

Extending Fixed Task-Priority
Schedulability by Interference Limitation

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120705

Version:

Date: 7/5/2012

José Marinho

Stefan M. Petters

Marko Bertogna

Technical Report HURRAY-TR-120705 Extending Fixed Task-Priority Schedulability by Interference Limitation

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Extending Fixed Task-Priority Schedulability by Interference Limitation
José Marinho, Stefan M. Petters, Marko Bertogna

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: jmsm@isep.ipp.pt, smp@isep.ipp.pt,

http://www.hurray.isep.ipp.pt

Abstract
While the earliest deadline first algorithm is known to be optimal as a uniprocessor scheduling policy, the
implementation comes at a cost in terms of complexity.Fixed task-priority algorithms on the other hand have lower
complexity but higher likelihood of task sets being declared unschedulable, when compared to earliest deadline first
(EDF).Various attempts have been undertaken to increase the chances of proving a task set schedulable with similar low
complexity.In some cases, this was achieved, by modifying applications to limit preemptions, at the cost of flexibility.
In this work we explore several variants of a concept to limit interference by locking down the ready queue at certain
instances. The aim is to increase the prospects of schedulability of a given task system, without compromising on
complexity or flexibility, when com-pared to the regular fixed task-priority algorithm. As a final contribution a new
preemption threshold assignment algorithm is provided which is less complex and more straightforward than the
previous method available in the literature.

Extending Fixed Task-Priority Schedulability by
Interference Limitation

José Manuel Marinho
CISTER-ISEP / INESC-TEC

Porto, Portugal
jmsm@isep.ipp.pt

Stefan M. Petters
CISTER-ISEP / INESC-TEC

Porto, Portugal
smp@isep.ipp.pt

Marko Bertogna
University of Modena

Modena, Italy
marko.bertogna@unimore.it

ABSTRACT
While the earliest deadline first algorithm is known to be
optimal as a uniprocessor scheduling policy, the implemen-
tation comes at a cost in terms of complexity. Fixed task-
priority algorithms on the other hand have lower complexity
but higher likelihood of task sets being declared unschedula-
ble, when compared to earliest deadline first (EDF). Various
attempts have been undertaken to increase the chances of
proving a task set schedulable with similar low complexity.
In some cases, this was achieved by modifying applications
to limit preemptions, at the cost of flexibility. In this work,
we explore several variants of a concept to limit interference
by locking down the ready queue at certain instances. The
aim is to increase the prospects of schedulability of a given
task system, without compromising on complexity or flexi-
bility, when compared to the regular fixed task-priority algo-
rithm. As a final contribution, a new preemption threshold
assignment algorithm is provided which is less complex and
more straightforward than the previous method available in
the literature.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
[Real-time and embedded systems]

General Terms
Real-time Scheduling

Keywords
Dual Priority Scheduling, Non-preemptive Scheduling

1. INTRODUCTION
In today’s technology, a vast majority of the processors

deployed are not built into desktop or server computing sys-
tems, but are instead embedded into devices where the elec-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
RTNS’12 , November 08 - 09 2012, Pont a Mousson, France
Copyright 2012 ACM ACM 978-1-4503-1409-1/12/11 ...$15.00.

tronics enabled computations are not the core functionality.
Besides the reliability and safety requirements, a class of
those embedded systems, termed real-time systems, are sub-
ject to additional timing constraints. In this class, correct-
ness of an operation depends not only on its logical outcome,
but also on the time of completion.

The scheduling policy used to carry out a given workload
will greatly influence the temporal behaviour of the tasks
in the system. The decision on which scheduling policy to
use is an exercise where the trade-offs have to be carefully
considered by the system designer. Scheduling disciplines
may be weighted according to several metrics. An impor-
tant one is schedulability (i.e. its ability to schedule task-
sets). Increased schedulability guarantees generally come
with the cost of increased complexity in the scheduling deci-
sions. This may lead to unnecessary overheads due to sched-
uler operation, which must be upper bounded and taken into
account in the system schedulability assessment. If a given
task-set is schedulable with a lower complexity scheduling
mechanism, then there might be little motivation for decid-
ing to use a higher complexity one.

Another important aspect pertaining to system operation
is the number of preemptions the tasks are subjected to.
These overheads are generally taken as null or negligible in
scheduling theory, but are in fact substantial.

