
- 1 -

Engineering Real-Time Applications with WorldFIP: Tools
and Analysis

Eduardo Tovar1, Francisco Vasques2

1 Department of Computer Engineering, Polytechnic Institute of Porto, Rua de São Tomé, 4200 Porto,
Portugal; Tel.: +351.2.8340500; Fax: +351.2.8321159

emt@dei.isep.ipp.pt
2 Department of Mechanical Engineering, University of Porto, Rua dos Bragas,

4099 Porto Codex, Portugal
vasques@fe.up.pt

Abstract. WorldFIP is standardised as European Norm EN 50170 - General Purpose
Field Communication System. Field communication systems (fieldbuses) started to be
widely used as the communication support for distributed computer-controlled systems
(DCCS), and are being used in all sorts of process control and manufacturing
applications within different types of industries. There are several advantages in using
fieldbuses as a replacement of for the traditional point-to-point links between
sensors/actuators and computer-based control systems. Indeed they concern economical
ones (cable savings) but, importantly, fieldbuses allow an increased decentralisation
and distribution of the processing power over the field. Typically DCCS have real-time
requirements that must be fulfilled. By this, we mean that process data must be
transferred between network computing nodes within a maximum admissible time span.
WorldFIP has very interesting mechanisms to schedule data transfers. It explicit
distinguishes to types of traffic: periodic and aperiodic. In this paper we describe how
WorldFIP handles these two types of traffic, and more importantly, we provide a
comprehensive analysis for guaranteeing the real-time requirements of both types of
traffic. A major contribution is made in the analysis of worst-case response time of
aperiodic transfer requests.

1. Introduction

Local area networks (LANs) are becoming increasingly popular in industrial computer-
-controlled systems. LANs allow field devices like sensors, actuators and controllers to be
interconnected at low cost, using less wiring and requiring less maintenance than point-to-
-point connections [1]. Besides the economical aspects, the use of LANs is also reinforced by
the increasing decentralisation of control and measurement tasks, as well as by the increased
use of intelligent microprocessor-controlled devices.

Broadcast LANs aimed at the interconnection of sensors, actuators and controllers are
commonly known as fieldbus networks. In the past, the fieldbus scope was dominated by
vendor specific solutions, which were mostly restricted to specific application areas.
Moreover, concepts behind each proposed network were highly dependent on the
manufacturer of the automation system, each one with different technical implementations
and also claiming to fulfil different application requirements, or the same requirements with
different technical solutions [2]. More recently, standardised fieldbuses supporting the open
system concept, thus vendor independent, started to be commonly used. Particular relevance

HURRAY-TR-9908
Date: 22-03-99

- 2 -

must be given to the European Standard EN 50170 [3], which encompasses three widely
used fieldbuses: P-NET [4], PROFIBUS [5] and WorldFIP [6].

In this paper we address the ability of WordFIP to cope with the real-time requirements of
distributed computer-controlled systems (DCCS). In essence, by timing requirements we
mean that traffic must be sent and received within a bounded interval, otherwise a timing
fault is said to occur.

Typically, DCCS include process variables that must be transferred between network
devices both in a periodic basis and also in a sporadic (aperiodic) basis. WorldFIP protocol is
designed to support both types of traffic. As it will be seen, timeliness requirements for the
periodic traffic can be easily guaranteed by WordlFIP, however for the aperiodic traffic more
complex analysis must be made a priori, in order to respect their timing requirements.

The remaining of the paper is organised as follows. In section 2 we describe the main
characteristics behind the WorldFIP protocol. Mechanisms provided by WorldFIP to support
both the periodic and aperiodic traffic are described in detail. Not much analysis has been
devoted to the issue of setting the WorldFIP bus arbitrator table (BAT) such as it complies
with the timing requirements of the periodic traffic. Therefore, we devote section 3 to
provide an approach on how to schedule the periodic traffic in WorldFIP based DCCS.
Based on this approach, in section 4 we evaluate the worst-case response time for the
aperiodic traffic, highlighting the important improvements provided by our analysis as
compared to the previously available from other related works [7, 8].

2. Concepts Behind WorldFIP

A WorldFIP network interconnects stations with two types of functionalities: bus arbitration
and production/consumption functions. At any given instant, only one station can perform
the function of active bus arbitration. Hence, in WorldFIP, the medium access control
(MAC) is centralised, and performed the active bus arbitrator (BA).

WorldFIP supports two basic types of transmission services: exchanges of identified
variables and exchanges of messages. In this paper we address WorldFIP networks
supporting only exchanges of identified variables, since they are the basis of WorldFIP real-
time services. The exchange of messages is used to support manufacturing message services
(MMS) [9], which are out of the scope of this paper.

