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Abstract 

 
Consider a communication medium shared among a 

set of computer nodes; these computer nodes issue 
messages that are requested to be transmitted and they 
must finish their transmission before their respective 
deadlines. TDMA/SS is a protocol that solves this 
problem; it is a specific type of Time Division Multiple 
Access (TDMA) where a computer node is allowed to 
skip its time slot and then this time slot can be used by 
another computer node. We present an algorithm that 
computes exact queuing times for TDMA/SS in 
conjunction with Rate-Monotonic (RM) or Earliest-
Deadline-First (EDF).  

1. Introduction 
Achieving end-to-end real-time guarantees requires 

that the communication network supports bounded-
delay delivery of inter-task messages. To achieve this, 
one commonly-used strategy for controlling the access 
of a shared medium is to assign a time slot to each 
node in the network and nodes take turns to access the 
medium. This medium access control, named Time 
Division Multiple Access (TDMA) is widely exploited 
and a wealth of research results is available [1-3].  

The static nature of TDMA offers several 
advantages such as (i) low run-time overhead, (ii) good 
composability in terms of timeliness; (iii) low fault-
detection latency and (iv) the schedulability analysis 
for real-time traffic becomes trivial. Unfortunately, the 
very same static nature brings reduced flexibility 
implying that (i) unused slots are wasted, (ii) it is 
difficult to add new computer nodes to the system 
without changing the static schedule; and (iii) for 
periodic real-time traffic the amount of memory 
required for storing the static schedule may be very 
large for certain periods, such as prime numbers. In 
order to remove and mitigate those drawbacks, we 
consider TDMA protocols with slot skipping 
(TDMA/SS) as presented in [4]. In this particular class 
of TDMA networks, a slot is skipped when it is not 
used, hence the next slot can start earlier and, by this, 
reclaim time for hard real-time traffic. Such an 
approach is already in use in some commercial-off-the-
shelf (COTS) technology [5] and a schedulability 

analysis that takes slot skipping into account is also 
presented in [4]. Unfortunately, that analysis [4] was 
not exact. 

In this paper we present an exact analysis of 
TDMA/SS assuming that: (i) the message streams on 
each node are known; and (ii) each node schedules 
messages in their output queue according to one of the 
real-time scheduling policies Rate-Monotonic (RM) or 
Earliest-Deadline-First (EDF). The approach is to use 
results from previous works [4, 6] to find a critical 
instant of a message stream (when analyzing RM) or a 
message (when analyzing EDF), and simulate 
scheduling in order to decide if the system meets all 
deadlines. For EDF, this technique is very time-
consuming since critical instants of every message 
must be explored. We propose a technique to reduce 
the time-complexity. Our new algorithm that analyses 
RM has pseudo-polynomial time complexity and our 
new algorithm that analyses EDF has exponential time-
complexity. Nonetheless, these algorithms are the first 
algorithms that offer exact analysis of TDMA/SS. 

The rest of the paper is organized as follows. 
Section 2 presents the system model and the operation 
of TDMA/SS networks. It also presents conditions for 
critical instants and other key observations. These 
observations are then used, in Section 3, which 
presents the new algorithm for both RM and EDF. Two 
numerical examples are also given to illustrate the new 
algorithms. Finally, Section 4 gives conclusions. 

2. TDMA Networks with Slot 
Skipping (TDMA/SS) 

2.1. System Model 
The network is composed of a set of n nodes, 

communicating messages over a shared medium. 
Contention between nodes is resolved by a Time 
Division Multiple Access (TDMA) control scheme. 
The access to the medium is ordered by time, such that 
each node is assigned one or more time slots (message 
slots), each of length TMS, in a cyclic schedule – the 
TDMA cycle. When a node observes its turn to send, it 
may transmit up to the number of message slots 
assigned to it. At the time a node either uses all the 
message slots assigned or has no more messages in its 



outgoing queue, it indicates that it has finished 
transmitting in the current TDMA cycle by using a 
protocol slot of length TPR << TMS.  

