
Exact Analysis of TDMA with Slot Skipping

Nuno Pereira, Eduardo Tovar and Björn Andersson
IPP Hurray Research Group, Polytechnic Institute of Porto, Portugal

{npereira,emt,bandersson}@dei.isep.ipp.pt

Abstract

Consider a communication medium shared among a

set of computer nodes; these computer nodes issue
messages that are requested to be transmitted and they
must finish their transmission before their respective
deadlines. TDMA/SS is a protocol that solves this
problem; it is a specific type of Time Division Multiple
Access (TDMA) where a computer node is allowed to
skip its time slot and then this time slot can be used by
another computer node. We present an algorithm that
computes exact queuing times for TDMA/SS in
conjunction with Rate-Monotonic (RM) or Earliest-
Deadline-First (EDF).

1. Introduction
Achieving end-to-end real-time guarantees requires

that the communication network supports bounded-
delay delivery of inter-task messages. To achieve this,
one commonly-used strategy for controlling the access
of a shared medium is to assign a time slot to each
node in the network and nodes take turns to access the
medium. This medium access control, named Time
Division Multiple Access (TDMA) is widely exploited
and a wealth of research results is available [1-3].

The static nature of TDMA offers several
advantages such as (i) low run-time overhead, (ii) good
composability in terms of timeliness; (iii) low fault-
detection latency and (iv) the schedulability analysis
for real-time traffic becomes trivial. Unfortunately, the
very same static nature brings reduced flexibility
implying that (i) unused slots are wasted, (ii) it is
difficult to add new computer nodes to the system
without changing the static schedule; and (iii) for
periodic real-time traffic the amount of memory
required for storing the static schedule may be very
large for certain periods, such as prime numbers. In
order to remove and mitigate those drawbacks, we
consider TDMA protocols with slot skipping
(TDMA/SS) as presented in [4]. In this particular class
of TDMA networks, a slot is skipped when it is not
used, hence the next slot can start earlier and, by this,
reclaim time for hard real-time traffic. Such an
approach is already in use in some commercial-off-the-
shelf (COTS) technology [5] and a schedulability

analysis that takes slot skipping into account is also
presented in [4]. Unfortunately, that analysis [4] was
not exact.

In this paper we present an exact analysis of
TDMA/SS assuming that: (i) the message streams on
each node are known; and (ii) each node schedules
messages in their output queue according to one of the
real-time scheduling policies Rate-Monotonic (RM) or
Earliest-Deadline-First (EDF). The approach is to use
results from previous works [4, 6] to find a critical
instant of a message stream (when analyzing RM) or a
message (when analyzing EDF), and simulate
scheduling in order to decide if the system meets all
deadlines. For EDF, this technique is very time-
consuming since critical instants of every message
must be explored. We propose a technique to reduce
the time-complexity. Our new algorithm that analyses
RM has pseudo-polynomial time complexity and our
new algorithm that analyses EDF has exponential time-
complexity. Nonetheless, these algorithms are the first
algorithms that offer exact analysis of TDMA/SS.

The rest of the paper is organized as follows.
Section 2 presents the system model and the operation
of TDMA/SS networks. It also presents conditions for
critical instants and other key observations. These
observations are then used, in Section 3, which
presents the new algorithm for both RM and EDF. Two
numerical examples are also given to illustrate the new
algorithms. Finally, Section 4 gives conclusions.

2. TDMA Networks with Slot
Skipping (TDMA/SS)

2.1. System Model
The network is composed of a set of n nodes,

communicating messages over a shared medium.
Contention between nodes is resolved by a Time
Division Multiple Access (TDMA) control scheme.
The access to the medium is ordered by time, such that
each node is assigned one or more time slots (message
slots), each of length TMS, in a cyclic schedule – the
TDMA cycle. When a node observes its turn to send, it
may transmit up to the number of message slots
assigned to it. At the time a node either uses all the
message slots assigned or has no more messages in its

outgoing queue, it indicates that it has finished
transmitting in the current TDMA cycle by using a
protocol slot of length TPR << TMS.

