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I. INTRODUCTION

Dependently typed programming is getting some attention

in the past years. Noticeable for instance in [2], where promi-

nent researchers in the area state that “Dependently typed

programming languages like Agda are gaining in popularity,

and dependently typed programming is also becoming more

popular in the Coq community, for instance through the use

of some recent extensions.”

The interest is motivated by the need to find the right

balance between usability and flexibility when applying the

increased accuracy of dependent types in describing program

behavior. One can use dependent types in situations ranging

from disciplined dynamic typing (Dependent JavaScript [18]),

to prove memory correctness of the standard library of a

statically typed language (RustBelt [27]), or correctness of a

compiler (CompCert [31]).

This growing popularity is also demonstrated by the active

tool development to explore working with dependent types,

Wikipedia lists 11 actively developed languages with depen-

dent type support.

Three of the tools used in academia are compared, in the

context of formal software development. We describe the

performed experiment of executing the same tasks in the

selected environments.

This paper is structured as follows: in Section II we provide

an introduction of dependent types. In Section III, we describe

the tool selection process, and a short introduction of the

selected tools. In Section IV, we describe the experiments

that will be conducted with each of the selected tools. In

Section V we describe the implementations of each of the

selected tasks with each of the selected tools and explain the

experimental results that we have obtained. Finally, in Section

VI the conclusions drawn from our experiments are presented,

as well as possible future areas of interest.

II. BACKGROUND

Dependently typed languages [39] extend traditional typed

languages, by allowing the types of values to depend on other

values. For illustration purposes, we will introduce the concept

of dependent types in pseudo C++. *

In standard C++, it is possible to define the type DepType

as seen in Listing 1, but the value template parameter must

be available at compile time.

c l a s s DepType< i n t va lue> {} ;

Listing 1: Compile time dependent type in C++

If C++ would be a dependently typed language, we could

define the function pi() as shown in Listing 2 where the

argument is only available at runtime, but the return type

depends on the argument’s value. Another, more explicit

example is the function pi2() depicted in Listing 2, where

the return types are not versions of the same base type.

In div2 a simple constraint is presented, ensuring that the

function can only be called if the returned values are exactly

one half of the argument.

a u t o p i ( i n t x ) −> DepType<x> {
r e t u r n DepType<x>() ;

}
/ / r e t u r n t y p e depends on r u n t i m e v a l u e o f ‘x ‘
a u t o p i 2 ( i n t x ) −> ( x ? i n t : ( c h a r c o n s t * ) )

{
r e t u r n x ? 1 : ” H e l l o World ! ” ;

}
/ / on ly a l l o w c a l l s , i f ‘x ‘ i s even
i n t d iv2 ( i n t x , ( x % 2 == 0 ? s t d : : m o n o s t a t e :

vo id ) x i s e v e n ) {
r e t u r n x / 2 ;

}
/ / p r o p e r t y h e l p e r : mapping b o o l e a n s t o t y p e s .
/ / t r u e i s a t r i v i a l l y p r o d u c e a b l e v a l u e
/ / f a l s e i s a non−p r o d u c e a b l e v a l u e
# d e f i n e Prop ( e ) ( ( ( e ) ? s t d : : m o n o s t a t e : vo id )

)

Listing 2: C++11 Π

*A similar attempt for refinement types can be found in [48] and [44].



And we could define a struct like various Sigma. . .

in Listing 3. Here a dependently typed C++ could check,

that values of type Sigma_dependent_type can only be

created if the constraint described in the type of i_or_s is

satisfied.

A Sigma (Σ) type (also called dependent pair) in a depen-

dently typed language is a structure with two elements, where

the type of the second element depends on the value of the

first element.

s t r u c t S i g m a c l a s s {
i n t x ;
DepType<x> d ;

} ;

s t r u c t Sigma union {
i n t x ;
un ion {

s h o r t i ; / / x != 0
c h a r c o n s t * s ; / / x == 0

} ;
} ;

s t r u c t S igma de pe nde n t type {
i n t x ;
( x != 0 ?

s h o r t :
c h a r c o n s t *

) i o r s ;
} ;

Listing 3: C++ Σ

This idea allows us to describe properties of values. In

Listing 4, a type is defined, which can only hold even integers.