2.1. Concept of Producer-Distributor-Consumer

In WorldFIP, the exchange of identified variables services are based on a producer/
distributor/consumer (PDC) model, which relates producers and consumers within the
distributed system. In this model, for each process variable there is one, and only one
producer, and several consumers. For instance, consider the variable associated with a
process sensor. The station that provides the variable value will act as the variable producer
and its value will be provided to all the consumers of the variable (e.g., the station that acts
as process controller for that process variable or the station that is responsible for building an
historical data base).

In order to manage transactions associated with a single variable, a unique identifier is
associated with each variable. The WorldFIP data link layer (DLL)1 is made up of a set of

1 WorldFIP protocol is based on a three layered architecture: physical layer, data link layer and application layer.

- 3 -

produced and consumed buffers, which can be locally accessed (through application layer
(AL) services) or remotely accessed (through network services).

The AL provides two basic services to access the DLL buffers: L_PUT.req, to write a
value in a local produced buffer, and L_GET.req to obtain a value from the local consumed
buffer. None of these services generate activity on the bus.

Produced and consumed buffers can be also remotely accessed through a network transfer
(service also known as buffer transfer). The bus arbitrator broadcasts a question frame
ID_DAT, which includes the identifier of a specific variable. The DLL of the station that has
the corresponding produced buffer responds with the value of the variable using a response
frame RP_DAT. The DLL of the station that contains the produced buffer then sends an
indication of transmission of the value to the AL (L_SENT.ind). The DLL of the station(s)
that has the consumed buffers accepts the value contained in the RP_DAT, overwriting the
previous value and notifying the local AL with a L_RECEIVED.ind.

Figure 1 illustrates the case of a station with one produced buffer (for identifier k) and one
consumed buffer (for identifier x). The first one can be locally written trough a L_PUT.req
(to overwrite a new value) or through a buffer transfer, in which its value is made available
to other stations. The second one can be either locally read, through a L_GET.req service
or remotely written through a buffer transfer, being its value overwritten with the new value
transferred from a remotely produced buffer

BUSData Link LayerApplication Layer

35

12

Produced buffer,
Identifier k

Consumed buffer,
Identifier x

ID_DAT_k

RP_DAT(35)L_SENT.ind(id_k)

ID_DAT_x

RP_DAT(12)L_RECEIVED.ind(id_x)

≈ ≈

≈ ≈

L_GET.req(id_x)

L_PUT.ind(id_k)
≈ ≈

Figure 1

2.2. Buffer Transfer Timings

A buffer transfer implies the transmission of a pair of frames: ID_DAT, followed by a
RP_DAT. We denote this sequence as an elementary transaction. The duration of this
transaction equals the time needed to transmit the ID_DAT frame, plus the time needed to
transmit the RP_DAT frame, plus twice the turnaround time (tr). The turnaround time is the

- 6 -

<microcycle 3>: A, B;
<microcycle 4>: A, C;
<microcycle 5>: A, B, D, E;
<microcycle 6>: A;
<microcycle 7>: A, B, C, F;
<microcycle 8>: A;
<microcycle 9>: A, B, D, E;
<microcycle 10>: A, C;
<microcycle 11>: A, B;
<microcycle 12>: A;

--

The HCF/LCM approach for building a WorldFIP BAT has the following properties:
1. The scanning periods of the variables are multiples of the microcycle;
2. The variables are not scanned at exactly regular intervals. For the given example,

only variables A and B are scanned exactly in the same "slot"3 within a microcycle.
All other variables suffer from a slight communication jitter. For instance, concerning
variable F, the interval between microcycles 1 and 7 is (1-5×0.0976)+5+(3×0.0976)=
=5.8048ms, whereas the interval between microcycles 7 and 13 is (1-3×0.0976)+5+
+(5×0.0976)=6.1952ms.

3. The length of the macrocycle can induce a memory size problem, since the table
parameters must be stored in the BA. For instance, if the scanning periodicities of
variables E and F were, respectively, 5ms and 7ms, the length of the macrocycle
would be 420 microcycles instead of only 12.

Both the communication jitter and memory size problems have been addressed in the
literature. In [11], the authors discuss different methodologies for reducing the BAT size,
without worstening the communication jitter problem. The idea is very simple, and basically
consists on reducing some of the scan periodicities in order to make them harmonic. The
problem of table size has also been addressed in [12,13], however, in a different perspective,
since the authors discuss an online scheduler (instead of storing the schedule in memory),
hence not directly addressing the WorldFIP case.

It is also worth mentioning that the schedule shown in figure 4 represents a macrocycle
composed of synchronous microcycles, that is, for the specific example, each microcycle
starts exactly 1ms after the previous one. Within a microcycle, the spare time between the
end of the last scan for a periodic variable and the end of the microcycle can be used by the
BA to process aperiodic requests for buffer transfers (see sub-section 2.4), message transfers
and padding identifiers4. A WorldFIP BA can also manage asynchronous microcycles, not
transmit padding identifiers at the end of the microcycle. In such case, a new microcycle
starts as soon as the periodic traffic is performed and there are no pending aperiodic buffer
transfers or pending message transfers. Initial periodicities are not respected, since identifiers
may be more frequently scanned.