A way to ease the task of quantifying preemption over-
head is to introduce restrictions on the preemptions. This
might be in the form of setting fixed preemption points
to enable a tighter bound on Cache Related Preemption
Delay (CRPD) [1]. Setting preemption points is an effec-
tive method to increase the schedulability of fixed task-
priority systems [2]. The mechanism denominated fixed non-

preemptive regions relies on specific preemption points in-
serted into the task’s code. This has to be done at design
time, relying on worst case execution time estimation tools
that can partition the task into non-preemptible sub-jobs [2].
This is highly restrictive since these points can not be re-
placed at run-time. Furthermore, the choice of preemption
points placement proves to be a non-trivial task for complex
control-flow graphs and flexibility, with respect to task-set
changes, is as well often recommended.

Having a more flexible mechanism helps to reduce the cost
of development and software maintenance, as well as that of
later software updates. It also facilitates the operation of
open systems which require the accommodation of workload
changes at runtime.

An example of a considerably more flexible limited pre-
emptive mechanism is the floating non-preemptive regions

model. In this model, a non-preemptive region of execution
is started when a higher priority job arrives when another
task τi is executing. This non-preemptive region has a lim-
ited duration of Qi time units.

This approach solely relies on the computation of the max-
imum admissible preemption deferral times for each priority
level. This information can be swiftly changed at run-time if
the task-set changes in order to adapt to the new workload
timing properties. Even though the floating non-preemptive

regions model allows considerably more flexibility than the
fixed non-preemptive regions one, the former cannot be eas-
ily exploited in order to increase the schedulability of fixed
task-priority scheduling policy for a sporadic task model.

In this paper we investigate the improvement on the schedu-
lability of task-sets by limiting the interference suffered by
lower priority tasks. This is done by introducing a new task
parameter termed ready-queue locking time instant. If a job
from a task has pending workload at its ready-queue lock-
ing time instant, then the ready queue is locked, preventing
higher priority workload from being inserted into the ready
queue and hence interfering with its execution. As a con-
sequence, the upper bound on the number of preemptions
each job might suffer is reduced in comparison to the reg-
ular fixed task-priority policy. A new preemption-threshold
scheduling policy is provided so that ready-queue locking
can be used together with the aforementioned mechanism.
The proposed methods may straightforwardly be used in
conjunction with the floating non-preemptive regions model,
which further helps on the reduction of preemptions during
workload execution.

The properties of the solutions provided in this work straight-
forwardly allow for on-line changes in the task-set, since they
only require an update of the relative ready-queue locking
time instant of every task. The complexity of the proposed
solutions is much lower than optimal uniprocessor schedul-
ing policies. Namely, running the ready-queue locking mech-
anism has a timing complexity of O(1) associated to it,
which is considerably better than the O(n × log(n)) asso-
ciated to earliest deadline first.

In the following section we introduce the system model.
Section 3 is dedicated to the related work. The ready-queue
locking concept is described in detail in Section 4. In Sec-
tion 5, the schedulability test is provided for the scheduling
policy. As a final theoretical contribution, the ready-queue
locking mechanism is integrated with preemption threshold,
this is the subject of discussion of Section 6. In Section 7,
upper bounds are derived on the number of preemptions
with the presented methods. Experimental results on uni-
formly generated task-sets are provided in the evaluation
section 8 as a means to attest the performance of the pro-
posed scheduling policies in this work. The final Section is
devoted to concluding the work and indicating the directions
of future work.

2. SYSTEM MODEL
In this paper, a task-set defined as a set τ = {τ1, . . . , τn}

composed of n tasks is considered. We assume fixed task-
priority assignment, where the element’s index encodes the

priority, and floating non-preemptive regions. The prior-
ities are assigned in a deadline monotonic fashion. The
task τ1 holds the highest priority and τn the lowest. The
set represented by hp(i) denotes the set of indexes of the
tasks of higher priority than τi, which may be defined as
hp(i) = {1, . . . , i − 1}. The set Γi contains the tasks with
priority higher than τi. Each task is characterized by the
four-tuple �Ci, Di, Ti,RQLi�. The parameter Ci represents
the worst-case execution time of each job from τi, Di is the
relative deadline and Ti the (minimum) distance between
consecutive job releases in the periodic or sporadic model
respectively. In fact our solution assumes sporadicity in the
arrival pattern of jobs (i.e. each task τi may release a po-
tentially infinite sequence of jobs separated by at least Ti

time units) and constrained deadlines (i.e. Di ≤ Ti). The
last task parameter (RQLi) states the instant in time, rel-
ative to a job release, at which the job of task τi locks the
ready queue if it still has pending workload. While the ready
queue is locked, job releases are not inserted into the ready
queue. Fully preemptive and floating non-preemptive fixed
priority scheduling policies are considered in this work.