The assurance of evenness of x depends on the impossibility

of creating a value of type void, which is the calculated

type of the field evenness_proof in the odd x case. In

case of an even x, the calculated type for the proof field is

std::monostate, a type that has a single possible value,

thus has no information content.

We could use any other type instead of monostate, but

this expresses the intent that we don’t care what the value is,

as long as it exists (as opposed to the void case, where we

want to ensure non-existence).

s t r u c t e v e n i n t s {
i n t x ;
( x % 2 == 0 ? s t d : : m o n o s t a t e : vo id )

e v e n n e s s p r o o f ;
} ;

Listing 4: Even integers

This sort of constrained types are called refinement types

[22] their general form in our pseudo dependent C++ is shown

in Listing 5. (Which itself is a specialized form of the Σ types

from Listing 3).

t e m p l a t e <typename T , boo l (* P ) ( T )>
s t r u c t r e f i n e d T {

T v ;
( P v ? s t d : : m o n o s t a t e : vo id ) p r o o f ;

} ;

Listing 5: Dependent C++ refinement types

The analogy of “a value to its type, is what a proof

is to it’s logical formula”, is described as the Curry-Howard

correspondence [26]. In our pseudo C++ the type of the proofs

are always either void or std::monostate, depending

on the condition’s value in the ternary expression. In proper

dependently typed languages on the other hand, logical for-

mulas are themselves types. For example, a conjunction of

two formulas is the type, that has two type parameters, and in

order to create a value (that is a proof of the conjunction), one

has to provide two values, each with a corresponding type.

t e m p l a t e <typename A, typename B>
s t r u c t C o n j u n c t i o n {

C o n j u n c t i o n (A, B) {}
} ;
t e m p l a t e <typename A, typename B>
s t r u c t D i s j u n c t i o n {

s t a t i c D i s j u n c t i o n l e f t (A a ) {}
s t a t i c D i s j u n c t i o n r i g h t (B b ) {}

} ;

/ * u s i n g t h e p r o p e r t y h e l p e r macro from above ,
a r e f i n e m e n t t y p e e x p r e s s i n g , t h a t an

i n t e g e r
i s w i t h i n t h e s p e c i f i e d r a n g e . * /

t e m p l a t e< i n t low , i n t high>
s t r u c t Range {

i n t x ;
C o n j u n c t i o n<Prop ( low <= x ) , Prop ( x <

h igh )> p r o o f ;
} ;

Listing 6: Dependent C++ logical connectives

For a more complete illustration Listing 7 a sorted linked

list implementation is shown in dependent C++.

s t r u c t L i s t {
i n t v ;
L i s t * n e x t ;

} ;
/ * s t r u c t s o r t e d l i s t : a t y p e e x p r e s s i n g t h a t a

L i s t , s t a r t i n g
from node , i s s o r t e d * /

s t r u c t S o r t e d L i s t {
L i s t * node ;
S o r t e d L i s t * n e x t p r o o f ;
/ * p r o p e r t y t y p e e x p r e s s i n g s o r t e d n e s s ,

depends on v a l u e s : node and n e x t p r o o f . * /
D i s j u n c t i o n <

Prop ( node == n u l l p t r ) ,
D i s j u n c t i o n <

Prop ( node−>n e x t == n u l l p t r ) ,
C o n j u n c t i o n<

Prop ( node−>v <= node−>next−>v ) ,
C o n j u n c t i o n<

Prop ( n e x t p r o o f != n u l l p t r ) ,
Prop ( n e x t p r o o f−>node = node−>n e x t )

>

>

>



> p r o o f v a l u e ; / / t h e p r o o f v a l u e f i e l d i s
compi l e t ime on ly

} ;

Listing 7: C++ sorted list

Building up proof terms is similar to calculating traditional

values, see in Listing 8 as we build up proof_value.

