi fleets. Specifically, we aim

at assessing the impact that switching from combustion to

EVs might have on the daily operation of taxis and their

profitability. Furthermore, this work also has as objective to

evaluate the suitability of using equipment with low or normal

charging speeds (up to 22 kWh2) for charging taxis while

they are parked in a stand. High-speed/rapid chargers are not

considered, as previous studies [4] [5] [9] have shown that

high currents and temperatures have detrimental effects on the

longevity of batteries. Further, the required investments for

installing and maintaining fast DC charging are considerably

higher, with unfavorable Return of Investment (RoI) given that

taxi stands cannot be accessed by other vehicles.

For avoiding or minimizing any inconvenience or loss on the

daily taxi operation and business’ results, we assume that time

periods between services (during which the driver is waiting

for the next passenger at the stand) can be harnessed for

vehicle charging. Currently, most common charging solution

for EVs require the driver to plug the vehicle to a charger port

by means of an electric cable that is unplugged at the end of

the process. For simplicity, in this research study, the time for

(un)plugging the vehicle is not accounted for, being considered

that the battery of the taxi is charged during the entire period

the taxi is parked in the stand, i.e., between vehicle arrival

and departure. This assumption is inline with the future trend

of wireless charging of EVs [10] that is expected to become

commercially available in the next decades. Another relevant

adopted assumption is the consideration that multiple taxis

can be being charged simultaneously at the same stand. Our

approach also considers a full availability of charging stations

in all stands of the network.

To accomplish the above mentioned goals, we resort to the

vehicle trajectory information collected by the taxi-link dis-

patching system (Section II). Trajectory data is then processed

to obtain velocity profiles; to account for sensor inaccuracies

(e.g. GPS positioning errors) we apply a low-pass filter termed

Savitzky-Golay filter [11] to remove instantaneous signal

fluctuations contained in the velocity time series v(t) prior

to determining the acceleration profile a(t). Acceleration and

velocity profiles are then used to estimate the instantaneous

energy consumption of EVs using a backward model.

B. Electric vehicle consumption model

In the last decades, several models to estimate the energy

consumption of pure EVs have been developed. Those models

2No charging losses due to the battery or charger inefficiencies are
considered in this study.

TABLE I: EV model parameters

Variable Value Unit Description

v(t) m/s Instantaneous speed

a(t) m/s2 Acceleration

m 1521 kg Mass of the vehicle

g 9.8066 m/s2 Gravitational acceleration
θ 0 ◦ Road grade
Cr 1.75 Rolling coefficient
c1 0.0328 Rolling resistance coefficient
c2 4.575 Rolling resistance coefficient

ρAir 1.2256 kg/m3 Air mass density

Af 2.3316 m2 Frontal area of the vehicle
CD 0.428 Aerodynamic drag coefficient

ηd 92 % Drive line efficiency [18]
ηem 91 % Electric motor efficiency [19]
ηb 90 % Battery efficiency [19]

can be divided into two categories [12]–[16]: forward and

backward models. The former is fed by driver inputs (e.g.,

brake or accelerator pedal position) to estimate the torque

required to match the desired speed of the driving cycle.

Although accurate, the forward models require long execu-

tion times. Backward models use as input the drive cycle

[v = f(t)] and the characteristics of the vehicle (e.g., mass)

to calculate the energy at the wheels. Working “backward”

the energy produced by the power unit is subsequently cal-

culated. Backward models present trustworthy estimates and

faster execution times when compared to forward models. The

backward models consider steady-state (constant environment

through time) or quasi-steady (environment changing slowly

enough to be considered constant), which can be a limitation

given the dynamics of the application. However, these models

represent an appealing trade-off between computational time

and accuracy [17]. Due these reasons, the quasi-steady back-

ward approach by Fiori et al. [15] was adopted for this work.

The selected model is able to efficiently predict the energy

consumed by an EV using only data retrieved by a smartphone.

The model inputs are the instantaneous acceleration and speed

profiles, and the EV characteristics (e.g. frontal area mass)

as given in Table I. The output of the model are the energy

consumption (kWh/km), the instantaneous power (kW) and the

State-of-Charge (SoC) of the battery (%). The power at the

wheels can be calculated using Eq. 1.

PWheels(t) =

(

ma(t) +mg ∗ cos(θ) ∗
Cr

1000
(c1v(t) + c2)

+
1

2
ρAirAfCDv2(t) +mg ∗ sin(θ)

)

∗ v(t)

(1)

The consumed power is then calculated using PWheels:

PConsumed(t) =
PWheels(t)

ηd ∗ ηem ∗ ηb
(2)

where ηd, ηem and ηb represent the drive line, electric motor

and a battery efficiency, respectively. These parameters have

been set based on two previous studies [18] [19].
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Fig. 3: Illustrative example of the energy consumption model.

