
1

Evaluating the Duration of Message Transactions
in Broadcast Wired/Wireless Fieldbus Networks

Mário Alves, Eduardo Tovar
ISEP, Polytechnic Institute of Porto

R. São Tomé, Porto, Portugal
{malves@dee,emt@dei}.isep.ipp.pt

Francisco Vasques
FEUP, University of Porto

R. Roberto Frias, Porto, Portugal
vasques@fe.up.pt

Abstract
Determining the response time of message transactions is one
of the major concerns in the design of any distributed
computer-controlled system. Such response time is mainly
dependent on the medium access delay, the message length
and the transmission delay. While the medium access delay in
fieldbus networks has been thoroughly studied in the last few
years, the transmission delay has been almost ignored as it is
considered that it can be neglected when compared to the
length of the message itself. Nevertheless, this assumption is
no longer valid when considering the case of hybrid
wired/wireless fieldbus networks, where the transmission delay
through a series of different mediums can be several orders of
magnitude longer than the length of the message itself. In this
paper, we show how to compute the duration of message
transactions in hybrid wired/wireless fieldbus networks. This
duration is mainly dependent on the duration of the request
and response frames and on the number and type of physical
mediums that the frames must cross between initiator and
responder. A case study of a hybrid wired/wireless fieldbus
network is also presented, where it becomes clear the interest
of the proposed approach.

1. Introduction
Most computer-controlled systems are also real-time
systems. In general, the issue of guaranteeing real-time
requirements is the one of checking, prior to run-time, if
the worst-case execution time of each of its tasks is
smaller than the admissible response time. In distributed
computer-controlled systems, where some of the
application tasks are communicating tasks, the
evaluation of the message’s response time is of
paramount importance.

The message’s response time is mainly dependent on the
medium access delay (contention due to other messages
in the queue and due to other stations holding the token),
the message length and the transmission delay. While
the medium access delay in fieldbus networks has been
thoroughly studied in the last few years [1,2,3,4], the
transmission delay has been almost ignored as it is
considered that it can be neglected when compared to
the length of the message itself.

Nevertheless, this assumption is no longer valid when
considering the case of hybrid wired/wireless fieldbus
networks, where the transmission delay through a series

of different mediums can be several orders of magnitude
longer than the length of the message itself.

In this paper, we evaluate the duration of message
transactions in hybrid wired/wireless fieldbus networks
that operate in a broadcast fashion. Such duration
includes both the duration of the message itself and the
duration of its transmission time. The duration of a
message transaction is mainly dependent on the duration
of the request and response frames and on the number
and type of physical mediums that the frames must cross
between initiator and responder. It is also dependent on
the extra idle time that must be inserted between
consecutive frames in the network [5]. This additional
inactivity time is necessary in order to avoid network
congestion, since we are addressing hybrid
wired/wireless networks containing different physical
layer PDU formats and bit rates.

This paper is organised as follows: Section 2 presents
the main characteristics of the considered wired/wireless
fieldbus network. Section 3 presents general formulae to
compute the duration of transactions in hybrid
wired/wireless fieldbus networks with the previously
described characteristics. For that purpose, a way to
compute the PhL PDU duration, the idle time and the
system turnaround time is also outlined in that section.
Section 4 introduces a hybrid wired/wireless fieldbus
system based on the EN50170 Profibus profile [6],
which is under development - the RFieldbus system [7].
As some default network parameters can be considered
in the RFieldbus system, in Section 5 we present a
simplified timing analysis for RFieldbus transactions.
The last section draws some conclusions.

2. Network Model

2.1 MAC, Message Transactions and Linking
Devices

We consider a hybrid wired/wireless fieldbus network
where the medium access control (MAC) protocol is
based in a token-passing procedure used by master
stations to grant the bus access to each other. A master
station is able to perform message transactions during
the token holding time. A message transaction consists
of the request from a master (initiator) and the

2

associated response frame (positive or negative)
immediately issued by the responder (master or slave).
The master will only process another transaction (or
pass the token) upon completion of the ongoing
transaction and waiting a pre-defined idle time. If an
erroneous response frame is received or a timeout
(before receiving any response) occurs, the master
station may retry the request.