The network model is defined as follows:

{ }),,,...,,,(21
PRMS

n TTnodenodenodenNetwork = (1)

Each node k (k = 1, ..., n) possesses a set
{S1

k, S2
k, …, Sns

k} of ns message streams. Each node
has associated an mpck > 0 (messages per cycle)
parameter, defining the maximum number of messages
the node is permitted to transmit in a TDMA cycle. The
algorithm will also maintain a queue msg_queuek
holding pending (outgoing) messages that belong to the
set of message streams associated with each node k. A
node in our network model is defined as follows:

{ }
),_

,_,,...,,,(21

kk

kk
ns

kkkk

mpcpolicysched

queuemsgSSSnsnode k= (2)

where sched_policyk is the policy adopted for
scheduling messages from msg_queuek. This can be
one of two values: RM for Rate Monotonic or EDF for
Earliest Deadline First.

Each message stream is characterized by the
periodicity at which a message related to the respective
stream is queued to be transmitted on the network, and
the corresponding relative deadline (Ti

k and Di
k,

respectively). It is assumed that Di
k ≤ Ti

k and all
messages in the network have length TMS. The
algorithm will maintain act_timei

k, holding the last time
instant at which a message related to Si

k was put into
the msg_queuek. Hence, a stream is defined as follows:

)_,,(k
i

k
i

k
i

k
i timeactDTS = (3)

Every message may need to be queued before it is
transmitted. Let qi

k denote the maximum queuing time
of messages belonging to Si

k. Let ri
k denote the

maximum response time of all messages belonging to
Si

k, ri
k = qi

k + TMS. If ri
k ≤ Di

k then we say that Si
k meets

its deadline. We are interested in finding a bound on
the queuing time of streams, and consequently
determining whether all messages meet their deadlines.

In the description of the TDMA/SS protocol and
related time analysis, some shorthand notations are
useful. The previous and next nodes are denoted as
follows:

⎩
⎨
⎧

=
−≤≤+

=
⎩
⎨
⎧

≤≤−
=

=
 if ,1
 11 if1,

)(
2 if,1

 1 if ,
)(

nk
nkk

knext
nkk

kn
kprev

And in the analysis it is useful to know the TTDMA,

defined as follows:

PRMS

n

l

l
TDMA TnTmpcT ×+×⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=1

If we are analysing a message stream Si
k and it turns

out that nsk ≤ mpck then the analysis becomes trivial.
For this reason, when we analyse Si

k we will assume
that nsk ≥ mpck +1.

2.2. Network Example and Illustration of Operation
We will now describe the operation of the network

protocol being used. All nodes maintain a variable −
address_counter − that keeps track of the current
node that has the right to transmit. The
address_counter has the same value on all nodes,
so in the discussion we treat it as one variable. When
address_counter makes the transition to k, then
node k dequeues mpck messages from its output queue,
transmits those mpck messages, transmits a protocol
slot, and address_counter becomes the address
of the next node in the network. If the output queue
contains 0 ≤ x < mpck messages then only those 0 ≤ x
messages are transmitted (we say that node k skips
mpck - x slots), then a protocol slot is transmitted (this
takes TPR time units), and then the
address_counter is modified as before.

When a node does not transmit, it listens to the
network to update the address_counter to be
consistent with the other nodes. In order for this to be
possible, we assume that all nodes hear the same state
of the network.

As an instantiation of (1), (2) and (3) concerning the
previously described network and message models,
consider the network with 3 nodes given by Equations
4 and 5 in Figure 1.

Consider that the arrival pattern of messages to the
output queues is as illustrated in Figure 2a. For this
scenario, the timeline for message transmissions and
address counter evolution in the network is as
illustrated in Figure 2b.