S o r t e d L i s t *
p repend (

i n t v ,
S o r t e d L i s t * l ,
Prop ( l == n u l l p t r | | v <= l−>node−>v )

v p r o o f
)
{

L i s t * node = new L i s t {v : v , n e x t : l ? l−>
node : n u l l p t r } ;

S o r t e d L i s t * r e s = new S o r t e d L i s t {
node : node ,
n e x t p r o o f : l ,
p r o o f v a l u e : node == n u l l p t r ? D i s j u n c t i o n

< . . . > : : l e f t ( . . . ) : D i s j u n c t i o n < . . . > : :
r i g h t ( . . . )

/ * t h e d e v e l o p e r b u i l d s up a v a l u e o f t h e
t y p e

s p e c i f i e d above , and t h e c o m p i l e r
c he c k s t h e v a l i d i t y o f t h e t y p e s * /

} ;
}

Listing 8: C++ sorted list prepend

III. TOOL SELECTION

The search term TITLE-ABS-KEY("dependent*
type*" AND imperative) returned 40 hits at Scopus,

of those papers 25 are unique. From the unique papers, we

selected those that were not introducing a language, but using

the language as a tool, in order to select languages that the

community found useful in research.

This selection criteria resulted in Agda [51] used in [1], Coq

[6] used in [37], [24], and [46], and F* [8] used in [11] [12].

A. Selected Tool Short Introduction

a) Agda

Agda is the name of both the dependently typed functional

programming language, and the interactive proof assistant to

work with the language, based on typed holes [41] imple-

mented as an Emacs mode.

Agda is based on intuitionistic type theory [38], a foun-

dational system for constructive mathematics. We examined

version 2.5.4.1, with stdlib version 0.17.

b) Coq

Coq is the name of a proof management system. It is built

on three languages, Gallina the dependently typed functional

language, Vernacular the proof engine management language,

and Ltac the language for proof tactics. There are multiple

interactive environments developed for Coq, the official is

CoqIDE, but ProofGeneral for Emacs is also popular.

Coq is also based on intuitionistic type theory. We examined

version 8.8.2.

c) F*

F* (pronounced F star, sometimes written as F⋆) is a

general-purpose functional programming language, with sup-

port for program verification, based on dependent types. F*

though supports dependent types, it is mainly focused on the

refinement type subset.

F* does not make a statement about its foundational logic.

We examined version 0.9.6.0.

B. Quick Comparison

The selected tools are all based on languages that support

dependent types. The syntax of each language is described in

the following resources: Agda [40], Coq [7], and F* [9].

To get an overview of how each language looks like, in the

three listings below the same function is defined three times.

The function takes a natural number as a parameter and returns

a dependent pair as a result.

The result pair’s first element in the function body is always

set to zero (this is to simplify the example), and the type of

the result pair’s second element depends on both the function

parameter’s value (x), and the pair’s first element’s value (y).

(Since we always set the first element to zero, this is effectively

a comparison of the function parameter with zero). The second

element’s type is either the unit type, or boolean, depending

on the comparison result.

Agda :

open i m p o r t Data . Bool u s i n g ( Bool ;
i f t h e n e l s e )

open i m p o r t Data . Nat u s i n g (N ; suc ; z e r o ;
?
= )

open i m p o r t Data . P r o d u c t u s i n g (∃ ; , )
open i m p o r t Data . Un i t u s i n g (⊤ )
open i m p o r t R e l a t i o n . N u l l a r y . D e c i d a b l e u s i n g (

⌊ ⌋ )

p i : ( x : N ) → ∃ (λ ( y : N ) → ( i f ⌊ x
?
= y ⌋

t h e n ⊤ e l s e Bool ) )
p i z e r o = ( z e r o , ⊤ . t t )
p i ( suc ) = ( z e r o , Bool . t r u e )

Coq :

R e q u i r e PeanoNat .