A master station can also send unacknowledged
requests. In this case, as there is no associated response
frame, it will be able to start another transaction (or pass
the token) just after a pre-defined idle time. The idle
times between consecutive frames in the network should
always be respected due to physical layer (PhL)
requirements (namely for synchronisation).

In order to have a broadcast network, linking devices
must act as repeaters. We assume a store-and-forward
behaviour, i.e. a frame must be completely received by
one port of the linking device before being re-
transmitted to the other port. Obviously, the linking
devices must support encapsulation/decapsulation
operations, due to different PhL PDU (protocol data
unit) formats, and receiving/transmitting at different bit
rates.

2.2 PhL PDU length and duration

In a hybrid wired/wireless fieldbus network, linking
devices interconnect domains that use the same data link
layer (DLL) protocol, but have different physical layer
(PhL). Therefore, we have to define specific parameters
meaningful for each domain:

Parameter Description Units

L Length of the DLL PDU chars

ka Length of a char in the PhL of domain a bits/char

la+ PhL overhead of domain a (header,
preamble, SFD)

bits

ra Bit rate in domain a Mbit/s

Table 1: Parameters for frame length and duration

A character (char) is defined as the smallest unit of
information in the DLL. A DLL PDU (Protocol Data
Unit) is a set of chars delivered to the PhL for
transmission. In order to proceed with this transmission,
the PhL may have to introduce additional information
(header) or synchronisation (preamble, start frame
delimiter) bits. Moreover, a character of the DLL may
have different lengths at the PhL, depending on the type
of PhL.

Taking into account the parameters outlined in Table 1,
we can define Ca as the duration of a PhL PDU in
domain a:

a

aa
a r

lkL
C ++⋅

=

3. Computing the Duration of Message
Transactions

3.1 Inserted Idle Time

Broadcast networks that are characterised by having
different physical layers (PhL) demand some kind of
traffic adaptation between segments, in order to avoid
traffic congestion in linking devices. In [5], the authors
propose a method on the insertion of an appropriate idle
time before a station issuing a request frame. In this
way, it is guaranteed that the linking devices’ queues do
not increase in a way that the timeliness properties of the
overall system turn out to be unsuitable for the targeted
applications. The inserted idle time for a certain master
station mainly depends on the characteristic of the
message streams of that master and on the PhL PDU
formats and bit rates in the network. In this subsection,
the way to compute the idle time is summarised.

3.1.1 Two different idle time parameters
In every master station, two different DLL idle time
parameters are defined - TID1 and TID2, related to
acknowledged and unacknowledged requests,
respectively. TID1 is the time that expires at the initiator
after receipt of a response frame’s last bit, until a new
frame’s bit is transmitted on the medium. TID2 is the time
that expires between transmitting the last bit of an
unacknowledged frame and transmitting the first bit of
the next frame.

For a single segment network, all stations may set their
idle time parameters to a minimum value, usually big
enough to cope with synchronisation requirements. In
the following subsections, we are going to assume that
all stations set these “minimum” idle time parameters to
the same value1, i.e. TID1=TID2=TID. Then, we compute
the additional idle time each station must insert, in order
to perform traffic adaptation. These inserted idle times
are represented by tID1+ and tID2+. Finally, we merge the
corresponding components into single parameters – T’ID1

and T’ID2.

3.1.2 Computation of the inserted idle time after
receiving a response

In order to compute the inserted idle time after receiving
a response frame (tID1a+), we will refer to Figure 1. A
sequence of transactions including the inserted idle time
is presented. For the sake of simplicity, the timing
diagram assumes that the frame duration in Db is twice
the frame duration in Da.