2.4. Aperiodic Buffer Transfers

In a WorldFIP system, not all identified variables are included in the BAT. Some variables
may only be occasionally exchanged, and thus do not need to be periodically scanned.
Typically these exchanges will concern application events or alarms, which by their own

3 For simplification of the analysis, we are assuming always the same length for each elementary transaction.
4 If after the periodic traffic, the sporadic traffic (if any) and message transfers (if any) there is still time within the microcycle, the

BA transmits padding identifiers (not produced by any station), to indicate the other stations that it is still functioning.

- 7 -

nature do not occur with a periodic pattern. Therefore, it is preferable to map these variables
into aperiodic buffer transfers. In this way network is not unnecessary overload.

The BA handles aperiodic buffer transfers only after processing the periodic traffic in a
microcycle. The portion of the microcycle reserved for the periodic buffer exchanges is
denoted as the periodic window of the microcycle. The time left after the periodic window is
completed until the end of the microcycle is denoted as the aperiodic window of the
microcycle. The aperiodic buffer transfers take place in three stages:

1. When processing the BAT schedule, the BA broadcasts an ID_DAT frame
concerning a periodic variable, say identifier X. The producer of X responds with a
RP_DAT and sets an aperiodic request bit in the control field of its response frame.
The bus arbitrator stores variable X in a queue of requests for variable transfers5.

2. In the aperiodic window the BA uses an identification request frame (ID_RQ) to ask
the producer of the identifier X to transmit its list of pending aperiodic requests. The
producer of X responds with a RP_RQ frame (list of identifiers). This list of
identifiers is placed in another BA's queue, the ongoing aperiodic queue.

3. Finally, the BA processes requests for aperiodic transfers that are stored in the
ongoing aperiodic queue. For each transfer, the BA uses the same mechanism as the
used for the periodic buffer transfers (ID_DAT followed by a RP_DAT of the
producer of the aperiodic variable).

A station that requests an aperiodic transfer can be: the producer of the variable; the
consumer of the variable; both producer and consumer; neither producer nor consumer
(third-party variables). It is however important to note that a station can only request
aperiodic transfers using responses to periodic variables that it produces and which are
configured in the BAT.

BUSData Link LayerApplication Layer

35

Produced buffer,
Identifier k

Urgent queue

ID_DAT_k

RP_DAT_RQ(35)
L_SENT.ind(id_k)

≈ ≈

L_FREE_UPDATE.cnf(a+)

L_FREE_UPDATE.req(id_a, Urgent)

L_FREE_UPDATE.req(id_b, Urgent)

b a

≈

Normal queue

≈
ID_RQ_k

RP_RQ (a,b)

L_FREE_UPDATE.cnf(b+) ≈≈
ID_DAT_a

RP_DAT (11)

1

2

4 3

5

Figure 5

As previously mentioned, in this paper we only consider buffer transfers (identified
variables exchanges), both periodic and aperiodic requests. Concerning the aperiodic

5 Two priority levels can be set when the request for aperiodic transfer is made: Urgent or Normal. The BA has two queues, one

for each priority level.

- 9 -

3.1. Aperiodic Buffer Transfers

Assume a system with np periodic variables (Vpi, i = 1, .., np). Each periodic variable Vpi is
characterised as:

()iii CpTpVp ,= (2)

where Tpi corresponds to the periodicity of Vpi (assume a multiple of 1ms) and Cpi is the
length of the transaction corresponding the buffer transfer of Vpi (as given by equation (1)).

3.2. Tools for Setting the Bus Arbitrator Table

Following the HCF/LCM methodology to build the BAT, the value for the microcycle (µCy)
is chosen as:

()i
npi

TpHCFµCy
,..,1=

= (3)

where HCF stands for the highest common factor and corresponds to the following value:

{ } i
ii TpTp

µCy ∀

Ω
=

Ω
 ℵ,∈Ω∧Ω= ,with max (4)

In appendix A.1, an algorithm for the evaluation of the microcycle value is suggested.
The macrocycle (MCy) is defined as:

µCyNMCy ×= (5)

where N is the number of microcycles that compose a macrocycle. Using the LCM rule, N is
evaluated as follows:

{ } i
ii µCyTpµCyTp

N ∀

 Φ
=

Φ
ℵ,∈Φ∧Φ= , with min (6)

In appendix A.2, an algorithm for the evaluation of the macrocycle value is suggested.
The BAT can easily be built considering the rate monotonic (RM) algorithm [14], adapted

for the WorldFIP BAT characteristics, and using the following rules:
1. From variable with the shortest period until variable with the longest period

1.1. If the load in each cycle plus the Cp of the variable is still shorter than the value of
the microcycle, then schedule scans for that variable in each of the microcycles (of
a macrocycle) multiple of the period of the variable. Update the value of the load in
each concerned microcycle.