The events at time 0 require further explanation. We
are assuming that:

1. a message from S3
1 arrives marginally before

time 0;

)5/1,1},,,{,3(321 nodenodenodenetwork = (4)

{ }

{ } { }

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎩

⎪
⎨

⎧ =

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎩

⎪
⎨

⎧ =

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎩

⎪
⎨

⎧

=

=

=

=

)0,7,7(

)1,,,,1(

)0,2.5,2.5(

)1,,,,1(

)0,4.13,4.13(

)0,13,13(

)0,4,4(

)1,,,,,,3(

3
1

3
1

3

2
1

2
1

2

1
3

1
2

1
1

1
3

1
2

1
1

1

S

RMSnode

S

RMSnode

S

S

S

RMSSSnode

φφ

φ

(5)

Figure 1. Example of a network scenario.

2. the address_counter changes from 3 to 1
at time 0;

3. and messages from both S1
1 and S2

1 arrive at
time 0.

We also assume that a message is only able to be
transmitted by node k, if and only if it has been queued
before address_counter changes to the value k.
As a result, and for the exemplified scenario, neither
the message from S1

1 nor the one from S2
1 are

transmitted at time 0. Instead, a message from S3
1,

which has lower priority, is transmitted at time 0, since
this was the only message ready in the output queue of
node 1 at the time address_counter changes to 1.

Looking now at the scheduling at time t > 0,
observe that every time a message is transmitted it
takes 1 time unit, and after there is a protocol slot of
1/5 time units. However, in some of the illustrated
TDMA cycles, only a protocol slot is transmitted. This
occurs because, at the time the node was granted the
right to transmit, its output queue was empty (for
example, the output queue of node 2 is empty at time
instant 4.8).

Consider the message of S2
1 that was placed in the

output queue at time 0. This message is queued during
[0,10.4) and hence q2

1 is 10.4. The message of S2
1 is

blocked during the time interval [0,3.6) because some
messages, a lower priority message S3

1 and other
messages S1

2 and S1
3, cause S2

1 to be queued although
it has the higher priority. The message of S2

1 suffers
from interference during [3.6,10.4).

In order to see why the schedulability analysis of
this system is non-trivial, look at time instant 10. At
this time instant, a message from S2

1 (queued at time 0)
is still in the output queue, and a message from another
message stream, S1

2, arrives. However, this message
from S1

2 does not have any effect on the queuing time
of the message from S2

1 that initiated transmission at
time instant 10.4.

2.3. Worst-Case Response Times
Recall that our goal is to decide if a given set of

message streams meets deadlines on a given network
scheduled by TDMA/SS when each computer node
schedules messages locally using RM or EDF. But
before dwelling into that analysis, let us discuss
analysis of scheduling tasks using RM and EDF on a
single processor. For RM, such analysis is commonly
performed using the notion of a critical instant. A
critical instant of a task in RM is an instant such that
the response time of the task is maximized if it arrives
at that instant. Hence, the response time of a task
scheduled by RM on a single processor is found simply
by analyzing the response time of the task when it
arrives at a critical instant (note that later results for

non-preemptive scheduling as found in [7] and [8] do
not apply in the case of TDMS/SS networks [6]).

For EDF, the notion of critical instant is usually not
used. However, observe that EDF is a job-static
priority scheduling algorithm, meaning that although
the relative priority order among a set of tasks may
change with time, the relative priority order of jobs do
not change. For this reason, every job scheduled by
EDF can be analyzed in a similar way as a task is
analyzed by RM.

2.3.1. Worst-Case Response Times with RM

To characterize the critical instant under RM
scheduled output queues in TDMA/SS, it is tempting to
reuse the condition for the critical instant as used in
RM on a single processor; just that blocking needs to
be considered. One might believe that the critical
instant of a message of message stream Si

k occurs when
it arrives simultaneously with all other message
streams, except one message on the same node as Si

k
arrives marginally before and this message is
transmitted and causes blocking. However, consider
the example shown in Figure 2 and analyze the
queuing delay of the message from S2

1 that arrived at
time 0. It can be seen that a message on node 3 (in this
case message from message stream S1

3) can arrive at
time -TPR and still cause as much interference on S2

1
 as

if S1
3 would have arrived at time 0. This is due to the

way address_counter is incremented and it has
no parallel in RM on a single processor. It was in fact
shown [6] that the condition for the critical instant of
an arbitrary message stream Si

k is at time t under the
following conditions:

1. Si
k releases a message at time t;

 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time
(T units)

...