The noisy vehicle speed obtained from GPS data is first filtered

to remove fast signal fluctuations. This smoothed speed curve

is used to calculate the consumed power (middle plot) for

subsequently updating the vehicle State of Charge (SoC).

The SoC is determined using Eq. 3. To represent the worst-

case scenario, and given the different efficiencies of regener-

ative braking systems, this component is not considered.

SoCFinal(t) = SoC0 −

N
∑

i=1

∆SoC(i)(t) (3)

∆SoC(i)(t) = SoC(i−1)(t)−
PConsumed (i)(t)

3600 ∗ Cbat

(4)

Model parameters. The settings of the main model pa-

rameters are given in Table I. The EV considered in this

study was the Kia e-Niro equipped with a 64 kWh battery,

whose advertised average consumption is 0.153 kWh/km. We

consider this battery size adequate for taxi operation given its

cost and considering the future prospects for the evolution of

battery technology. Moreover, this vehicle type is already used

by several taxi operators.

Illustrative Example. Fig. 3 presents an illustrative example

(400 s trip) of the application of the energy consumption

model. The top figure shows the speed profile obtained using

GPS data (in blue), that is clearly noisy, and the signal result-

ing from the smoothing (in red), after filtering. As expected,

the middle plot shows that the power is clearly correlated with

the speed profile. The lower plot shows the reduction of the

SoC due to energy consumption.

C. Model Validation

We employ three standard driving cycles (NEDC, WLTC,

WMTC) to validate the model used in this paper. Our results
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Fig. 4: State of Charge (SoC) for a given taxi and day. At the

start of the day the SoC is 95%. The blue line represents the

SoC for a vehicle charged during stops at taxi stands (green

areas). The red line depicts the battery depletion curve if the

vehicle is never charged during operation.

were compared against reference values from the Joint Re-

search Centre (JRC) of the European Commission [20]. The

results presented in Table II indicate that the implemented

model accurately estimates the energy consumption with de-

viations varying between 1.7 and 8.4%, which are considered

acceptable. Increasing the model complexity (e.g. considering

additional factors and interactions) should help decrease the

prediction error.

TABLE II: Model validation using standardized driving cycles

Driving Cycle JRC [Wh/km] Model [Wh/km] Error (%)

NEDC 156.9 154.2 1.7
WLTC 178.4 182.2 2.1
WMTC 182.9 198.3 8.4

IV. RESULTS

A. Autonomy analysis

We analyze and discuss the feasibility of transitioning

towards electric taxi fleets resorting to large-scale empirical

taxi operation data. For that purpose, the consumption model

(Section III-B) is applied to the operational data of the 18

taxis, returning an estimate of the SoC level over time. As an

example, Fig. 4 shows the SoC level variation of a selected taxi

over a given day. The blue line represents the SoC assuming

that the vehicle is charging while parking at a stand (in green),

while the red line indicates the SoC level variation if the

vehicle is never charged. This example highlights that periodic

charging is required to satisfy the requirements of a working

day, otherwise, the autonomy would be 0% after 14 h.

Fig. 5 graphically represents the SoC level of each taxi at the

end of a given day. In the simulation, a SoC level of 95% was

considered for all taxis at the beginning of the first day (Oct.

1st). For the majority of the vehicles, the SoC level at the end

of the day remains close to the maximum level of 95%. The

SoC level decreased to negative values only for 4 taxis (d, h, n,

r), representing cases where the minimum conditions required

for continuous operation are not met considering the current

demand. Fig. 6 analyzes the travel distance of each service and

the total number of trips executed by each taxi. We observe

that the tails of the inverse Cumulative Distribution Function
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(iCDF) of the travel distance (Fig. 6a) are considerably longer

for taxis h, n and r. Furthermore, Fig. 6b shows that these taxis

perform a combination of services with larger travel distances

[as measured by the 99th quantile of the individual trip travel

distance] (taxis h and r) and/or high number of performed

services (taxi n), which increases the autonomy requirements.

Taxi n is clearly the one whose daily operation is least

conducive to switching to electric mobility, attaining negative

SoC values most of the days. The total travel distance of

taxi n is 12912 km, which is almost three times higher

than the average travel distance (4516 km). On the other

hand, its average waiting time at taxi stands was just slight

above 15 min, below the average value of all taxis (19 min

29 s). These two indicators help to understand the SoC values

registered and lead us to believe that, in order to satisfy the

current operating routines of this taxi, it would be necessary to

adopt an EV with a greater autonomy, to use faster charging

solutions, use hybrid operation models combining EVs and

ICE vehicles, among others.