1.2. If the load in some of the microcycles does not allow to schedule a scan for the
variable, try to schedule it for the first of the subsequent microcycles up to the
microcycle in which a new scan for that variable should be made. If this is not
possible, the variable set is not scheduled.

- 10 -

For the example of table 1, in which all Cpi = 0.0976ms, ∀i, the BAT, using the RM
algorithm, is:

Table 2: BAT (using RM) for Example of Table 1

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 1 0 0 0 0 0 1 0 0 0 0 0

where bat[i, j] is a table of booleans with i ranging from 1 to np, and j ranging from 1 to N
(number of microcycles in a macrocycle).

In appendix A.3, a detailed algorithm for building the BAT using the rate monotonic
methodology previously described is presented. In the alsgorithm, the vector load[] is used
to store the load in each microcycle as the traffic is schedule. It also assumes that the array
Vp[,] is ordered from the variable with the shortest period (Vp[1,]) to the variable with the
longest period (Vp[np,]).

Note that by using this RM algorithm some of the variables with longer periods can be
scheduled for subsequent microcycles, thus inducing a greater communication jitter for those
variables. For example, if the network data rate is 1Mbps instead of 2.5Mbps (each Cpi=
= (64+80)/1+2×20=184µs), the BAT would not be as shown in table 2 but that as shown in
table 3, which corresponds to the schedule shown in figure 7a).

Table 3: BAT (using RM) for Modified Example of Table 1

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 1 0 0 0 0 1 0 0 0 0 0

Other algorithms, rather than the RM algorithm, could be implemented [15] in order to
have a more uniform number of periodic scans in each microcycle (using the same
assumptions for determining the value for both the microcycle and the macrocycle). Figure
7b) illustrates a schedule where the scan pattern for some of the variables is shifted right a
nmi number of microcycles, with nmi ≤ (Tpi/µCy). The advantage is the reduction of Jitter.
Table 4 gives the BAT for this other algorithm.

Table 4: BAT with Modified Algorithm

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 1 0 0 0 0 0 1 0 0 0 0

- 12 -

 +
=

µCy

ICp
NR i

i
(7)

with

()
∑

∈

×

 ×
=

ihpj j

i
i Cp

Tp

µCyNR
I (8)

Equation (7) reflects the fact that in each microcycle only a number of transactions that
completely fit in it are processed6. Assume for example that µCy=1ms and Cp=0.21ms. To
process 5 buffer transfers 2 microcycles are needed (4 buffer transfers will be processed in
the first microcycle and 1 buffer transfer in the second microcycle, as
(5×0.21)/1=1.05=2).

Equation (8) gives the load (as a multiple of Cp) corresponding to the number of buffer
transfers to be scheduled ahead of Vpi in NR number of microcycles. Note that with the rate
monotonic algorithm, variables with shorter periods (higher priority) are scheduled ahead of
variables with longer periods (lower priority). Therefore, if a lower priority variable is
scheduled to a subsequent microcycle (no time left in that microcycle), its corresponding
buffer transfer will only be performed after higher priority variables in that subsequent
microcycle.

Combining (8) and (7), the feasibility test can be written as:

()
i

i
ihpj j

i

i µCy

Tp

µCy

Cp
Tp

µCyNR
Cp

NR ∀≤

×

 ×
+

=
∑

∈
 , (9)

that is, the maximum number of microcycles needed to transfer a variable must be smaller
than the number of microcycles till the next "request" for a transfer of that variable.

Equation (9) embodies a mutual dependence, since NRi appears in both sides of the
equation. The easiest way to solve equation (9) is to form a recurrence relationship [18]:

()

×

 ×
+

=
∑

∈+

µCy

Cp
Tp

µCyW
Cp

W
ihpj j

m
i

m
i

1 (10)

The set of values {W0, W1, W2, …, Wm, …} is monotonically non-decreasing. Hence,
starting with W0 = 0; when Wm+1 = Wm, the solution of equation (10) has been found.

Take the example of figure 7a), for periodic variable F. The sequence of iterations (using
(10)) is as follows:

6 x is a ceiling function of x, where x = 0 if x < 0 and x = smallest integer greater than the fractional number on which it acts.

- 13 -

 ()

 ()

 ()
 2228.1

1

184.04242322212184.0

2104.1
1

184.04141312111184.0

1184.0
1

184.04040302010184.0

3

2

1

==

 ×+++++

=

==

 ×+++++

=

==

 ×+++++

=

F

F

F

W

W

W

and iterations stop here, since WF
3 = WF

2 = 2.
In appendix A.4, we describe in detail an algorithm to perform this feasibility test.