1 Note that this is the idle time all linking devices will use, when
relaying traffic from one port to the other.

3

Da

Db

∆b

∆a

I IR R R

trt

t ID1b

tID1a tID1a+Cp
respa

Cp
respb Cc

reqb

Cc
reqa

Figure 1: Inserting additional idle time (acknowledged
request sequence)

The superscript indexes p and c correspond to previous
and current (transaction), respectively, and the
responder turnaround time is represented by trt.

Clearly, the increase in idle time (tID1a+) guarantees that
there will be at most two messages in a linking device’s
queue, one being processed and the other one waiting.

Reporting to Figure 1, we can state that ∆a should be
greater or equal to ∆b, in order to be able to avoid the
increase in the queue. That is, considering that

rt
c
reqaaIDaID

p
respaa tCttC ++++=∆ +11 and

bID
c
reqbbID

p
respbb tCtC 11 +++=∆ , then:

() () () rtaIDbID
c
reqa

c
reqb

p
respa

p
respbaID tttCCCCt −−⋅+−+−≥+ 111 2 (1)

In order to compute the value for tID1+ for a certain
master station, there is the need to know the
characteristic of the message streams of that master.
Therefore, we must know the length of the different
DLL request/response PDUs for every acknowledged
request of that master.

3.1.3 Computation of the inserted idle time after
issuing an unacknowledged request

The condition expressed in (1) is just related to
acknowledged request frames, though. The case of a
sequence of non-acknowledged request (or token)
frames must also be analysed. Figure 2 shows a
sequence of unacknowledged requests and the variables
that are necessary to evaluate this second idle time.

Da

Db

δ b

δa

I I I

tID2a

tID2b

tID2a+

Figure 2: Inserting additional idle time (unacknowledged
request sequence)

In this case, δa should be greater or equal to δb. That is,

considering +++= aIDaIDreqaa ttC 22δ and

bIDreqbb tC 2+=δ , then:

() ()aIDbIDreqareqbaID ttCCt 222 −+−≥+
(2)

Similarly, the different DLL unacknowledged request
PDUs lengths for that master must be known, in order to
compute tID2+.

Finally, assuming only one register for TID1 and one
register for TID2, there is the need to merge both the
“minimum” idle time with the inserted idle time in one
variable, i.e.:

++ +=∧+= aIDaIDaIDaIDaIDaID tttttt 222111 ''

Or, in bit times:

++ +=∧+= aIDaIDaIDaIDaIDaID TTTTTT 222111 ''

We are considering also that a master station will insert
T’ID2 after receiving a token frame2. This is true since a
sequence of token transmissions from stations that have
nothing to transmit may also cause traffic congestion in
the linking devices.

Concerning the idle time used by the linking devices
when relaying frames, they only insert the
“conventional” idle times, i.e. TID1 and TID2. In order to
avoid the need for the linking devices to decode the
DLL PDU (to know if it is a acknowledged or
unacknowledged request), both “conventional idle times
should be set to the same value (i.e. TID1=TID2=TID).

3.2 System Turnaround Time

In order to evaluate the duration of a transaction, it is
necessary to determine the system turnaround time
associated to that transaction, that is, the time interval
between the end of the request's transmission and the
beginning of the response's reception. To clarify this
definition, consider the network topology depicted in
Fig. 2.

LD

D2

LDI LD

D4

D1 D3

R4R2

R3R1

Figure 3: Example of a hybrid wired/wireless network
topology

Assume that D1 and D3 have the same type of PhL
(PDU format and bit rate) and D2 and D4 have another
type of PhL. Fig. 4 depicts the timing diagram for the
longest (no queuing delays) transaction between I and
R4. Both request and response frames must be relayed
by 3 linking devices.