The network model is defined as follows: 
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Each node k (k = 1, ..., n) possesses a set  
{S1

k, S2
k, …, Sns

k} of ns message streams. Each node 
has associated an mpck > 0 (messages per cycle) 
parameter, defining the maximum number of messages 
the node is permitted to transmit in a TDMA cycle. The 
algorithm will also maintain a queue msg_queuek 
holding pending (outgoing) messages that belong to the 
set of message streams associated with each node k. A 
node in our network model is defined as follows: 
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where sched_policyk is the policy adopted for 
scheduling messages from msg_queuek. This can be 
one of two values: RM for Rate Monotonic or EDF for 
Earliest Deadline First. 

Each message stream is characterized by the 
periodicity at which a message related to the respective 
stream is queued to be transmitted on the network, and 
the corresponding relative deadline (Ti

k and Di
k, 

respectively). It is assumed that Di
k ≤ Ti

k and all 
messages in the network have length TMS. The 
algorithm will maintain act_timei

k, holding the last time 
instant at which a message related to Si

k was put into 
the msg_queuek. Hence, a stream is defined as follows: 
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Every message may need to be queued before it is 
transmitted. Let qi

k denote the maximum queuing time 
of messages belonging to Si

k. Let ri
k denote the 

maximum response time of all messages belonging to 
Si

k, ri
k = qi

k + TMS. If ri
k ≤ Di

k  then we say that Si
k meets 

its deadline. We are interested in finding a bound on 
the queuing time of streams, and consequently 
determining whether all messages meet their deadlines.  

In the description of the TDMA/SS protocol and 
related time analysis, some shorthand notations are 
useful. The previous and next nodes are denoted as 
follows: 
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And in the analysis it is useful to know the TTDMA, 

defined as follows: 
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If we are analysing a message stream Si
k and it turns 

out that nsk ≤ mpck then the analysis becomes trivial. 
For this reason, when we analyse Si

k we will assume 
that nsk ≥ mpck +1. 

2.2. Network Example and Illustration of Operation 
We will now describe the operation of the network 

protocol being used. All nodes maintain a variable − 
address_counter − that keeps track of the current 
node that has the right to transmit. The 
address_counter has the same value on all nodes, 
so in the discussion we treat it as one variable. When 
address_counter makes the transition to k, then 
node k dequeues mpck messages from its output queue, 
transmits those mpck messages, transmits a protocol 
slot, and address_counter becomes the address 
of the next node in the network. If the output queue 
contains 0 ≤ x < mpck messages then only those 0 ≤ x 
messages are transmitted (we say that node k skips 
mpck - x slots), then a protocol slot is transmitted (this 
takes TPR time units), and then the 
address_counter is modified as before. 

When a node does not transmit, it listens to the 
network to update the address_counter to be 
consistent with the other nodes. In order for this to be 
possible, we assume that all nodes hear the same state 
of the network. 

As an instantiation of (1), (2) and (3) concerning the 
previously described network and message models, 
consider the network with 3 nodes given by Equations 
4 and 5 in Figure 1. 

Consider that the arrival pattern of messages to the 
output queues is as illustrated in Figure 2a. For this 
scenario, the timeline for message transmissions and 
address counter evolution in the network is as 
illustrated in Figure 2b.  

The events at time 0 require further explanation. We 
are assuming that: 

1. a message from S3
1 arrives marginally before 

time 0;  
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Figure 1. Example of a network scenario. 



2. the address_counter changes from 3 to 1 
at time 0; 

3. and messages from both S1
1 and S2

1 arrive at 
time 0.  

We also assume that a message is only able to be 
transmitted by node k, if and only if it has been queued 
before address_counter changes to the value k. 
As a result, and for the exemplified scenario, neither 
the message from S1

1 nor the one from S2
1 are 

transmitted at time 0. Instead, a message from S3
1, 

which has lower priority, is transmitted at time 0, since 
this was the only message ready in the output queue of 
node 1 at the time address_counter changes to 1. 