D e f i n i t i o n p i ( x : n a t ) : { y : n a t & i f
PeanoNat . Nat . eq dec x y t h e n u n i t e l s e
boo l } :=

match x r e t u r n { y : n a t & i f PeanoNat . Nat .
eq dec x y t h e n u n i t e l s e boo l } wi th

| O => e x i s t T O t t
| S x ’ => e x i s t T O t r u e
end .

F * :

module PiSigma

v a l p i : x : n a t −> Tot ( y : n a t & ( i f x = y t h e n
u n i t e l s e boo l ) )

l e t p i x =
match x wi th



| 0 −> ( | 0 , ( ) | )
| −> ( | 0 , t r u e | )

Listing 9: ΠΣ in three languages

From this short syntax comparison it is already visible, that

the tools take different approaches: in Agda we need to import

even the most basic definitions, while in F* we don’t need to

import anything; Agda typically uses Unicode symbols, while

the others use ASCII names. This is only a convention of the

developers of the tools, as both F* and Coq has the ability to

work with Unicode characters. A library for Coq called Iris

[28] for example employs Unicode extensively.

IV. TASKS

We selected two tasks to implement, that represent two areas

of functionality:

A. Theorem Proving

Prove the commutativity of addition over the language’s

default natural (N) type*. That is, for all a, b ∈ N, the equality

a + b = b + a holds. This task exercises the basic theorem

proving machinery in the language.

B. Imperative Programming using In Memory Datastructures

Sort an in memory array of fixed size integers. This task

demonstrates the language’s prowess in combining safe mem-

ory management and proving application level properties [52].

Ensuring valid memory addressing is one important use

case of dependent types. This problem is mostly mitigated

by the hardware getting fast enough to afford runtime bounds

checks, and the compilers getting clever enough to elide

most of the runtime bound checks†. So this task aims to

demonstrate the other important feature of dependent types:

the ability to describe high level requirements and certify their

implementation (in this case sortedness).

V. IMPLEMENTATION AND RESULTS

A. Theorem Proving

1) Agda

a) getting started

Agda is popular enough, that an internet search led us to a

partial solution of this problem ‡.

As Agda does not autoload even the most basic definitions,

it takes some time to discover, where a definition is located

in the standard library. Also, if one wishes to write idiomatic

Agda, and the location of a definition is not the canonical

way to import a symbol, one has to chase down the wrapping

module, that imports, then re-exports the original definition.

*The default varies between languages, in F* it is a refined type, limiting
a base type to non-negative values, in Agda and Coq it is a Peano numeral.

†See for example Java, Python, or Rust.
‡https://stackoverflow.com/questions/52282786/

proving-commutativity-of-addition-in-agda

b) ergonomics

Agda has an Emacs mode §, where one can use a hole based

development style. To create a hole, one enters a question mark

(?) in place of an expression. The editor then creates a hole

context, in which the developer can interactively build up the

expression with type the hole requests.

The hole context provides an overview of what values of

what types are available, and what is the type of the expression

the developer needs to create.

2) Coq

a) getting started

Since the author is quite familiar with Coq already, we had

to try to rely on intuition and memory to try to evaluate the

starting out experience of Coq.

Coq has a very steep learning curve, but since it is a very

mature project, there are plenty of tutorials online, and the

tooling is rather featureful and stable.

A similar problem to Agda of standard library discoverabil-

ity exists in Coq as well, but the situation is improved by

the integrated Search commands ¶, which find in the current

context facts about types or functions.

b) ergonomics

Coq is the tool of the three reviewed, that has the most

mature proof facilities.

Coq is designed around interactive proof development,

which is similar to the hole based approach of Agda, but it not

only provides the context for the developer, but also gives tools

to transform the goal and the available values in the context.