4. Real-Time Guarantees for the Periodic Traffic

We define the worst-case response time for an aperiodic transfer as the time interval between
the placement, at time instant t0, of the L_FREE_UPDATE.req(ID_Ap, urgent) in the
station's local urgent queue and the completion of the buffer transfer concerning the
aperiodic variable Vai in a BA's aperiodic window.

The response time for an aperiodic buffer transfer includes the following three
components:

1. the time elapsed between t0 and the time instant when the requesting station is polled
for a periodic variable, being only then able to indicate the BA (via RP_DAT, with the
request bit set) that there is an aperiodic transfer request pending. We define this time
interval as the dead interval of a producer station;

2. the time that request indication stays in the BA's urgent queue till the related ID_RQ
+ RP_RQ pair of frames is processed in an aperiodic window;

3. and the time the buffer exchange request for variable Vai stays in the BA's ongoing
aperiodic queue till the related ID_DAT_Ap + RP_DAT pair of frames is processed in
an aperiodic window.

As was explained in sub-section 2.4, when in an aperiodic window, the BA (note that we
are only considering buffer transfers - message exchanges are not supported) executes the
sequence shown in figure 6.

4.1. Upper Bound for the Dead Interval

The upper bound for the dead interval in a station is determined by the minimum of the
scanning periodicities of a produced variable in that station. It is important to note that a
periodic variable (Vpi) is not polled at regular intervals given by its periodicity (multiples of
the microcycle). A communication jitter exists due to the way the BAT is constructed.
Therefore, the upper bound for the dead interval in a producer station k is:

{ }i
kVp

jjVpj
k TpTpjCpJTp

i
j in produced

min: with , =++=σ (11)

where JVpj is the maximum communication jitter that Vpj may suffer. For example, and
concerning the set of periodic variables shown in table 1, if variable F is the only produced
variable in a specific station (say station k), then σk=6+0.1952+0.0976= 6.2928ms.

Inherent to equation (11) is the following assumption: the local aperiodic request is only
processed (setting the request bit in the RP_DAT frame) if it arrives before the start of the
related ID_DAT. Hence we include a Cpj in equation (11).

- 14 -

In appendix A.5 we describe a detailed algorithm for the evaluation of the communication
jitter of a periodic variable. This algorithm is the basis for the evaluation of the dead interval
in a specific k station.

Using this algorithm, and assuming that all Cpi = 0.21ms as concerning variable set of
table 1, the value for the communication jitter for each periodic variable is:

Table 5: Communication Jitter for Table 1 (all Cpi = 0.21ms)

Identifier A B C D E F
Periodicity (ms) 0 0 0.21 0.21 0.58 0.79

as the schedule would be as follows:

Table 6: BAT Concerning Table 1 (all Cpi = 0.21ms), RM Algorithm

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 1 0 0 0 0 1 0 0 0 0 0

4.2. Aperiodic Busy Interval

The worst-case response time for an aperiodic variable transfer occurs if at the time the
request is placed in the BA's urgent queue (σk after t0), requests for all other aperiodic
variables in the network are already pending in the same queue.

We consider that:
1. for each aperiodic variable a request for identification must be made7;
2. and that those requests will start to contend for the medium access when the BA is

starting the first microcycle of a macrocycle (with the RM scheduling policy used to
construct the BAT, this means maximum periodic load). This is defined as the critical
instant.

We also consider that all aperiodic traffic has minimum time between requests that is
greater than the worst-case response time. Therefore, no other aperiodic request appears
before the completion of a previous one. Hence, the maximum number of aperiodic requests
pending in the BA is na, with na being the number of aperiodic different requests that can be
made in the network.

We define time span between the critical instant and the end of the processing of aperiodic
requests that are pending at the critical instant as an aperiodic busy interval (ABI), since all
aperiodic windows within the microcycles are used to process aperiodic traffic.

It is also clear that to process all those na requests, the aperiodic windows will perform
alternately sequences of (ID_RQ + RP_RQ) and (ID_DAT + RP_DAT), as the BA gives
priority to the ongoing aperiodic queue (see figure 6).

If all the aperiodic variables have a similar length of data field (a few bytes), it is
reasonable to define Ca* as:

7 In practice this case only occurs if each of the station have only on aperiodic produced buffer, since the BA is able to manage the

urgent queue such as to avoid redundancy in ID_RQ to a same station.

- 16 -

and all the remaining 5 Ca* transactions are processed. Therefore, the length of the aperiodic
busy interval (ABI) is: 2×µCy+2×0.0976+5×0.1=2.695ms.

For a request made at the station that produces periodic variable F (assume that F is the
only periodic variable produced in that station) the dead interval (given by equation (11)) is
6.2928ms. Therefore, the worst-case response time of an aperiodic variable that is required in
that station k is: Rak=6.2928 +2.695=8.9879ms.