2 This demands the decoding of the DLL PDU, in order for the master
station to know if it received a token frame.

4

D1

I

R4

trt

tst

tbd

Creq1

Cresp4Creq4

Cresp1

D2

D3

D4

Figure 4: Timing diagram for transaction between I and
R4

In Fig. 4, tbd represents the buffering delay of the linking
devices and is assumed equal in all the linking devices)
and the responder turnaround time (trt) is assumed to be
constant for every station. Clearly, if for a transaction
the responder belongs to the same domain as the
initiator, the system turnaround time - trt – equals the
responder turnaround time. Oppositely, when there is
one or more linking devices between initiator and
responder, the system turnaround time will increase.
This is the case depicted in Fig. 4. Nevertheless, the
timing diagram is simplified, since the request frame
may be delayed by the previous frame (either
unacknowledged request or response), if the duration of
the previous frame is higher than the duration of the
request frame. In this case, the queuing delay in all
linking devices involved in the transaction may be
computed, but introduces a significant amount of
complexity to the computation of the system turnaround
time. Instead, we will assume a pessimistic situation,
i.e., for each master it is considered that the request PhL
PDU is always longer than the previous PhL PDU in the
network (previous response frame or unacknowledged
request frame). This way we are able to easily determine
an upper bound for the system turnaround time of
message transactions, since there is no need to compute
the queuing delay in linking devices.

For the previous scenario (Fig. 4), the worst-case system
reaction time may be evaluated as follows:

() ()
() rtbdrespreq

bdrespreqbdrespreqst

ttCC

tCCtCCt

+⋅+++

+⋅+++⋅++=

2

22

44

3322

In the general case:

() rt

n

i
bdrespireqist ttCCt +⋅++= ∑

=2

2

Where i represents the domains involved in the
transaction and n represents the domain of the
responder. The duration of each PhL PDU depends on
the PhL parameters defined in Table 1, for each domain.

3.3 Computing the duration of transactions

Finally, the duration of a transaction can be easily
evaluated summing its components (refer to Fig. 5 for
the case of an acknowledge transaction). That is, the
duration of a acknowledged request/response transaction
(Cack) is the sum of the duration of both the request and

response frames, plus the system turnaround time and
the inserted idle time (T’ID1). The duration of an
unacknowledged transaction (Cunk) is just the sum of the
duration of the frame plus the inserted idle time (T’ID2).

3.3.1 Duration of an acknowledged transaction
The duration of a request/response transaction (Fig. 5)
can be evaluated as follows:

() () 1
1

111

'21

'

IDrt

n

i
bdrespireqi

IDrespstreqack

tttnCC

tCtCC

++⋅⋅−++=

=+++=

∑
=

Remember that since we opted for the pessimistic
approach (no queuing delays in linking devices), the
request PhL PDU duration is always equal the maximum
PhL PDU duration in the network.

A graphical presentation of the variables involved in the
computation is given in Fig. 5, for a transaction between
I and R3.

D1

I

R3

Creq1
Cresp1

idle

tnr

Cack

t'ID1

D2

D3

Figure 5: Duration of a Transaction

3.3.2 Duration of a unacknowledged transaction
The duration of an unacknowledged transaction does not
depends of the number of linking devices between the
initiator and the responder, since there is no need to wait
for any response/acknowledge to proceed. Such duration
can thus be evaluated as follows:

2' IDrequnk tCC +=

4. The RFieldbus System

The RFieldbus System is being specified in the scope of
the European Union Project IST-1999-11316 RFieldbus
- High Performance Wireless Fieldbus in Industrial
Multimedia-Related Environment [7]. Within this
project, Profibus was chosen as the fieldbus platform.
Essentially, extensions to the current Profibus standard
are being developed in order to provide Profibus with
wireless, mobility and industrial-multimedia
capabilities. In fact, providing these extensions means
fulfilling strong requirements, namely to encompass the
communication between wired (currently available) and
wireless/mobile devices and to support real-time control
traffic and multimedia traffic in the same network.

4.1 RFieldbus network topology

The RFieldbus network topology [8] is exemplified in
Figure 6.