3. RELATED WORK
A method for interference limitation was proposed by Ex-

press Logic [6] termed preemption threshold. In this work
a task τj may only preempt another task τi if τj ’s prior-
ity is higher than that τi’s preemption threshold. Wang
and Saksena provided an optimal priority assignment for
preemption-threshold scheduling policy [10]. The preemp-
tion thresholds are computed by aid of a search algorithm
that will test several possibilities until it either reaches a
solution that ensures schedulability for the given task-set
or fails. The preemption threshold values presented in this
paper are the ones which are sufficient for ensuring schedula-
bility. Later the work was extended [9] by the same authors
to assign the preemption threshold to the highest possible
priority value which maintains schedulability, thereby fur-
ther reducing the number of preemptions.

A distinct model to limit the interference was described
by Burns [4] (fixed preemption points). Keskin et al. discuss
the theory of deferred preemption schedulability [5]. The
author deemed the available test [4] optimistic, arguing that
the worst-case response time for a job of task τi is not neces-
sarily given by the first job instance of a synchronous release
situation, but that it may show up in a job k of task τi in the
level- i active period generated at a synchronous release sit-
uation. This gives the indication that finding the worst-case
situation for the deferred preemption fixed priority schedul-
ing is not straightforward.

The fixed preemption points methodology is exploited by
Bertogna et al. [2] leading to a significant increase on the
schedulability of the task-sets for fixed task-priority schedul-
ing. This work has the limitation of only being suited for
fixed preemptive regions.

The mechanism of preemption deferral has a number of
advantages as has been pointed out in several works [12, 11,
2]. These scheduling policies present a trade-off between the
extremes of non-preemptive and fully preemptive scheduling
fixed task priority . Yao et al. provide a comparison of all
the available methods described so far in literature [12].

τ1

τ2
RQL2

0

new jobs inserted when redy queue is unlocked

rql2 tt�

T1

ready queue locked time interval

Figure 1: Ready-Q Locking Example.

In [11], a way to bound the size of the floating non-preemptive
regions is provided. This upper-bound is computed using
the request bound function. It basically derives the amount
of idle time (βi) for the critical region of task τi in a syn-
chronous release situation.

Yao et al. devised a fixed priority scheduling method [13]
where a maximum bound on the length fixed non-preemptive
regions is provided. In this situation the computed βi’s are
generally larger than in the previous work [11] because the
last chunk of a task’s execution is not taken into account
during the analysis.

4. READY-Q LOCKING CONCEPT

The ready-Q locking mechanism is introduced as a means
to limit the amount of interference a task may suffer. It
enables a job from a task to request that, after a certain
time instant until its current workload completes, no other
job is inserted into the ready queue. By preventing higher
priority workload releases after a certain point in time, the
maximum interference a task may suffer is reduced. Each
task τi has a ready-Q lock time instant defined (RQLi). The
RQLi time instant is relative to release of the current job
and RQLi � Di. This translates into each job having a rqli
absolute time instant for which rqli � di, where di is the
absolute deadline of the job. Since we consider a constrained
deadline task model, at any time t there can only be at most
one active job from each task in the system.

In Figure 1 an example is provided showing the benefits of
the ready-queue locking mechanism. Consider the following
task-set, composed of two tasks in an implicit deadline task
model. The first task has C1 = 4, T1 = 10 and the second
task has C2 = 7, T2 = 12. Assume a situation where these
two tasks are synchronously released at a given time instant
t
�, as is displayed in Figure 1. In fully preemptive fixed
priority scheduling, task τ2 would suffer an interference of 6
time units from t

� to t
� + T2, which would then leave only

6 time units for task τ2 to execute its workload. since the
ready queue was locked by τ2 at rql2 = t

� + RQL2 = t
� + 6

it is then only subject to 4 time units of interference. Hence
task τ2 is able to complete its workload before the deadline,
consequently releasing the lock on the ready queue.

τi

τl

0 t

τj

rqll
rqll rqli rqli

rqll
rqll

rqll

rqli

rqlj

Figure 2: Evolution of rlist over Time

4.1 Ready-Q Lock Implementation Consider-
ations

The scheduler will manage a list of rqli time instants for
all active jobs (i.e. all the jobs in the ready queue at any
time instant) from now onwards referred to as rlist. The list
has at most n − 1 valid entries at any time. Each element
in the rlist is composed by a time instant and the task to
which it belongs to.