We provide now analysis for the generic case of na number of aperiodic variables in a
system.

The length of the aperiodic window in the lth cycle (l = 1, .., N, N + 1, ..) is:

[]()∑
=

×−=
np

i
iCplibatµCylaw

1

,)((13)

Therefore, the number of aperiodic transactions that fit in the lth aperiodic window is:

()

=

*
)(

Ca

law
lnap (14)

where Ca* is as given by (12).
The number of microcycles (N') in an ABI is:

{ } ()∑
=

×≥Ψ∧=ΨΨ=
'

1

2 with ,min'
N

l

nalnapN (15)

that is, the minimum number of microcycles in which the number of "slots" available for
processing aperiodic transactions (each "slot" with the length of Ca*) is at least 2×na.

In appendix A.6 we describe a detailed algorithm for the evaluation of the number of
microcycles of an aperiodic busy interval.

Knowing N', the length of the aperiodic busy interval (len_abi) is:

() []() ()∑ ∑
=

−

=

×

−×+×+×−=

np

i

N

l
i CalnapnaCpNibatµCyNabilen

1

*
1'

1

2,1'_ (16)

where ∑i=1,..,np(bat[i,N]×Cpi) gives the length of the periodic window in microcycle N', and
(2×na-∑l=1,..,N'-1nap(l))×Ca* gives the length of the aperiodic window, concerning the
aperiodic busy interval, also in microcycle N'.

In appendix A.7 a detailed algorithm for evaluating the length of the ABI is provided.
Therefore, the worst-case response time for an aperiodic transfer request made at station k

is:

abilenRa kk _+= σ (17)

and the admissible interval between consecutive aperiodic requests of a periodic variable in a
station k must comply with the following condition:

() abilenRaVaMIT kkk _+=≥ σ (18)

4.4. Related Work

Both the works described in [7,8] address the issue of finding worst-case response times for
aperiodic requests in WorldFIP networks. However they do not draw the analysis as

- 17 -

dependent of the way the BAT is built. For that reason communication jitter is not
considered for the evaluation of the dead interval. Although the analysis in [8] is an
improved version of that made in [7] (in [7] the authors approach very pessimistically by
considering that the periodic traffic is processed after all the periodic traffic within a
macrocycle), none of the analysis considered different lengths of periodic windows. More
importantly, none of the analysis considered that at the end of each microcycle some
transactions would not simply fit.

5. Conclusions

In this paper we provide a comprehensive study on how it is possible to support the real-time
requirements of both periodic and aperiodic traffic in WorldFIP networks.

Important contributions were made by the definition of feasibility tests for periodic traffic
scheduled according to the rate monotonic algorithm. Also concerning the periodic traffic,
exact definition and evaluation of communication jitter is provided, as a function of the bus
arbitrator table. Concerning the schedulability of the aperiodic traffic, we improved previous
results by providing a more accurate definition of the dead interval and by extending the
analysis to the case of non-constant periodic window lengths. We introduced also in the
analysis the wasted portion in the aperiodic window.

References

[1] Lenhart, G. A Fieldbus Approach to Local Control Networks. Advances in Instrumentation and
Control, Vol. 48, No. 1, pp. 357-365, 1993.

[2] Cardoso, A. and E. Tovar. Industrial Communication Networks: Issues on Heterogeneity and
Internetworking. Proceedings of the 6th International Conference on Flexible Automation and
Intelligent Manufacturing (FAIM’96), Atlanta, USA, pp. 139-148, Begell House Publishers,
1996.

[3] Cenelec. General Purpose Field Communication System. EN 50170, Vol. 1/3 (P-NET), Vol. 2/3
(PROFIBUS), Vol. 3/3 (FIP), Cenelec, 1996.

[4] Pnet. The P-NET Standard. International P-NET User Organisation ApS, 1994.
[5] Profibus. PROFIBUS Standard DIN 19245 part I and II. Translated from German, Profibus

Nutzerorganisation e.V., 1992.
[6] Afnor. Normes FIP NF C46-601 to NF C46-607. Union Technique de l’Electricité, 1990.
[7] Vasques, F and G. Juanole. Pre-run-time Schedulability Analysis in Fieldbus. Proceedings of the

20th Annual Conference of the IEEE Industrial Electronics Society (IECON'94), pp. 1200-1204,
1994.

[8] Pedro, P. and A. Burns. Worst Case Response Time Analysis of Hard Real-time Sporadic Traffic
in FIP Networks. Proceedings of the 9th Euromicro Workshop on Real-Time Systems, pp. 3-10,
June 1997.

[9] ISO 9506. Industrial Automation Systems - Manufacturing Message Specification. ISO, 1990.
[10] Afnor. Normes FIP NF C46-605 - Gestion de Réseau. Union Technique de l’Electricité, 1990.
[11] Kim, Y., Jeong, S. and W. Kown. A Pre-Run-Time Scheduling Method for Distributed Real-

Time Systems in a FIP Environment. Control Engineering Practice, Vol. 6, pp. 103-109,
Pergamon/Elsevier Science, 1998.