Due to the disparity of values recorded by taxi n when

compared to the others, the information from that taxi was

disregarded from a more general analysis of the SoC of

the vehicles. Fig. 7 depicts the minimum, average and the

maximum values of the SoC of all the remaining taxis

at the end of each day. The results indicate that charging

while parked (which is idle time) allows most of the taxis

to guarantee enough autonomy to complete their operation.
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Fig. 7: Minimum, average and the maximum of SoC for all

taxis (excluding taxi n)

Therefore, electric mobility of taxis is a valid alternative,

allowing a considerable reduction in operating costs without

loss of profitability.

B. Cost analysis

From the 407 vehicles that compose the taxi fleet operating

in Porto, only 8 were pure EVs (corresponding to 1.97%) at

the end of October 2021. At the end of 2020, this value was

even lower at 1.50% of the EVs. This very low proportion of

electric taxis in Porto is clearly far from the values recorded at

the national level, where a more significant tendency towards

the adoption of EV can be found. Indeed, in 2020, EVs

represented a share of 5% of the light passenger vehicles sold

in Portugal, while between January and October 2021 the EVs

market share increased up to 8% 3. The EV rate adoption

gap (taxi fleet vs national market) can be traced to several

different reasons. The high acquisition cost of EVs and the

nonexistence of charging stations for exclusive use of taxis

are, undoubtedly, two key factors delaying the electrification of

the taxi fleet. Electric taxis currently operating are charged at

the drivers’ home or using a charger from the public network,

whose availability varies considerable from day to day and

location to location. When charging at home, drivers only pay

for electricity but this period corresponds to off-duty periods

that are non-existing to taxis that are explored fully, 24h a day,

such as the taxis used on this study. Using chargers from the

public network (mostly rapid charging stations) leads to higher

charging costs, since in addition to the cost of electricity,

additional service fees and taxes are charged by the operator.

Table III presents the average energy rates (diesel and

electricity) in Oct. 2021, as well as a reference value for the

usage of a public charging station. We also provide an estimate

of the total cost for completing the average travel distance

of 4516 km. This cost estimate was obtained considering an

average consumption of 7 L/100 km in the case of combustion

engine vehicle and of 0.153 kWh/km in case of EV. For public

chargers usage, an average value of 0.40 C/kWh was assumed.

These results show that, when using a home charger or low-

cost charging points dedicated for taxis, the option for an

3https://www.uve.pt/pt



TABLE III: Cost estimate for the average travel distance

(4516 km) for the month of Oct. 2021 and two energy sources

Energy Source Unit Price Consumption Total Cost (e)

Diesel 1.604 e/L 7 L/100 km 507

Electricity 0.145 e/kWh
0.153kWh/km

100
Public Charger 0.400 e/kWh 276

EV is the most economically advantageous when compared

to a combustion engine vehicle or even to the same EV being

charged at public charging stations.

V. CONCLUSIONS

We studied the feasibility of using electric propulsion in

combination with AC charging for taxi operation in a mid-

sized European city. A data-driven evaluation has shown

that conventional AC chargers installed at taxi stands would

provide sufficient autonomy even for taxis operating unin-

terruptedly, while cutting the costs related to powering the

vehicle by more than five times, compared to the cost of

fossil fuel. These significant savings would support financing

the replacement of ICE vehicles by new EVs just based on

the operational saving related to energy costs. The assessment

indicates that electric mobility is suitable for the vast majority

of taxis, which clearly exhibit moderate requirements in terms

of energy consumption given the current service demand.

We intend to continue studying the transition of taxi fleets

towards electric mobility. The current work relies on a number

of simplifying assumptions that will be relaxed in future

works. The approach followed in this study contemplates

the installation of charging stations in all stands. However,

in practice, this approach may not be optimal due to the

unnecessary excess capacity of the charging network and the

corresponding higher operational costs, despite the availability

of public subsidies to fund the installation of such network.

We intend to study the optimal number and the location of the

charging stations to be installed at the taxi stands.

Clearly, conveying the type of results reported in this paper

to taxi drivers is a fundamental step towards the acceleration

of the shift from ICE vehicles to EVs. Our future work will

also aim at using on-board tablets and smartphones - currently

the driver interface of the dispatch system - to implement a

virtual dashboard of an EV, replicating the real dashboard of

the current combustion engine taxis, but using metrics in the

context of electric mobility, permanently displaying the SoC,

the virtual charging behaviour at taxi stands, and the cost sav-

ings compared to fuel-based operation. We are convinced that

graphically conveying through a virtual automotive dashboard

the behaviour in terms of autonomy, charging times and energy

cost savings of a typical EV will clearly show to taxi drivers

the results herein reported.
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