In Figure 2 a depiction of the rlist evolution with time
is shown. At each relevant time instant an arrow points to
the current rlist data structure. The solid black triangles
represent rqli time instants relative to each job depicted in
the figure.

Algorithm 1: Ready Queue Locking Management

on event= release job from task τi:

rqli ← release + RQLi

if QueueIsLocked then

τl ← GetTaskLockingReadyQ()
append job from τi to τl list of blocked tasks

on event= first dispatch of job from task τi:

if rqli < rlist[0] then
rlist.push(rqli)

on event= t == rlist[0]:
assign the lock of the ready queue to the task which
set rlist[0]
rlist.pop()

on event= terminate execution of τi job:

insert all tasks blocked by τi into the ready queue

In Algorithm 1 a pseudo-code description of the ready-Q
locking management mechanism is presented. The mech-
anism is described as a set of callback procedures for the
events of interest. When a job is dispatched for the first
time (i.e. no workload was executed yet) the scheduler will

get the rqli from the task control block and evaluate its in-
sertion into the rlist. In this situation, it holds true that the
job being dispatched is the highest priority job in the ready
queue. It also holds true that there can only be valid en-
tries in the rlist belonging to jobs of lower or equal priority
than the one being dispatched. If this would not hold then
some higher priority jobs would be in the ready queue which
implies that the current job could not be dispatched at this
time. As a consequence of this observation, we state that if
two tasks τi and τj have jobs in the ready queue at some
time t and i > j then the response time of the job from τj

will be smaller than the one from τi.
At time of first dispatch of a job from task τi the scheduler

compares rqli with the value on the top of the list. Two
situations may then be observed.

1. rqli is smaller than the value on top of the list, which
leads to the insertion of rqli in the rlist as the top
element

2. rqli is greater or equal than the value on top of the
list, which leads to rqli being discarded.

In the situation 1 there exist no job that will lock the
ready queue before rqli and since the job from task τi may
need to lock the queue in order to complete its workload the
value rqli has to be considered. In the later situation (2)
there exists a job from a lower priority task τl which will
lock the ready queue before the job from task τi requires it.
If by the time rqli the job from τi still has pending workload,
then the job from τl has pending workload as well. Which
means that at time rqli the ready queue is locked by the job
from τl (rqli > rqll). The job from τi will then proceed to
complete its workload without requiring to lock the ready
queue since a lower priority task conducted that procedure
on its behalf. The ready queue remains locked until the job
from τl finishes its execution.
At any time instant t, if rlist is not empty, there exists a

timer which will fire at time t
� = rlist[0], the time instant

at the top of rlist. When the timer fires, all the higher
priority releases that occur after t

� and before rlist[1] (if
such value exists) are inserted into the ready queue once the
job from the task that sets rlist[0] finishes its workload. In
the timer event handler the head of rlist is popped. A task
locks the ready queue between the time instant t� (at which
a timer set by it fires) and a time instant t

�� when either
it completes execution or the timer set by some other task
fires. Any job released in the interval [t�, t��] is inserted into a
separate buffer which stores a pointer to all the tasks which
are currently blocked. Once task τi finishes its workload
the scheduler will check whether there were tasks blocked
by task τi, in case there were, these are then moved from
the separate queue into the ready queue with their correct
priority.
In an extreme case RQLi could be set to 0. This would

constitute effectively non-preemptive scheduling, where once
jobs from τi start to execute they would not suffer any fur-
ther interference. This could jeopardize the timing prop-
erties of tasks with priority greater than i. The value of
RQLi has then to be decided upon considering the higher
priority workload timing guarantees (i.e. no higher priority

task can miss a deadline due to a lower priority one). These
considerations are developed in the following sections.

When the ready queue is locked, the tasks released in
the meantime are inserted into a separate circular buffer.
The task τi that currently holds the ready queue lock has
a pointer for the first task to be released while it held the
lock, and another pointer to the last task to be released
while it held the lock. Once task τi terminates the tasks in
the circular buffer between the start and the end pointer are
inserted into the ready queue. Notice that the complexity of
operating this mechanism is reduced in comparison to EDF.