S1
1

S1
2

S2
1

S3

Addr. Coun

2

S1
3

MS

...

Time
(T unMS

2

TPR TMS

a) Arrival pattern of messages to the three outgoing queues

b) Message transfers in the network and address counter evolution

Queuing Time for the message of S queued at time 0 (q)

Figure 2. Example message arrival patterns
and corresponding network schedules.

2. infinitesimally before time t, a message stream
(which is not Si

k) released a message and started
to transmit this message;

3. all other message streams in node k are
activated synchronously, at time t;

4. all other message streams in each node y
(∀y : 1 ≤ y≤ nsk y≠k) are synchronously
activated Φ y→k time units before t.

It is easy to show that this Φy→k time quantity before
the start of the busy period in node k corresponds to
consider that node’s y busy period started in the
previous TDMA cycle. As node addresses correspond
to the cyclic sequence of assigned slots, this quantity
may be given as follows [4]:

⎩
⎨
⎧

≠Φ+
=

=Φ →
→

kyifT
kyif

kynext
PR

ky
)(

0
(4)(5)

(6)

Not only are these the conditions that maximize the
queuing time from message requests under RM
scheduled output queues, but also, conditions 3) and 4)
maximize the amount of interference caused by higher
priority streams for any scheduling policy applied to
the output queues.

2.3.2. Worst-Case Response Times with EDF

In the case of EDF scheduled output queues, the same
general reasoning applies. However, Condition 3) does
not necessarily apply because, locally to each node, the
critical instant does not always happen when all messages
are activated synchronously. Assuming that we are
interested in finding the critical instant for a Si

k, the
difference is that all messages in node k are activated
synchronously, with the exception of Si

k. The maximum
queuing time of messages from Si

k is found when the
message stream is activated at a time a, within the length
Lk of the busy period. (Observe that we compute Lk for
every node.)

Given this, under EDF, Condition 2) is also changed,
because one must account for a possible blocking after
the activation of the message stream at time a. Thus, we
must consider that, at time a, node k just started to
transmit a last pending message. However, Equation 6
still holds. Under EDF, Condition 4) is all the same valid.

To find the queuing time for Si
k would be necessary to

analyze all schedule patterns resulting from the different
activation times a ∈ [0, Lk) of Si

k, and verify which one
that results in the highest queuing time. Clearly, this
would be computationally too expensive. We know
however, that not all of these schedules need to be
explored in order to find the maximum queuing time (see
the idea in [9]). Specifically, only the set of a values, for
which a + Di coincides with at least the absolute deadline
of a message from another stream. Then, for a message
stream Si

k, the set of values Ai
k is given as follows:

{ } [)U
kns

j

k
ijj

k
i LcDDTcA

1

,00:
=

∩≥−+×= (7)

We can now find the maximum queuing time for a
Si

k by analysing the schedule patterns resulting from
the different activation times a ∈ {A}, given by:

{ }aaqQ k
i

k
i −=)(max (8)

where qi
k(a) is the time from the beginning of the busy

period until Si
k arrives.

Now, we are left with the problem of finding the
length Lk of the busy period. One simple option is to
consider that Lk = lcm (∀Ti

k on nodek). This however,
for some sets of streams (for example, a set of streams
with periods that are prime numbers) would be very
long, resulting in a great amount of activation times a
to be tested.

Another alternative to find Lk is trying to iteratively
compute the size of the busy period. The iteration starts
with the minimum amount of time necessary to
transmit one instance of each message stream in node
k. The following iterations will account for the time
spent to transmit messages that arrived before time t,
given by Wk(t):

⎪
⎩

⎪
⎨

⎧

=

×⎥
⎦

⎥
⎢
⎣

⎢
=

+

)(
)()1(

)0(

mm Kkk

TDMAk

k
k

LWL

T
mpc
nsL

(9)

To compute Wk(t), we may reason that ⎡t / Ti
k ⎤ is

the number of messages from each stream i in node k
that arrived to the output queue until the given time t.
We can then reason that to transmit x messages, a node
k takes ⎣ x / mpck ⎦ TDMA cycles, and it also needs to
wait for x mod mpck message slots. Therefore:

MS
k

NonS
k

i

TDMAk
NonS

k
ik

Tmpc
T
t

T
mpc

T
t

tW

kk
i

kk
i

×
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡

+×

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢
⎥
⎥

⎤
⎢
⎢

⎡

=

∑

∑

∀

∀

mod

)(
(10)

While computing Lk by Equation 10 and 11 will
give in much more accurate results, Equation 11 does
not account for skipped slots. Thus, for a set of streams
that are in fact schedulable by the system, Equation 10
may never converge.

It would be feasible to exploit the analysis of
TDMA/SS networks in [10] to compute the length of
the busy period. Nonetheless, to find the length Lk of
the busy period, we will also exploit the idea of using
an algorithm that imitates TDMA/SS networks over
time. The benefits of doing so are twofold. First, the

algorithm to determine the queuing times is very
similar to the one for finding the length of the busy
period. Second, by using the algorithm we avoid some
of the assumptions introduced by the analysis in [10],
thus this will yield more tight results.

3. Exact algorithm
This section will describe the algorithm to

determine the length Lk of the busy period, and the
queuing time for a given stream for both RM and EDF
scheduled output queues.

The length Lk of the busy period is found by
developing the timing behavior of the network,
departing from the time instant that maximizes the
amount of interference caused by higher priority
streams (see Section 2.3.1).

The queuing time is found similarly by developing
the timing behavior of the network, departing from an
initial state such that the maximum queuing time from
of the given stream is found. For this initial state, it
employs the critical instant definition as described in
previous sections. Thus, the queuing time resulting
from the time evolution of the protocol departing from
this instant, found within the length Lk of the busy
period will be the maximum queuing time.

3.1. Overview
An algorithm to develop the timing behavior of the

network is sketched in Algorithm 1. This
straightforward algorithm introduces the main steps
necessary to do this. We start by setting up the initial
state of the network. Then we establish, for now, that
the node starting to access the network is node 1, and

Algorithm 1. Develop the timing behaviour of the network departing from a defined initial state
1 begin
2 Setup initial state of the network;
3 time ← 0;
4 address_counter ← 1;
5 loop
6 Put messages from streams activated until current time in the respective output queue;
7 Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue;
8 Increase time according to message queue state and medium access rules;
9 address_counter ← next(k);
10 until time ≥ MAX_TIME;
11 end

Algorithm 2. Find the length Lk of the busy period
1 input
2 k – the index of the node;
3 begin
4 Setup initial state of the network;
5 time ← 0;
6 address_counter ← next(k);
7 Lk← 0;
8 loop
9 Put messages from streams activated until current time in the respective output queue;
10 if address_counter = k and the output queue of node k is empty then
11 Lk ← time;
12 else
13 Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue;
14 Increase time according to message queue state and medium access rules;
15 address_counter ← next(k);
16 end if
17 until Lk > 0 or time ≥ lcm (∀Tik on nodek) ;
18 if Lk > 0 then
19 return Lk;
20 else
21 return lcm (∀Tik on nodek) ;
22 end if
23 end

Algorithm 3. Compute the queuing time of Sik
1 input
2 k – the node index where the stream for which we will compute the queuing time;
3 i – the index of the stream for which we will compute the queuing time;
4 begin
5 max_queuing_time ← FAILURE;
6 Compute the set of activation times Aik;
7 for each activation_time ∈ Aik
8 Setup initial state of the network;
9 Set activation time of Sik to activation_time
10 time ← 0;
11 address_counter ← k;
12 loop
13 if (Sik is activated in this cycle) then
14 Compute blocking time Bik;
15 time ← time + Bik;
16 address_counter ← next(k);
17 end if
18 Put messages from streams activated until current time in the respective output queue;
19 Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue;
20 Increase time according to message queue state and medium access rules;
21 address_counter ← next(k);
22 until current_time > deadline of Sik or a message from Sik is removed from node k’s outgoing queue
23 if (current_time – activation_time > max_queuing_time or max_queuing_time = FAILURE) then
24 max_queuing_time ← current_time – activation_time;
25 end if
26 end for
27 return max_queuing_time;
28 end

enter a loop where the simulated time is developed
according to the medium access rules. At each step of
the loop, we will check for messages that where
activated until the current time, delivering instances of
these message streams to the respective node’s output
queue and maintain the state of the different output
queues. By checking the current state of the queues, we
decide how to make the time evolve.