5

S1 M1 S2 S3 S4H1 H2 M2

M4

M5

S7

S5 M3 S6H3

M – Master

S – Slave Wired
Domain 1

Hopping Device

Wireless
Domain 1

Wired
Domain 2

Wireless
Domain 1

Wireless
Station

Figure 6: RFieldbus network topology and components

A domain consists of a set of stations communicating
between them via a shared communication channel. No
registering mechanisms are needed since we assume that
wireless domains operate in different radio channels. It
is also important to note that inter-domain mobility is
supported if in each wireless domain messages are
relayed through a base station (with up-link and down-
link channels instead of direct communication between
the wireless nodes) and mobile stations are able to
perform channel assessment and channel switching.

4.2 Wired and wireless PhL parameters

The wired domains are expected to have a bit rate of 1,5
Mbit/s, and the asynchronous version of Profibus
(RS485). Each PhL PDU consists of a number of
characters – the UART characters, that are composed of
11 bits each (8+3). The wired PhL adds no overhead.
When relaying a Profibus PhL PDU to a wireless
domain, the linking device removes every extra 3 bits
and encapsulates the entire DLL PDU in the data part of
the wireless PDU, adding a specific header. Also, there
is the need to insert a preamble and a start frame
delimiter (SFD) to the wireless PhL PDU, in order to
allow its correct reception. A 2 Mbit/s bit rate is
envisaged for the wireless communications.

Considering that in RFieldbus there is a 10 bytes header
plus a 53 µs preamble and SFD (resulting in a total
overhead of 186 bit times, at 2 Mbit/s) in the wireless
PhL PDU, and referring to Table 1, we get:

Wired domain Wireless domain

kwr=11 bits/char kwl=8 bits/char

lwl+=0 bits lwl+=186 bits

rwl=1,5 Mbit/s rwl=2 Mbit/s

Table 2: Parameter values in the RFieldbus system

Thus, the duration of wired and wireless PhL PDUs can
be computed as:

 s)(934
2

1868
 s)(

3
22

5,1
11

µµ +⋅=+⋅=∧⋅=⋅= L
L

CL
L

C wlwr

Table 3 presents the PhL PDU duration for some DLL
PDU lengths:

PDU Type L (chars) Cwr (µµs) Cwl (µµs)

Short acknowledge 1 7.3 97

Token 3 22 105

Fixed length no data 6 44 117

50 data octets 59 432.7 329

100 data octets 109 799.3 529

150 data octets 159 1166 729

246 data octets 255 1870 1113

Table 3: Frame length and duration

From Table 3, it is clear that short frames have a longer
duration in wireless domains while long frames take
longer to transmit in wired domains.

5. Computing the Duration of a RFieldbus
Transaction

To be able to compute the duration of transactions
within the RFieldbus context, there is an additional set
of network parameters that must be set:

Description Symbol Value

Responder turnaround time trr 100 µs

Buffering delay tbd 25 µs

Idle time after receiving frame
(default value)

TID1 50 bit times

Idle time after transmitting frame
(default value)

TID2 50 bit times

Table 4: Additional network parameters

Throughout the rest of this document, we denote the
number of linking devices that a transaction must cross
as n.

5.1 Idle Time Parameters

To compute the idle time parameters, there is the need to
define the maximum/minimum lengths for Profibus FDL
request/response frames. Therefore, the following
additional set of parameters is defined:

Description Symbol Value

Maximum length of Profibus FDL request max
reqL -

Maximum length of Profibus FDL response max
respL -

Minimum length of Profibus FDL request min
reqL 6 octets

Minimum length of Profibus FDL response min
respL 1 octets

Table 5: Additional Timing Parameters

6

Considering the set of network parameters, and knowing
that the smallest PDU lengths are as defined in and

assuming that maxmaxmax LLL respreq == , the resulting idle time

values are presented in Table 6.