It is important to stress that all operations on the rlist
have O(1) complexity. A ready-queue lock is only enforced
at the release of some higher priority task, and a new ele-
ment can only be added to the rlist at the time of the first
dispatch of a job. In the same manner an element in rlist
is only removed when the job responsible for its insertion
terminates.

5. MAXIMUM INTERFERENCE COMPU-
TATION

In this section the computation of the maximum interfer-
ence a job might suffer in a ready queue locking framework is
the subject of study. This computation is carried out on the
maximum busy period of the level-i priority for task τi. The
worst-case level-h busy period value represents the biggest
amount of time workload from tasks with priority higher or
equal than τi may execute continuously, assuming that all
the level-h priority tasks are blocked by the maximum al-
lowed time B. The largest of the level-i busy period occurs
when all tasks in Γi are release synchronously with τi and
are blocked by the longest time possible B [5].

The worst-case level-h busy period is defined as:

Li(B)
def
= min {t|t− (B + rbf(Γi ∪ τi, t)) = 0} (1)

where

rbf(A, t)
def
=

�

τj∈A

�
t

Tj

�
× Cj . (2)

Let us assume that each task locks the ready queue at
time RQLi. A bound on the higher priority interference
is required. This bound consists on all the higher priority
releases, prior to the release of a job from task τi, which
have not yet completed at the release time instant and all
of the higher priority releases that occur since the release of
τi and RQLi.

Theorem 1. The maximum interference any job from task

τi is subject to is generated in the level-i busy period where

the first job of task τi in the busy period is released φ time

units after a synchronous release of all higher priority tasks,

where 0 � φ � Li−1(Qi), where Qi denotes the maximum

blocking time that the tasks in the set Γi ∪ τi admit.

Proof. Assume that a synchronous release of all higher
priority tasks occurs at time t = 0 and that a release from

τi occurs at t = 0 as well. In this scenario the interference
the current job from task τi can suffer is I0. Let us assume
now that φ �= 0. For this case the interference the job from
task τi is I0−φ, provided that the number of higher priority
releases in the interval [0,RQLi] is the same as for the inter-
val [0,RQLi+φ]. In a situation where the number of higher
priority releases in the interval [0,RQLi +φ] is greater than
the count from [0,RQLi], then the interference suffered by
the job of task τi is I0 − φ+W , where W is the additional
workload released in the interval [RQLi,RQLi + φ] which
will interfere with τi until Di. The φ for which the interfer-
ence is greater constitutes the worst-case scenario for a job
from task τi.

After Li−1(Qi) time units have elapsed since the previous
synchronous release of all higher priority tasks, an idle time
has occurred in the processor. If for some φ > Li−1(Qi)
a situation of bigger amount of higher priority workload is
generated then the critical scenario would not start with a
synchronous release of all higher priority workload, which
would contradict the first part of the proof. Since higher
priority tasks can not endure a larger blocking time than
Qi then the same value is at most the maximum admissible
blocking time for tasks of priority higher or equal to i. Hence
the Theorem is proved.

Definition 1 (Job frame). The time interval between

a job release and its deadline is termed job frame.

In order to find the maximum amount of interference one
has then to find the correct higher priority synchronous re-
lease offset φ. The value φ is extracted by looking at the
frame considering all the possible φ values in the interval
[0, Li−1(Qi)]

Each frame of the task τi, in the busy period which starts
with a synchronous release of the tasks in the level i − 1
priority level, has to be checked for its temporal behaviour.
The deadline is met in q

th frame if the slack in the frame is
greater or equal than 0.

Let us define the following variable in order to ease the
discussion:

r
q
i (φ) = (q − 1)× Ti + φ (3)

The variable r
q
i (φ) encodes the value of the release of the

q
th job from task τi relative to an absolute time instant,
with a given φ offset.

All jobs in the level-i busy period have to be checked for
deadline violations. In order to compute the number of jobs
in the busy period, a maximum possible blocking for the
level-i has to be considered. The level-i busy period can
never be blocked by more than Qi time units, since the
tasks of priority greater than τi could otherwise suffer dead-
line misses. On the other hand τi can never be blocked by
more than Di−Ci, hence an upper bound on the number of
jobs from τi in the busy period can be obtained considering
min(Qi, Di − Ci) as the workload blocking the level-i busy
period.