When using the interactive facilities, the author proceeds,

and issues tactics ||, that transform the hole, introduce new

facts to the context, split the target into parts, for a full list

see the Coq Reference Manual.

The implementation presented in PlusComm.v is written

in the interactive proving style.

c) non-interactive proving

To provide a more direct comparison, we proved the

commutativity in the direct style of Agda and F* in

PlusCommDirect.v. This leads to a very similar proof as

with the other tools. One gives a fully formed proof to the

language for checking, with no help from the tool.

3) F*

a) getting started

Simple proofs like this can be discharged with the integrated

Z3 [19] satisfiability modulo theories solver. F* by convention

uses refinement types, in particular the refinement of the unit

type, to represent properties. F*, though does not encourage

it, is also able to express the original properties-are-types idea

of dependent types.

b) ergonomics

F* also has an Emacs mode, that is the recommended

way of editing F* sources, called fstar-mode **. It is still in

§elpa-agda2-mode package in Debian
¶https://coq.inria.fr/refman/proof-engine/vernacular-commands.html#

coq:cmd.search
||https://coq.inria.fr/distrib/current/refman/coq-tacindex.html

**https://github.com/FStarLang/fstar-mode.el



early development phase, so some features are not working.

Most problematic is the environment’s reluctance to work with

incomplete source, which is quite the common occurrence

during programming.

One useful technique to deal with this limitation is using the

admit() function in place of the missing expressions in the

code. This is similar to Agda’s hole oriented programming, but

it does not provide the helpful interactive context, but helps

with the partial source problem.

c) F* task with Peano numbers

Since the task following the original description was

so quickly and smoothly solved by F*, we decided

to include the task implemented for Peano [42] num-

bers, using both the refined-unit-as-prop approach in

PlusCommPeano.fst, and an explicit type-as-prop in

PlusCommPeanoProp.fst. During the implementation of

these solutions, the immaturity of the proof development en-

vironment forcing us to provide the solutions without support

of the tool was a little bothering, but peeking at the Agda

solution helped the proof along.

The solution in PlusCommPeano.fst still relies on the

built-in Z3 automation. Since we are not using the built in

numerical types the proof itself shows a little more of the

internals.

The solution in PlusCommPeanoProp.fst is managing

the proof terms explicitly, and it seems this method of proving

disables the built-in proof automation, as the full proof term

had to be entered.

Even though F* supports proof automation through tactics,

since these are not interactive, they don’t help when such a

small scale task is developed. But we expect, in more compli-

cated tasks (e.g. in a domain specific language implemented

in F*), they can be quite useful.

B. Imperative Programming using In Memory Datastructures

1) ST&Hoare introduction

One way of handling stateful computation is through the ST

monad [35] introduced in Haskell. The ST monad provides

primitives to work with the heap, but it prevents direct access

to the memory. In fact the ST monad, effectively hides the

values that are in memory from the host language. The

established way to workaround this, is to use Hoare logic [25].

In the Hoare monad the ST monad is enriched with pre- and

post-conditions around ST operations. This enriched construct

is called the Hoare triple. It consists of: the pre-condition,

which specifies the requirements about the environment for

when the action is enabled; the ST action which defines

the operation to be performed; and the post-condition, which

specifies the guarantees after the ST operation is performed,

based on the values in the heap both before and after the

operation, as well as the value generated by the ST operation.

A newer structure, called the Dijkstra monad [47], is also

used, which fulfills the same function as the Hoare monad, but

instead of pre- and post-conditions, it uses weakest precon-

dition predicate transformation [20]. A weakest precondition

(WP) predicate transformer generates a pre-condition, based

on a post-condition, that is the least restrictive pre-condition,

that enables the execution of the ST action.