In this case, Algorithm 1 will develop the timing
behavior of the network for a pre-defined amount of
time (defined by MAX_TIME).

Algorithm 1 conveys the main idea we will employ.
In the following sections we present the same basic
structure of the algorithm, with the necessary changes
to find the length of the busy period and the queuing
time for a given stream.

3.2. Algorithm to Find the Length of the
Busy Period

To find the length Lk of the busy period we will follow the
general structure of Algorithm 1. In this case, we have a
different stopping condition. Recalling the definition of busy
period: for the most demanding arrival pattern, the length of
the busy period will be from t = 0 up to the first idle time. So
we merely have to develop the timing behavior of the
network, until we find a turn of node k where its message
queue is empty, as shown by Algorithm 2.

To setup the initial state of the network, we follow
Conditions 2) and 3), which maximize the amount of
interference caused by higher priority streams. Looking at
line 17 from Algorithm 2, we can see that the loop will run
until a value for Lk is found or, to protect from cases where
there is no idle time, the loop stops when the simulated time
is more than the least common multiple (lcm) of the periods
from all streams in node k; Algorithm 2, line 17.

3.3. Algorithm to Find the Maximum
Queuing Time

To determine the maximum queuing time of a
stream we can adopt a similar approach. However, for
the case of EDF scheduled output queues, we must
develop the timing behavior of the network for each of
the activation times that might result in the worst
queuing time. To do this, we simply determine the set
of activation times Ak to test and add a loop that will
execute for each of these activation times (Algorithm 3,
lines 7 to 25). In line 22 of Algorithm 3 we check if the
obtained queuing time is the maximum so far, so that,
when we have tried all the activation times in set Ak,
we will have the maximum queuing time.

Algorithm 3 is valid for both RM and EDF
scheduled output queues. The necessary distinctions
that need to be made are included in this algorithm and
details in the next section.

In Algorithm 3, the stopping condition for the
development of the timing behavior (line 22) was also
modified. Now this loop is run until a message from
the stream for which we will compute the queuing time
is sent, or until its deadline is exceeded.

Another difference introduced was that the insertion
of blocking time. The blocking time must be
introduced in the time instant preceding the activation
of the stream for which we will compute the queuing
time. The blocking time is computed by Equation 6,
where the function lpk() is according to the
scheduling method applied in the output queue of node
k. The blocking time is inserted by increasing the
simulated time and changing address_counter to
the next node.

3.4. Detailing the Algorithms
This section will present further details for the most

important components of the algorithms presented
previously.

Compute the set of activation times Ai
k – The first

component we will detail here is the step to compute
the set of activation times Ai

k. This set will depend on
the scheduling employed to the output queues. If the
scheduling is RM, the activation times set will be {0}.
In the case of EDF scheduling the set of activation time
will be defined according to Equation 9.

Setup initial state of the network – To setup the
initial state of the network, we employ the critical
instant as defined previously. Remember that our
definition of Φ in Equation 6 returns the amount of
time that messages must be synchronously released in
each node.

Note that, in algorithm 3, the activation time of the
stream for which we will compute the queuing time is
set again for each activation time.

Put messages from streams activated until
current time in the respective output queue – This is
done by checking all streams in the network for which
the activation time has elapsed. Streams in this
condition will generate a message to be put in the

Algorithm 4. Increase time according to message
queue state and medium access rules
1 input
2 address_counter – the node index of the node

currently holding the right to access the medium
3 k – the node index where the stream which we will

compute the queuing time
4 i – the index of the stream which we will

compute the queuing time
5 begin
6 for each message from nodeaddress_counter message queue

 up to mpcaddress_counter
7 Remove highest priority message M from

 current_node’s outgoing queue;
8 if M is not a message from Sik then
9 time ← time + TMS;
10 end if
11 end for
12 time ← time + TPR;
13 end

respective node’s output queue. Additionally, the
activation time of the stream is set to its next period.