[12] Kumaran, S. and J.-D. Decotignie. Multicycle Operations in a Field Bus: Application Layer
Implications. Proceedings of IEEE Annual Conference of Industrial Electronics Society
(IECON'89), pp. 531-536, 1989.

[13] Raja, P. and G. Noubir. Static and Dynamic Polling Mechanisms for Fieldbus Networks.
Operating Systems Review, Vol. 27, No. 3, 1993.

- 18 -

[14] Liu, L. and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment. Journal of the ACM, 20(1), pp. 46-61, 1973.

[15] Tovar, E. and F. Vasques. Setting the Bus Arbitrator Table in in WorldFIP Networks. Technical
Report of the Polytechnic Institute of Porto, HURRAY-TR-9909, March 1999.

[16] Joseph, M. and P. Pandya. Finding Response Times in a Real-Time System. The Computer
Journal, Vol. 29, No. 5, pp. 390-395, 1986.

[17] Tovar, E., Vasques, F. and A. Burns. . Adding Loac Priority-Based Dispatching Mechanisms to
P-NET Networks: a Fixed Priority Approach. To appear in the Proceedings of the 11th
Euromicro Workshop of Real-Time Systems, York, England, June 1999.

[18] Audsley, N., Burns, A., Richardson, M., Tindell, K. and A. Wellings. Applying New Scheduling
Theory to Static Priority Pre-emptive Scheduling. Software Engineering Journal, 8(5), pp. 284-
292, 1993.

- 20 -

12: for i = 1 to np do
13: if N mod (tp[i]/µCy) <> 0 then
14: ctrl = FALSE
15: end if
16: end for
17: end while;

18: MCy = N × µCy;
return MCy;
--

A.3. Rate Monotonic (RM) Algorithm for Building the BAT

--
- Rate Monotonic for Building the BAT
--
function rm_bat;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity of the variables */
/* i ranging from 1 to np */
/* and the length of Cpi, j ranging from 1 to 2 */

µCy /* value of the microcycle */
N /* number of microcycles in the macrocycle */

output:
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
begin

1: for i = 1 to np do
2: cycle = 1;
3: repeat
4: if load[cycle] + Vp[i,2] <= µCy then
5: bat[i,cycle] = 1;
6: load[cycle] = load[cycle] + 1;
7: cycle = cycle + (Vp[i,1] div µCy)
8: else;
9: cycle1 = cycle1 + 1;
10: ctrl = FALSE;
11: repeat
12: if load[cycle1] + Vp[i,2] <= µCy then
13: ctrl = TRUE
14: end if;
15: until (ctrl = TRUE) or (cycle1 >= (cycle + (Vp[i,1]
16: div µCy)));
17: if cycle1 >= (cycle + (Vp[i,1] div µCy)) then
18: bat[i,cycle1] = 1;
19: load[cycle1] = load[cycle1] + 1;
20: cycle = cycle + (Vp[i,1] div µCy)
21: else
22: /* MARK Vpi NOT SCHEDULABLE with RM Algorithm */
23: cycle = cycle + (Vp[i,1] div µCy)
24: end if
25: end if
26: until cycle > N
27: end for

return bat;
--

- 21 -

A.4. Algorithm for the Feasibility Test of the BAT

--
- Number of Microcycles to Process a Buffer Transfer Using the RM al.
--
function NR;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity of the variables */
/* i ranging from 1 to np */
/* and the length of Cpi, j ranging from 1 to 2 */

µCy /* value of the microcycle */
N /* number of microcycles in the macrocycle */

output:
NR[i] /* i ranging from 1 to np */

begin
1: for i = 1 to np do
2: w = 0; w1 = 0;
3: repeat

 4: w = w1;
5: for j = 1 to i - 1 do
6: if ((w × µCy) mod Vp[j,1]) <> 0 then

 7: w1 = w1 + (((w × µCy) div Vp[j,1]) + 1) × Vp[j,2]
8: else
9: w1 = w1 + (((w × µCy) div Vp[j,1])) × Vp[j,2]
10: end if
11: end for;
12: if (Vp[i,2] + w1) mod µCy <> 0 then
13: w1 = w1 + ((Vp[i,2] + w1) div µCy) + 1
14: else
15: w1 = w1 + ((Vp[i,2] + w1) div µCy)
16: end if
17: until w1 = w;
18: NR[i] = w1
19: end for

return NR;
--

A.5. Algorithm for the Evaluation of the Communication Jitter

--
- evaluation of the maximum communication jitter of a periodic variable
--
function NR;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity of the variables */
/* i ranging from 1 to np */
/* and the length of Cpi, j ranging from 1 to 2 */