Looking now at the scheduling at time t > 0, 
observe that every time a message is transmitted it 
takes 1 time unit, and after there is a protocol slot of 
1/5 time units. However, in some of the illustrated 
TDMA cycles, only a protocol slot is transmitted. This 
occurs because, at the time the node was granted the 
right to transmit, its output queue was empty (for 
example, the output queue of node 2 is empty at time 
instant 4.8).  

Consider the message of S2
1 that was placed in the 

output queue at time 0. This message is queued during 
[0,10.4) and hence q2

1 is 10.4. The message of S2
1 is 

blocked during the time interval [0,3.6) because some 
messages, a lower priority message S3

1 and other 
messages S1

2 and S1
3, cause S2

1 to be queued although 
it has the higher priority. The message of S2

1 suffers 
from interference during [3.6,10.4).  

In order to see why the schedulability analysis of 
this system is non-trivial, look at time instant 10. At 
this time instant, a message from S2

1 (queued at time 0) 
is still in the output queue, and a message from another 
message stream, S1

2, arrives. However, this message 
from S1

2 does not have any effect on the queuing time 
of the message from S2

1 that initiated transmission at 
time instant 10.4.  

2.3. Worst-Case Response Times 
Recall that our goal is to decide if a given set of 

message streams meets deadlines on a given network 
scheduled by TDMA/SS when each computer node 
schedules messages locally using RM or EDF. But 
before dwelling into that analysis, let us discuss 
analysis of scheduling tasks using RM and EDF on a 
single processor. For RM, such analysis is commonly 
performed using the notion of a critical instant. A 
critical instant of a task in RM is an instant such that 
the response time of the task is maximized if it arrives 
at that instant. Hence, the response time of a task 
scheduled by RM on a single processor is found simply 
by analyzing the response time of the task when it 
arrives at a critical instant (note that later results for 

non-preemptive scheduling as found in [7] and [8] do 
not apply in the case of TDMS/SS networks [6]). 

For EDF, the notion of critical instant is usually not 
used. However, observe that EDF is a job-static 
priority scheduling algorithm, meaning that although 
the relative priority order among a set of tasks may 
change with time, the relative priority order of jobs do 
not change. For this reason, every job scheduled by 
EDF can be analyzed in a similar way as a task is 
analyzed by RM. 

2.3.1. Worst-Case Response Times with RM  

To characterize the critical instant under RM 
scheduled output queues in TDMA/SS, it is tempting to 
reuse the condition for the critical instant as used in 
RM on a single processor; just that blocking needs to 
be considered. One might believe that the critical 
instant of a message of message stream Si

k occurs when 
it arrives simultaneously with all other message 
streams, except one message on the same node as Si

k 
arrives marginally before and this message is 
transmitted and causes blocking. However, consider 
the example shown in Figure 2 and analyze the 
queuing delay of the message from S2

1 that arrived at 
time 0. It can be seen that a message on node 3 (in this 
case message from message stream S1

3) can arrive at 
time -TPR and still cause as much interference on S2

1
 as 

if S1
3 would have arrived at time 0. This is due to the 

way address_counter is incremented and it has 
no parallel in RM on a single processor. It was in fact 
shown [6] that the condition for the critical instant of 
an arbitrary message stream Si

k is at time t under the 
following conditions: 

1. Si
k releases a message at time t; 
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Figure 2. Example message arrival patterns 
and corresponding network schedules.  



2. infinitesimally before time t, a message stream 
(which is not Si

k) released a message and started 
to transmit this message; 

3. all other message streams in node k are 
activated synchronously, at time t; 

4. all other message streams in each node y 
(∀y : 1 ≤ y≤ nsk  y≠k) are synchronously 
activated Φ y→k time units before t. 