maxL (octets) 59 109 159 255

WLIDt 1' (µs)
174 507,3 840,7 1481

WRIDt 1' (µs)
112,7 112,7 112,7 112,7

WLIDt 2' (µs)
137 303,7 470,3 790,3

WRIDt 2' (µs)
108 108 108 108

Table 6: Idle Time Values

From Table 6 it is clear that, for a wired initiator, the
maximum length of the DLL request and response PDUs
does not have any effect on the evaluated values for the
idle time parameters. The reason is that for the case of
wired initiators, the worst trade-off between the length
of the wired frame and the related wireless frame is for
the case of the smaller frames, and thus the length of the
longest frames does not affect the calculations.

For the case of a wireless initiator, the evaluated idle
time parameters are roughly proportional to the length of
the longest frames, as expected.

5.2 Duration of RFieldbus Transactions

Finally, the duration of RFieldbus transactions can be
easily evaluated, for the specific case of each transaction
path. That is, for each transaction we need to consider
the specific number of linking devices crossed by the
transaction and also the characteristics of each of the
communication mediums. In this subsection, we present
several examples of both acknowledged and
unacknowledged transactions, considering 4 different
DLL request/response PDU maximum lengths.

5.2.1 Duration of acknowledged transactions
Again, it is considered that any request frame is always
longer than the previous frame on the network (previous
response frame or unacknowledged request frame), in
order to avoid the need to compute the queuing delay in
linking devices.

The duration of a request/response transaction can be
computed as follows:

() () 1
1

'21 IDrt

n

i
bdrespireqiack tttnCCC ++⋅⋅−++= ∑

=

Now, three tables supplying values for the duration of a
RFieldbus transaction are presented. These correspond
to maximum DLL PDU lengths of 255, 109 and 59
octets. In each table, we can get the (ceiling) duration of
a transaction depending on both the transaction path
(which wired and wireless domains are between the
initiator and the responder) and the length of the DLL
response PDU. Let us first consider the maximum DLL

PDU length that is allowed in Profibus, i.e., for
octets 255maxmax === respreqreq LLL :

Response length

Transaction
Path

255
octets

159
octets

109
octets

59
octets

1
octet

WR 3953 3249 2882 2516 2090

WR/WL 6229 5141 4574 4008 3350

WR/WL/WR 10019 8227 7294 6317 5278

WR/WL/WR/WL 12295 10119 8986 7853 6538

WL/WL 6083 5315 4915 4515 4051

WL/WR 7597 6509 5943 5376 4719

WL/WR/WL 10630 9158 8392 7625 6736

WL/WR/WL/WR 13663 11487 10354 9221 7906

Table 7: Transaction Duration Values 1 (µµs)

Considering octets 109maxmax === respreqreq LLL :

Response length

Transaction
Path

109
octets

59
octets

1
octet

WR 1812 1445 1020

WR/WL 2920 2353 1696

WR/WL/WR 4568 3635 2552

WR/WL/WR/WL 5676 4543 3228

WL/WL 2774 2374 1910

WL/WR 3314 2748 2090

WL/WR/WL 4422 3656 2766

WL/WR/WL/WR 6071 4938 3623

Table 8: Transaction Duration Values 2 (µµs)

Finally, for octets 59maxmax === respreqreq LLL :

Response
length

Transaction
Path

59
octets

1
octet

WR 1079 653

WR/WL 1787 1129

WR/WL/WR 2702 1619

WR/WL/WR/WL 3410 2095

WL/WL 1640 1176

WL/WR 1848 1190

WL/WR/WL 2556 1666

WL/WR/WL/WR 3471 2156

Table 9: Transaction Duration Values 3 (µµs)

7

5.2.2 Duration of unacknowledged transactions
The duration of an unacknowledged request (SDN) can
be computed as follows:

2' IDrequnk tCC +=

Here, the duration does not depend on the path until the
addressee, but only on where the initiator is located
(wired or wireless domain). Similarly to the
acknowledged request case, we consider three different
maximum lengths of the DLL request/response PDU
(255, 109 and 59 octets) that is.