Increase time according to message queue state
and medium access rules – To develop time, the state
of the output queue from the node currently holding the
right to access the medium is verified. For each
message in the output queue, up to mpcaddress_counter, the
time is increased by TPR. At the end of the node’s turn,
the time is increased by TMS. Algorithm 4 illustrates
this procedure.

3.5. Example 1
Let us put forward a demonstration scenario that

will enable us to better grasp the algorithm behavior.
Equations 12 and 13 in Figure 3 describe this
demonstration scenario.

Figure 4 presents the network schedule for node2. It
is also possible to observe the evolution of the node’s
queue and the queuing time for S2

2.
This network schedule depicts exactly the

algorithm’s behavior. When the stream given as input
for the algorithm is S2

2, the algorithm will develop time
by simulating the network schedule and produce the

exact time evolution as depicted in Figure 5, when the
activation time to be tested for S2

2 is 0, which is the

{ }()51, 1, ,,,,,5 54321 nodenodenodenodenodenetwork = (12)

{ }()
()
()
()
()

{ }()
()
()
()

{ }()
()
()

{ }()
()
()
()
()
()

{ }()
()
()

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

=

=

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

=

=

=

=

=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

=

=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=

=

=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=

=

=

=

0,56,56

0,33,33

1,,,,,2

0,150,150

0,100,100

0,30,30

0,20,20

0,15,15

2,,,,,,,,5

 0,50,50

0,9,9

1,,,,,2

0,140,140

0,35,35

0,12,12

1,,,,,,3

0,100,100

0,25,25

0,16,16

0,8,8

2,,,,,,,4

5
2

5
1

5
2

5
1

5

4
5

4
4

4
3

4
2

4
1

4
3

4
3

4
2

4
1

4
1

4

3
2

3
1

3
2

3
1

3

2
3

2
2

2
1

2
2

2
2

2
1

2

1
4

1
3

1
2

1
1

1
3

1
3

1
2

1
1

1

S

S

RMSSnode

S

S

S

S

S

RMSSSSSnode

S

S

RMSSnode

S

S

S

RMSSSnode

S

S

S

S

RMSSSSnode

φφ

φφφ

(13)

Figure 3. Example of a network scenario.

q =23.002
2

Figure 4. Network schedule for demonstration scenario.

Table 1. Queuing times for
demonstration scenario (1).

Node Stream Q
(time units)

q
(time units)

S1
1 8 8

S2
1 16 9

S3
1 16 16 node1

S4
1 45 40

S1
2 8 8

S2
2 24 23 node2

S3
2 57 35

S1
3 8 8

node3
S2

3 45 32
S1

4 8 8
S2

4 16 9
S3

4 17 16
S4

4 24 16
node4

S5
4 29 27

S1
5 8 8

node5
S2

5 15 15

activation time leading to the maximum queuing delay.
The algorithm will perform from time 0 to time 30.

At time 30, the algorithm will verify that the S2
2 given

as input was scheduled to be sent, and therefore it will
exit returning the current time value.

Using an implementation of the algorithm, we can
obtain the resulting queuing times. Table 1 presents the
queuing times for all messages in this scenario
resulting from the algorithm presented (column labeled
q). The column labeled Q contains the calculated
queuing times using the analysis in [4]. We can see that
our algorithm presents tighter results than the previous
analysis.

3.6. Example 2
We will now compare the results given by the

algorithm when RM or EDF scheduling policies are
used. For this, we will the example network scenario
given by Equations 14 and 15 in Figure 5.

The resulting queuing delays when using RM or
EDF scheduling policies are given in Table 2.

We can see that using RM scheduling policy for the
output queues of the nodes results that message stream
S3

1 loses its deadline. However, when using EDF, all
deadlines are met.