It is easy to show that this Φy→k time quantity before 
the start of the busy period in node k corresponds to 
consider that node’s y busy period started in the 
previous TDMA cycle. As node addresses correspond 
to the cyclic sequence of assigned slots, this quantity 
may be given as follows [4]: 
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Not only are these the conditions that maximize the 
queuing time from message requests under RM 
scheduled output queues, but also, conditions 3) and 4) 
maximize the amount of interference caused by higher 
priority streams for any scheduling policy applied to 
the output queues. 

2.3.2. Worst-Case Response Times with EDF  

In the case of EDF scheduled output queues, the same 
general reasoning applies. However, Condition 3) does 
not necessarily apply because, locally to each node, the 
critical instant does not always happen when all messages 
are activated synchronously. Assuming that we are 
interested in finding the critical instant for a Si

k, the 
difference is that all messages in node k are activated 
synchronously, with the exception of Si

k. The maximum 
queuing time of messages from Si

k is found when the 
message stream is activated at a time a, within the length 
Lk of the busy period. (Observe that we compute Lk for 
every node.) 

Given this, under EDF, Condition 2) is also changed, 
because one must account for a possible blocking after 
the activation of the message stream at time a. Thus, we 
must consider that, at time a, node k just started to 
transmit a last pending message. However, Equation 6 
still holds. Under EDF, Condition 4) is all the same valid.  

To find the queuing time for Si
k would be necessary to 

analyze all schedule patterns resulting from the different 
activation times a ∈ [0, Lk ) of Si

k, and verify which one 
that results in the highest queuing time. Clearly, this 
would be computationally too expensive. We know 
however, that not all of these schedules need to be 
explored in order to find the maximum queuing time (see 
the idea in [9]). Specifically, only the set of a values, for 
which a + Di coincides with at least the absolute deadline 
of a message from another stream. Then, for a message 
stream Si

k, the set of values Ai
k is given as follows: 
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We can now find the maximum queuing time for a 
Si

k by analysing the schedule patterns resulting from 
the different activation times a ∈ {A}, given by: 
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where qi
k(a) is the time from the beginning of the busy 

period until Si
k arrives. 

Now, we are left with the problem of finding the 
length Lk of the busy period. One simple option is to 
consider that Lk = lcm ( ∀Ti

k on nodek ). This however, 
for some sets of streams (for example, a set of streams 
with periods that are prime numbers) would be very 
long, resulting in a great amount of activation times a 
to be tested.  

Another alternative to find Lk is trying to iteratively 
compute the size of the busy period. The iteration starts 
with the minimum amount of time necessary to 
transmit one instance of each message stream in node 
k. The following iterations will account for the time 
spent to transmit messages that arrived before time t, 
given by Wk(t): 
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To compute Wk(t), we may reason that ⎡t / Ti
k ⎤ is 

the number of messages from each stream i in node k 
that arrived to the output queue until the given time t. 
We can then reason that to transmit x messages, a node 
k takes ⎣ x / mpck ⎦ TDMA cycles, and it also needs to 
wait for x mod mpck message slots. Therefore: 

MS
k

NonS
k

i

TDMAk
NonS

k
ik

Tmpc
T
t

T
mpc

T
t

tW

kk
i

kk
i

×
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡

+×

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢
⎥
⎥

⎤
⎢
⎢

⎡

=

∑

∑

∀

∀

mod

)(  
(10) 

While computing Lk by Equation 10 and 11 will 
give in much more accurate results, Equation 11 does 
not account for skipped slots. Thus, for a set of streams 
that are in fact schedulable by the system, Equation 10 
may never converge.  

It would be feasible to exploit the analysis of 
TDMA/SS networks in [10] to compute the length of 
the busy period. Nonetheless, to find the length Lk of 
the busy period, we will also exploit the idea of using 
an algorithm that imitates TDMA/SS networks over 
time. The benefits of doing so are twofold. First, the 



algorithm to determine the queuing times is very 
similar to the one for finding the length of the busy 
period. Second, by using the algorithm we avoid some 
of the assumptions introduced by the analysis in [10], 
thus this will yield more tight results.  