Therefore, for octets 255maxmax === respreqreq LLL :

SDN length

Master
Type

255
octets

159
octets

109
octets

59
octets

6
octets

WR 1978 1274 908 541 152

WL 1904 1520 1320 1120 908

Table 10: SDN duration values 1 (µµs)

For octets 109maxmax === respreqreq LLL :

SDN length

Master
Type

109
octets

59
octets

6
octets

WR 908 541 152

WL 833 633 421

Table 11: SDN duration values 2 (µµs)

Finally, considering octets 59maxmax === respreqreq LLL :

SDN length

Master
Type

59
octets

6
octets

WR 541 152

WL 466 254

Table 12: SDN duration values 3 (µµs)

As can be seen from the tables, the duration of
unacknowledged requests sent by wired master stations
does not depend on the maximum DLL PDU length in
the network. For instance, the duration of a 109 octet
length DLL PDU sent by a wired master is the same
(dashed cells), when the maximum length DLL PDU is
255 and when it is 109 octets. This is true since the idle
time is computed taking into account the shortest
unacknowledged request frames.

6. Conclusion

In order to guarantee the real-time behaviour of a
distributed system, it is necessary to evaluate the worst-
case message response times. In a token-passing
fieldbus network, the response time of a particular

message is mainly dependent on the medium access
delay and on the duration of the transaction. In a hybrid
wired/wireless fieldbus network working in a broadcast
fashion, the duration of a transaction is potentially
higher than in a single-segment fieldbus network, since
one or more linking devices may exist between the two
communicating peers.

This paper presented a way to compute the duration of
message transactions in hybrid wired/wireless token-
passing fieldbus networks working in a broadcast
fashion. We explained the concepts of inserted idle time
and system turnaround time and how these parameters
can be calculated, since they are components of the
duration of a transaction. Then, we introduced the most
relevant characteristics of a hybrid wired/wireless
system – the RFieldbus system – that is under
development in the scope of the IST programme.
Finally, we defined default RFieldbus parameters such
as physical layer PDU formats and bit rates, in order to
get some numerical figures for the duration of RFieldbus
transactions.

7. References

[1] Tovar, E. and Vasques, F., “Cycle Time Properties
of the Profibus Timed Token Protocol”, in
Computer Communications, Elsevier Science,
22(13), pp. 1206-1216, 1999.

[2] Tovar, E. and Vasques, F., “Real-Time Fieldbus
Communications Using Profibus Networks”, in
IEEE Transactions on Industrial Electronics, Vol.
46, No. 6, pp. 1241-1251, December 1999.

[3] Raja, P., Ruiz, L., Decotignie, J.D., “On the
Necessary Real-Time Conditions for the Producer-
Distributor-Consumer Model”, in Proc. of the 1st

IEEE Workshop on Factory Communication
Systems (WFCS’95), Leysin, Switzerland, 1995.

[4] Tindell, K., Hansson, H., Wellings, A., “Analysing
Real Time Communications: Controller Area
Network (CAN)”, in Proc. of the IEEE Real-Time
Systems Symposium, pp. 259-263, December
1994.

[5] Alves, M., Tovar, E., Vasques, F., “On the
Adaptation of Broadcast Transactions in Token-
Passing Fieldbus Networks with Heterogeneous
Transmission Media”, HURRAY-TR-0120, May
2001.

[6] “General Purpose Field Communication System,
Volume 2” – Profibus, European Norm EN 50170,
1996.

[7] Haehniche, J., Rauchhaupt, L., “Radio
Communication in Automation Systems: the R-
Fieldbus Approach”, in Proceedings of the 2000
IEEE International Workshop on Factory
Communication Systems, pp. 319-326, September
2000.

[8] RFieldbus Deliverable D1.3, “General System
Architecture of the RFieldbus”, Technical Report,
June 2000.