2) Agda

a) ST in Agda

Unfortunately Agda does not include the ST monad in the

standard distribution, so we used an implementation from

[32]. In [32] Kovács models what in Haskell is called STRef

[10], but limiting the supported types to boolean and natural

numbers. It doesn’t support monadic bind operation either, so

we had to resort to continuation passing [5]

b) modal logic

Since in order to reason about the changes in the ST heap,

we would need some sort of modal logic [36] over the values

stored in the heap (to be able to talk about before/after values).

But Hoare logic is not included in the implementation of

Kovács’s ST implementation, so we abandoned the attempt

of proving the sortedness of the resulting list.

We settled for only showing how to work with memory

in the imperative style, and only giving guarantees about the

validity of indexing in the array (we could do this, since

the indexing happens in the host language), not about the

sortedness of the result (which would require access to the

values stored in heap memory).

3) Coq

a) ST in Coq

Coq does not include imperative features in its standard

library. Since Ynot [17] was used in [24] as the library

implementing mutable state, we first tried to use that, but we

found, that it has been abandoned since 2014, and does not

compile with the latest Coq. An actively developed similar

library for Coq is Iris [28]. We examined Iris development

version with Git hash 455fec93.

Iris has a larger scope, namely it also targets concurrent

programs, but in contrast to Ynot, Iris does not support

compiling the program to executable format (called extraction

in Coq *). This follows from the fact, that Ynot uses shallow

embedding and Iris uses deep embedding.

Both Ynot and Iris weaken the Coq guarantees, by intro-

ducing the possibility of creating non terminating programs,

which are disallowed by vanilla Coq.

b) modal logic

Iris is based on concurrent separation logic [33] we will

use the instantiation of the base logic for memory heaps.

The implementation uses the Dijkstra [47] monad is based

on weakest precondition transformation [20], as opposed to

the Hoare monad, that is based on pre- and post-conditions

[25]. In practice, since the pre- and post-conditions are more

natural to think about, the predicate transformers of weakest

precondition calculus is hidden from the developer, and the

predicate transformer is generated from the provided pre- and

post-conditions.

c) ghost variables

Iris uses ghost variables to help express properties of the

program. Ghost variables can not interact with the evaluation

*https://coq.inria.fr/distrib/current/refman/addendum/extraction.html



of the program, they are only present while proving program

properties.

The ghost variable is connected to the real variables through

properties. It is said, that a ghost variable models a real

variable. For example in this task, we are modeling an array,

using a pointer as real variable, and a list as ghost variable,

expressing, that the pointer points to a value that is equal

to the value of the first element of the list, the (pointer+1)

points to a value that is equal to the second element of the

list, ∀i : N, i < |list| =⇒ pointer + i 7→ list!!i
d) proof management

Coq itself is an interactive proof assistant, so the basic

mode of operation is building proofs, by interactively applying

tactics that transform the goal *.

Coq also supports proof automation, which involves au-

tomated proof term generation, and proof search for fitting

terms. Iris uses this facility and the typeclass system of

Coq extensively, creating a fourth and fifth language on, top

of the three languages already in Coq. Iris logic, a DSL

implementing an affine Concurrent Separation Logic (CSL)

[13] . And Iris Proof Mode, a tactic language to deal with

proofs in Iris logic [34].

e) discoverability

Coq itself is well established and well documented, with

many tutorials to choose from †.

Iris on the other hand is still under active development

(2.0 released in 2016, 3.0 in 2017), finding the relevant

documentation is challenging, and sometimes the relevant

documentation does not exist (c.f: [29] chapter 1.3).

f) location arithmetic

The base logic does not define arithmetic operations for

locations (pointers), so for demonstration purposes we added

an indexing extension location_arithmetic.

A proper location arithmetic should take into account the

size of the allocation, but for simplicity, we defined an array

as elements separated by one “unit” of whatever an increment

of a location value by one means, as this is not material to the

meaning of the proof , but simplifies the proofs themselves.

g) numeric conversions

Locations are represented as positive (Z+) numbers, the

standard library mostly uses N, and the default number type

is Z.