3. Exact algorithm  
This section will describe the algorithm to 

determine the length Lk of the busy period, and the 
queuing time for a given stream for both RM and EDF 
scheduled output queues.  

The length Lk of the busy period is found by 
developing the timing behavior of the network, 
departing from the time instant that maximizes the 
amount of interference caused by higher priority 
streams (see Section 2.3.1).  

The queuing time is found similarly by developing 
the timing behavior of the network, departing from an 
initial state such that the maximum queuing time from 
of the given stream is found. For this initial state, it 
employs the critical instant definition as described in 
previous sections. Thus, the queuing time resulting 
from the time evolution of the protocol departing from 
this instant, found within the length Lk of the busy 
period will be the maximum queuing time. 

3.1. Overview 
An algorithm to develop the timing behavior of the 

network is sketched in Algorithm 1. This 
straightforward algorithm introduces the main steps 
necessary to do this. We start by setting up the initial 
state of the network. Then we establish, for now, that 
the node starting to access the network is node 1, and 

Algorithm 1. Develop the timing behaviour of the network departing from a defined initial state 
1 begin  
2  Setup initial state of the network;  
3  time ← 0; 
4  address_counter ← 1; 
5  loop 
6   Put messages from streams activated until current time in the respective output queue; 
7   Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue; 
8   Increase time according to message queue state and medium access rules; 
9   address_counter ← next( k ); 
10  until time ≥ MAX_TIME; 
11 end 

 

Algorithm 2. Find the length Lk of the busy period 
1 input 
2   k – the index of the node; 
3 begin 
4   Setup initial state of the network; 
5   time ← 0; 
6    address_counter ← next( k ); 
7   Lk← 0; 
8   loop 
9    Put messages from streams activated until current time in the respective output queue; 
10    if address_counter  = k and the output queue of node k is empty then 
11     Lk ← time; 
12    else 
13     Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue; 
14     Increase time according to message queue state and medium access rules; 
15     address_counter ← next( k ); 
16    end if 
17   until Lk > 0 or time ≥ lcm (∀Tik on nodek ) ; 
18   if Lk > 0 then 
19    return Lk; 
20   else 
21    return lcm (∀Tik on nodek ) ; 
22  end if 
23 end 

 

Algorithm 3. Compute the queuing time of Sik 
1 input 
2   k  – the node index where the stream for which we will compute the queuing time; 
3   i  – the index of the stream for which we will compute the queuing time; 
4 begin 
5   max_queuing_time ← FAILURE; 
6   Compute the set of activation times Aik; 
7   for each activation_time ∈ Aik 
8    Setup initial state of the network;  
9    Set activation time of Sik to activation_time 
10    time ← 0; 
11    address_counter ← k;   
12    loop 
13     if (Sik is activated in this cycle) then  
14       Compute blocking time Bik; 
15       time ← time + Bik; 
16       address_counter ← next( k ); 
17     end if 
18     Put messages from streams activated until current time in the respective output queue; 
19     Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue; 
20     Increase time according to message queue state and medium access rules; 
21     address_counter ← next( k ); 
22    until current_time > deadline of Sik or a message from Sik is removed from node k’s outgoing queue 
23    if (current_time – activation_time > max_queuing_time or max_queuing_time = FAILURE) then 
24     max_queuing_time ← current_time – activation_time; 
25    end if 
26   end for 
27   return max_queuing_time; 
28  end 



enter a loop where the simulated time is developed 
according to the medium access rules. At each step of 
the loop, we will check for messages that where 
activated until the current time, delivering instances of 
these message streams to the respective node’s output 
queue and maintain the state of the different output 
queues. By checking the current state of the queues, we 
decide how to make the time evolve. 