4. Summary and Conclusions
We have presented an algorithm that computes

exact queuing times for TDMA/SS in conjunction with

Rate-Monotonic (RM) or Earliest-Deadline-First
(EDF).

The algorithm was based on simulation by starting
at the critical instant (for RM) or for many instants (for
EDF). We left open the questions (i) whether it is
possible to formulate exact schedulability conditions as
a set of inequalities and (ii) how to perform
approximate schedulability [11] analysis for TDMA/SS
and in that way achieve a polynomial time-complexity.

5. Acknowledgement
This work was partially funded by the Portuguese

Science and Technology Foundation (FCT) and the
ARTIST2 Network of Excellence on Embedded Systems
Design.

6. References
[1] L. Dong, R. Melhem, and D. Mossé, "Scheduling Algorithms for

Dynamic Message Streams with Distance Constraints in TDMA
protocol", In proc. of the 12th Euromicro Conference on Real-
Time Systems (ECRTS'00), pp. 239-246, 2000.

[2] C.-C. Han, K.-J. Lin, and C.-J. Hou, "Distance-constrained
scheduling and its applications to real-time systems", IEEE
Transactions on Computers, vol. 45, issue 7, pp. 814 -826, 1996.

[3] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-tolerant
real-time systems", IEEE Computer, vol. 27, issue 1, pp. 14-24,
1994.

[4] B. Andersson, E. Tovar, and N. Pereira, "Analysing TDMA with
Slot Skipping", In proc. of the 26th IEEE Real-time Systems
Symposium (RTSS'05), Miami, FL, USA, 2005.

[5] IPUO, "The P-NET Standard": International P-NET User
Organisation, 1994.

[6] E. Tovar, F. Vasques, and A. Burns, "Communication Response
Time in P-NET Networks: Worst-Case Analysis Considering the
Actual Token Utilisation", Real-Time Systems Journal, Kluwer
Academic Publishers, vol. 22, issue 3, pp. 229-249, 2002.

[7] L. George, N. Rivierre, and M. Spuri, "Preemptive and Non-
Preemptive Real-Time UniProcessor Scheduling", INRIA,
Technical Report RR-2966, September 1996, online at:
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-2966.pdf.

[8] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, "Controller
Area Network (CAN) schedulability analysis: Refuted, revisited
and revised", Real-Time Syst., vol. 35, issue 3, pp. 239-272,
2007.

[9] S. K. Baruah, R. Howell, and L. Rosier, "Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor", Real-Time Systems, issue 2,
pp. 301-324, 1990.

[10] B. Andersson, E. Tovar, and N. Pereira, "Analysing TDMA with
Slot Skipping", Polytechnic Institute of Porto, Porto, Technical
Report HURRAY-TR-050501, May 2005, online at:
www.hurray.isep.ipp.pt.

[11] S. Chakraborty, S. Künzli, and L. Thiele, "Approximate
Schedulability Analysis", In proc. of the IEEE Real-time
Systems Symposium, Austin, Texas., 2002.

)5/1,1},,,{,3(321 nodenodenodenetwork = (14)

{ } { }

{ }

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎩

⎪
⎨

⎧ =

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎩

⎪
⎨

⎧ =

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎩

⎪
⎨

⎧

=

=

=

=

)0,7,7(

)1,,,,1(

)0,2.5,2.5(

)1,,,,1(

)0,4.13,4.13(

)0,13,13(
)0,5,5(

)1,,,,,,3(

3
1

3
1

3

2
1

2
1

2

1
3

1
2

1
1

1
3

1
2

1
1

1

S

RMSnode

S

RMSnode

S

S
S

RMSSSnode

φ

φφ

(15)

Figure 5. Example of a network scenario (2).

Table 2. Queuing times for
demonstration scenario (2).

Node Stream Deadline
(time units)

q using
RM

(time units)

q using
EDF

(time units)

S1
1 5 3.6 3.6

S2
1 13 10.4 5.2 node1

S3
1 13.4 18.6 7.6

node2 S1
2 5.2 2.4 2.4

node3 S1
3 7 2.4 2.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX3:2002
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