The interaction of these three number types creates a huge

time sink, as the usual rules of mathematics do not apply

anymore. The built in conversion from nat (N) type maps 0N
to 1Z+ . This means, for example, that depending on whether

we convert the arguments, or the result of an addition, we get

different results: (0N+N 0N)Z+ 6= (0N)Z+ +Z+ (0N)Z+ , the left

side is 1 the right side is 2.

h) fun with separation logic

Separation logic is a mixture of linear and nonlinear logic

[3], which for us means, that facts about a variable in the liner

logic part can only be used once.

*The whack-a-mole style proving http://gallium.inria.fr/blog/coq-eval/
†https://coq.inria.fr/documentation

Proving with separation logic used by Iris compared to

the standard intuitionistic logic used by Coq, forces a more

disciplined approach to proving, which at first does pose some

difficulties, but it also helps offload some mental burden from

the developer to the compiler [14].

In this task keeping track of memory resources is solved by

the affine logic perfectly (as it was designed to do). ‡

i) predetermined heap types

The CSL DSL only supports a pre-determined list of types
§. This limited the sorting predicates as well, since only the

operators in the DSL can be used.

j) proof length

As we get to higher level operations, the associated proofs

get shorter, this gives a probable explanation, why large

projects use Coq (RustBelt [27], CompCert [31], Fiat-Crypto

[21], VST [4]).

4) F*

a) ST in F*

F* uses algebraic effects [43] for modeling stateful compu-

tations. F* implements the ST effect in its standard library.

b) discoverability

We found the discoverability of the F* libraries lack-

ing, but once we settled to base the implementation

on examples/algorithms/QuickSort.Array.fst

from the F* source distribution, the standard library turned

out very well equipped to deal with sorting.

c) modal logic

F* also uses the Dijkstra monad [47] to keep track of the

programs environment like Coq+Iris.

d) proof management

F* relies on implicit proofs, generated from the provided

preconditions proving the post-conditions. This makes the

proof process opaque, and in case the goals are not discharged,

an exercise in guessing what the automated proof machinery

wants as input, to be able to find the solution, and which knobs

of the magic machine has to be tweaked to help it through the

proof search.

The approach we took was, to throw more and more facts at

the proof search, and once it succeeds, start removing the ones,

that keep the goals discharged. Not a very efficient, scalable,

or dignified way to work. But alas no alternative exists,

barring one becomes intimately familiar with the internal proof

searching algorithms of F*. Then repeat the exercise for the

next F* releases, ad infinitum.

e) array lib

F*’s array implementation ¶ can not track individual cell

modifications with the modifies utility of ST, only the

whole array can be declared as modified with the modifies

keyword.

‡Brady in [16] demonstrates the usefulness of linear logic (a slightly
stricter version of affine logic) in the context of Idris. Brady presenting this
can be found here: https://www.youtube.com/watch?v=mOtKD7ml0NU&t=
30m53s)

§boolean, Z, unit, location (pointer), prophecy (which seems to be an
internal type)

¶FStar.Array



C. Quantitative Analysis

a) source metrics

In Table I we are showing a numerical evaluation of the

size of our solutions. Columns task 1 and task 2 refer to the

number of lines in the solution for task 1 and 2 respectively,

counting all non-comment lines.

In columns body 1 and body 2, we show the number of

lines, with comments and import statements removed, while

in core 2 we show the number of lines directly related to

sorting and the sortedness proof, excluding the generic proofs

that should be added to either the standard library of the tool,

or the array library.

TABLE I: Number of lines per task per tool

task 1 body 1 task 2 body 2 core 2

Agda 48 45 123* 80* 26*

Coq 12 12 1433 1265 574

F* 3 3 109 90 65

*: The agda solution for the second task only proves memory safety, not
sortedness.

Agda has the biggest overhead associated with library

imports (the difference between the task and body columns are

18% and 30%). This is a blessing and a curse at the same time,

as it makes writing the code more tedious, but the one reading

the code is helped by the explicit dependency enumeration.