In this case, Algorithm 1 will develop the timing 
behavior of the network for a pre-defined amount of 
time (defined by MAX_TIME).  

Algorithm 1 conveys the main idea we will employ. 
In the following sections we present the same basic 
structure of the algorithm, with the necessary changes 
to find the length of the busy period and the queuing 
time for a given stream. 

3.2. Algorithm to Find the Length of the 
Busy Period  

To find the length Lk of the busy period we will follow the 
general structure of Algorithm 1. In this case, we have a 
different stopping condition. Recalling the definition of busy 
period: for the most demanding arrival pattern, the length of 
the busy period will be from t = 0 up to the first idle time. So 
we merely have to develop the timing behavior of the 
network, until we find a turn of node k where its message 
queue is empty, as shown by Algorithm 2.  

To setup the initial state of the network, we follow 
Conditions 2) and 3), which maximize the amount of 
interference caused by higher priority streams. Looking at 
line 17 from Algorithm 2, we can see that the loop will run 
until a value for Lk is found or, to protect from cases where 
there is no idle time, the loop stops when the simulated time 
is more than the least common multiple (lcm) of the periods 
from all streams in node k; Algorithm 2, line 17.  

3.3. Algorithm to Find the Maximum 
Queuing Time 

To determine the maximum queuing time of a 
stream we can adopt a similar approach. However, for 
the case of EDF scheduled output queues, we must 
develop the timing behavior of the network for each of 
the activation times that might result in the worst 
queuing time. To do this, we simply determine the set 
of activation times Ak to test and add a loop that will 
execute for each of these activation times (Algorithm 3, 
lines 7 to 25). In line 22 of Algorithm 3 we check if the 
obtained queuing time is the maximum so far, so that, 
when we have tried all the activation times in set Ak, 
we will have the maximum queuing time. 

Algorithm 3 is valid for both RM and EDF 
scheduled output queues. The necessary distinctions 
that need to be made are included in this algorithm and 
details in the next section.  

In Algorithm 3, the stopping condition for the 
development of the timing behavior (line 22) was also 
modified. Now this loop is run until a message from 
the stream for which we will compute the queuing time 
is sent, or until its deadline is exceeded.   

Another difference introduced was that the insertion 
of blocking time. The blocking time must be 
introduced in the time instant preceding the activation 
of the stream for which we will compute the queuing 
time. The blocking time is computed by Equation 6, 
where the function lpk() is according to the 
scheduling method applied in the output queue of node 
k. The blocking time is inserted by increasing the 
simulated time and changing address_counter to 
the next node. 

3.4. Detailing the Algorithms 
This section will present further details for the most 

important components of the algorithms presented 
previously.  

Compute the set of activation times Ai
k – The first 

component we will detail here is the step to compute 
the set of activation times Ai

k. This set will depend on 
the scheduling employed to the output queues. If the 
scheduling is RM, the activation times set will be {0}. 
In the case of EDF scheduling the set of activation time 
will be defined according to Equation 9.  

Setup initial state of the network – To setup the 
initial state of the network, we employ the critical 
instant as defined previously. Remember that our 
definition of Φ in Equation 6 returns the amount of 
time that messages must be synchronously released in 
each node.  

Note that, in algorithm 3, the activation time of the 
stream for which we will compute the queuing time is 
set again for each activation time.  

Put messages from streams activated until 
current time in the respective output queue – This is 
done by checking all streams in the network for which 
the activation time has elapsed. Streams in this 
condition will generate a message to be put in the 

Algorithm 4. Increase time according to message 
queue state and medium access rules 
1 input 
2 address_counter – the node index of the node 

currently holding the right to access the medium 
3  k  – the node index where the stream which we will 

compute the queuing time 
4  i  – the index of the stream which we will 

compute the queuing time 
5 begin 
6  for each message from nodeaddress_counter message queue  

  up to mpcaddress_counter 
7   Remove highest priority message M from   

    current_node’s outgoing queue; 
8   if M is not a message from Sik then 
9    time ← time + TMS; 
10   end if 
11  end for 
12  time ← time + TPR;  
13 end



respective node’s output queue. Additionally, the 
activation time of the stream is set to its next period. 