µCy /* value of the microcycle */
N /* number of microcycles in the macrocycle */
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
output: J[i] /* maximum polling jitter of variable Vpi */

begin
1: for i = 1 to np do
2:
3: /* Evaluate number of hits of variable Vpi */
4: hits = 0;
5: for cycle = 1 to N do

- 22 -

6: if bat[i,cycle] = 1 then
7: hits = hits + 1;
8: end if
9: end for;
10:
11: /* Find first hit in a macrocycle */
12: cycle = 0;
13: repeat
14: cycle = cycle + 1
15: until bat[i,cycle] = 1;
16:
17: /* Find last hit in a macrocycle */
18: cycle1 = N + 1;
19: repeat
20: cycle1 = cycle1 - 1
21: until bat[i,cycle1] = 1;
22:
23: /* Evaluate the time span between the last hit in a */
24: /* macrocycle and the first hit in a subsequent macrocycle */
25: span = (N - cycle1 + cycle - 1) × µCy;
26: load_par = 0;
27: for j = 1 to i - 1 do
28: if bat[j,cycle] = 1 then
29: load_par = load_par + Vp[j,2]
30: end if
31: end for;
32: span = span + load_par;
33: load_par = 0;
34: for j = 1 to i - 1 do
35: if bat[j,cycle1] = 1 then
36: load_par = load_par + Vp[j,2]
37: end if
38: end for;
39: span = span + (µCy - load_par);
40:
41: /* Evaluate the time span between each of the hits */
42: /* within a macrocycle */
43: for k = 1 to hits - 1 do
44: cycle1 = cycle;
45: repeat
46: cycle1 = cycle1 + 1
47: until bat[i,cycle1] = 1;

48: span1 = (cycle1 - cycle - 1) × µCy;
49: load_par = 0;
50: for j = 1 to i - 1 do
51: if bat[j,cycle] = 1 then
52: load_par = load_par + Vp[j,2]
53: end if
54: end for;
55: span1 = span1 + (µCy - load_par);
56: load_par = 0;
57: for j = 1 to i - 1 do
58: if bat[j,cycle1] = 1 then
59: load_par = load_par + Vp[j,2]
60: end if
61: end for;
62: span1 = span1 + load_par;
63:
64: if span1 > span then
65: span = span1
66: end if;
67: cycle = cycle1;
68: end for;

- 23 -

69: J[i] = span - Vp[i,1];
70: end for

return J;
--

A.6. Algorithm for the Evaluation of the Number of Microcycles in an ABI

--
- Number of Cycles of the Aperiodic Busy Interval
--
function ncy_apbi;
input: np /* number of periodic variables */

na /* number of aperiodic variables */
µCy /* value of the microcycle */
bat[i,l] /* i ranging from 1 to np */
cra /* length of composite aperiodic transaction */
cp /* length of periodic elementary transaction */

output: ncy_abi /* number of cycles of the aperiodic busy interval */

begin
1: cycle = 0;
2: na_aux = 0;
3: repeat
4: cycle = cycle + 1;
5: count_p = 0;
6: for i = 1 to np do
7: if bat[i,cycle] = 1 then
8: count_p = count_p + 1;
9: end if;
10: end for;

11: aw = µCy - count_p × cp;
12: na_aux = na_aux + aw div ca;
13: until na_aux >= 2 × na;
14: ncy_abi = cycle;

return ncy_abi;
--

A.7. Algorithm for the Evaluation of the Length of the ABI

--
- Length of Aperiodic Busy Interval
--
function len_apbi;
input: np /* number of periodic variables */

na /* number of aperiodic variables */
µCy /* value of the microcycle */
bat[i,l] /* i ranging from 1 to np */
cra /* length of composite aperiodic transaction */
cp /* length of periodic elementary transaction */
ncy_abi /* number of cycles of the aperiodic busy interval */

output: len_abi /* number of cycles of the aperiodic busy interval */

begin
1: /* determine number of aperiodic transfers in the */
2: /* ncy_abi - 1 microcycles */
3: for cycle = 1 to ncy_abi - 1 do
4: count_p = 0;
5: for i = 1 to np do

- 24 -

6: if bat[i,cycle] = 1 then
7: count_p = count_p + 1
8: end if
9: end for;

10: aw = µCy - count_p × cp;
11: na_aux = na_aux + aw div cra
12: end for;
13:
14: /* determine the number of periodic scans in microcycle */
15: /* number ncy_abi */
16: count_p = 0;
17: for i = 1 to np do
18: if bat[i,ncy_abi] = 1 then
19: count_p = count_p + 1
20: end if
21: end for;

22: len_p = count_p × cp;
23:
24: /* determine length of aperiodic busy window */
25: len_abi = (ncy_abi -1) × µCy + len_p + (2 × na - na_aux) × ca*

return len_abi;
--