In absolute numbers the Coq solution is an order of mag-

nitude larger than the other two solutions. This is only a fair

comparison against F*, but it still shows that proof search in

F* does work*.

b) development time

The rough approximation of the time to solve tasks 1&2:

Agda 6 days, Coq 7 days, F* 3 days. These numbers are based

on the version control history of the author. Here too, Coq is

the one requiring the most time, even though the author has

the most experience with it.

VI. CONCLUSION

The three languages take very different approaches to

present the power of dependent types to the user. Thus it is

impossible to declare a best tool, but we will describe the

situation in which each tool excels.

a) history

Coq is the oldest of the three, with many successful indus-

trial [27] [31] and academic [23] projects under its belt.

Agda is also established, especially in programming lan-

guage research [2] [30].

F*, a relatively recent development coming from Microsoft,

discourages creating proof terms by hand, presumably to

appeal to users who wish to avoid dealing with the minutia of

proofs. This is great as long as the user can stay within the

confines of the F* design, but at the cost of a sudden increase

in discomfort, if one must leave the beaten path.

*At least for this case, after appeasing the search machinery. It would be
interesting to see in a larger project, with not so straightforward properties,
how would the built in logic of F* behave?

Based on their history, Coq can be considered the standard

tool, when one wishes to work with something that “everybody

else” uses, and a tool that will probably be around later.

b) proving

Coq uses interactive tactics to prove goals, which is very

convenient, but may lead to large proof scripts in case one

does ad-hoc proofs. But Coq also has the tools to make the

proofs concise, provided one works in a fixed domain, and

creates the necessary abstractions. Iris for example embedded

the full logic of CSL and tactics to work with it in Coq.

Agda is more in line with traditional programming lan-

guages, as it expects the user to write the expressions that

will produce the expected value.

F* does not want the user to prove anything, it only expects

enough facts to be presented, so that the built-in prover can

work out a proof.

The choice of tool depends very much on the task one

wishes to solve. F* works great, as long as one can fit the

task at hand into what F* can work with, and one is willing

to do the guesswork involved in trying to work out what the

missing piece might be for the automated prover to go through.

Coq and Agda both provide interactive proving environ-

ments, but the larger user base and longer history of Coq give

an edge that Agda can’t compete with.

c) messy requirements vs messy proofs

As we stated in the previous paragraph, F* discourages user

proofs, but this makes requirements unnecessarily large, since

the automated tool needs a lot more detail, than what a human

prover needs to prove the same goal.

If one can fit one’s work in F*’s beaten path, then it works

great, otherwise Coq or Agda is probably a better choice as

they provide a more natural environment to create proof terms.

d) tactics generated vs hand crafted proofs

In [50] Wadler states “Proofs in Coq require an interactive

environment to be understood, while proofs in Agda can

be read on the page.”, while this is true for the languages

themselves, but Proviola [49] can alleviate this problem of

Coq, by recording the proof state after each tactic execution,

and producing an html document with the proof state added

for each tactic. F* does not have this problem, as the proof

terms do not appear either in the source, or during proving.

Whether it is easier to read complete proof terms, or the

replay of a step by step creation of a proof term is dependent

of the task at hand, but the author thinks, that it is more

straightforward to create scripts step by step in Coq, though

it does require discipline on the programmer’s part, so as to

not create a write-only script †.

1) future work

Both the breadth and the depth of this work could be

extended. Doing the same tasks in other, less established

languages like Idris [15], or ATS [53], or trying different

libraries like FCSL [45].

The depth increased by adding more interesting tasks, for

example, investigating the generation of verified executables

†http://www.jargon.net/jargonfile/w/write-onlylanguage.html



from the verified sources, or comparing how different tools en-

able verifying resource management other than memory (files,

network sockets, etc), or verifying non functional requirements

like security or real time constraints.
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