Increase time according to message queue state 
and medium access rules – To develop time, the state 
of the output queue from the node currently holding the 
right to access the medium is verified. For each 
message in the output queue, up to mpcaddress_counter, the 
time is increased by TPR. At the end of the node’s turn, 
the time is increased by TMS. Algorithm 4 illustrates 
this procedure.  

3.5. Example 1 
Let us put forward a demonstration scenario that 

will enable us to better grasp the algorithm behavior. 
Equations 12 and 13 in Figure 3 describe this 
demonstration scenario.  

Figure 4 presents the network schedule for node2. It 
is also possible to observe the evolution of the node’s 
queue and the queuing time for S2

2.  
This network schedule depicts exactly the 

algorithm’s behavior. When the stream given as input 
for the algorithm is S2

2, the algorithm will develop time 
by simulating the network schedule and produce the 

exact time evolution as depicted in Figure 5, when the 
activation time to be tested for S2

2 is 0, which is the 
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Figure 3. Example of a network scenario. 

q =23.002
2

 

Figure 4. Network schedule for demonstration scenario. 

Table 1. Queuing times for 
demonstration scenario (1). 

Node Stream Q 
(time units) 

q  
(time units) 

S1
1 8 8 

S2
1 16 9 

S3
1 16 16 node1 

S4
1 45 40 

S1
2 8 8 

S2
2 24 23 node2 

S3
2 57 35 

S1
3 8 8 

node3 
S2

3 45 32 
S1

4 8 8 
S2

4 16 9 
S3

4 17 16 
S4

4 24 16 
node4 

S5
4 29 27 

S1
5 8 8 

node5 
S2

5 15 15 



activation time leading to the maximum queuing delay.  
The algorithm will perform from time 0 to time 30. 

At time 30, the algorithm will verify that the S2
2 given 

as input was scheduled to be sent, and therefore it will 
exit returning the current time value.  

Using an implementation of the algorithm, we can 
obtain the resulting queuing times. Table 1 presents the 
queuing times for all messages in this scenario 
resulting from the algorithm presented (column labeled 
q). The column labeled Q contains the calculated 
queuing times using the analysis in [4]. We can see that 
our algorithm presents tighter results than the previous 
analysis. 

3.6. Example 2 
We will now compare the results given by the 

algorithm when RM or EDF scheduling policies are 
used. For this, we will the example network scenario 
given by Equations 14 and 15 in Figure 5. 

The resulting queuing delays when using RM or 
EDF scheduling policies are given in Table 2. 

We can see that using RM scheduling policy for the 
output queues of the nodes results that message stream 
S3

1 loses its deadline. However, when using EDF, all 
deadlines are met. 

4. Summary and Conclusions 
We have presented an algorithm that computes 

exact queuing times for TDMA/SS in conjunction with 

Rate-Monotonic (RM) or Earliest-Deadline-First 
(EDF).  

The algorithm was based on simulation by starting 
at the critical instant (for RM) or for many instants (for 
EDF). We left open the questions (i) whether it is 
possible to formulate exact schedulability conditions as 
a set of inequalities and (ii) how to perform 
approximate schedulability [11] analysis for TDMA/SS 
and in that way achieve a polynomial time-complexity. 
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Figure 5. Example of a network scenario (2). 

Table 2. Queuing times for 
demonstration scenario (2). 

Node Stream Deadline 
(time units) 

q using 
RM 

(time units) 

q using 
EDF 

(time units) 

S1
1 5 3.6 3.6 

S2
1 13 10.4 5.2 node1 

S3
1 13.4 18.6 7.6 

node2 S1
2 5.2 2.4 2.4 

node3 S1
3 7 2.4 2.4 
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