K =

�
Li(min(Qi, Di − Ci))

Ti

�
(4)

4

1st frame 2nd frame

32302825212015141075
0

8

6

W
o
rk

lo
a
d

t
τ1−3 τ2τ1 τ1 τ2 τ1 τ3 τ2τ1 τ1 τ2 τ1 τ3

Figure 3: Schedulability Condition Depiction

The slack in each frame q may be expressed by:

β
q
i = min

φ
{max(max

t∈[rq−1
i (φ),rq−1

i (φ)+RQLi]
{t− (rbf(Γi, t) + q × Ci)},

(rq−1
i (φ) +Di)− (rbf*(Γi, r

q−1
i (φ) + RQLi) + q × Ci))}

(5)

Where

rbf*(A, t)
def
=

�

τj∈A

��
t

Tj

�
+ 1

�
× Cj . (6)

Notice that equations 2 and 6 only differ in value in multi-
ples of Tj . The usage of both request bound function forms
is tied to reducing equation display complexity. The Equa-
tion 5 is composed by two terms. In the first one, the maxi-
mum idle time in the schedule is searched for in the interval
between the release of a job from task τi and the ready queue
locking time instant of the said job. In the second term, the
maximum idle time for the given frame is searched in the
interval between the ready queue locking time instant of the
job and its deadline. Since higher priority jobs released in
this interval do not interfere with task τi, it suffices to com-
pute the idle time at the deadline of the job. For a given φ,
the maximum idle time is then the maximum value given by
the two mentioned terms. Then, for all the possible φ the
minimum of the idle times is stored in β

q
i .

Considering all the frames, the maximum amount of block-
ing that a job from task τi can endure is then defined as:

βi = min
q

{βq
i } (7)

A simple depiction of the schedulability condition is pro-
vided in Figure 3. In this example the taskset is composed of

tLi−1(βi) + rq−1
i (0) + RQLirq−1

i (0) + RQLi

Figure 4: Set of Relevant Offsets for Frame q

three tasks. All tasks are implicit deadline tasks with param-
eters (Ti, Ci). Task τ1 has (5, 1), and τ2, τ3 have (7, 2) and
(16, 4) respectively. It is implicitly assumed that RQLi = Di

to simplify the visualization. The subject of schedulability
analysis is in this case τ3. Two frames from τ3 are present in
the figure. One can observe that β

1
3 = 4 and β

2
3 = 8. Since

both frames present a non-negative slack value, then the τ3

is deemed schedulable. Note that the maximum blocking
time admissible for τ3 is then 4 time units. This then im-
plies that the level-3 busy period terminates at time instant
24, hence no more frames from task τ3 require to be checked.

The maximum admissible blocking time for task τi is de-
noted by βi. The task τi is schedulable if βi > 0, when task
τi is the task with lowest priority in the system.

In order for the task-set to be schedulable the RQLi val-
ues for all the tasks have to be set so that the higher priority
tasks temporal guarantees are still met. This matter is dis-
cussed in the next subsection.

For every q
th frame only a subset of the φ ∈ [0, Li−1(Qi)]

needs to be checked. The higher priority workload increment
for each frame occurs only at the boundary of the minimum
inter arrival time of each higher priority task. Since only
offsets up to the maximum busy-level period of the i − 1
priority level needs to be checked as has been shown in The-
orem 1, only the set of possible higher priority releases in the
interval [0, Li−1(Qi)] need to be checked. This set is defined
as:

Φq
i

def
= {0} ∪

�

j∈hp(i)

���
r
q−1
i (0) + RQLi

Tj

�
,

· · · ,
�
Li−1(βi) + r

q−1
i (0) + RQLi

Tj

��
×

Tj − (rq−1
i (0) + RQLi)

�
(8)

In Figure 4 the set of relevant offsets for the given frame
is graphically represented. The offsets are intuitively shown
as the distance between the higher priority releases in the�
r
q−1
i (0) + RQLi, Li−1(βi) + r

q−1
i (0) + RQLi

�
interval. Of

course φ = 0 still has to be tested since the synchronous
release of all the tasks in the level − i priority band might
still generate the critical interference scenario for task τi.

5.1 Ready-queue Locking Time Instant
The RQLi value has to be such that τi has enough time

to carry out its workload and the higher priority task are
not blocked by more time than it is admissible.

Each task in the system may endure a maximum blocking
time without endangering its timing guarantees [13] (i.e. all
tasks may be blocked by a lower priority task up to a certain
limit without missing any deadline)

The task with highest priority in the system can always
sustain a maximum blocking time of β1 = D1 − C1.

Let us assume that RQL2 = D2 − Q2. An hypothetical
release from task τ1 arriving at time instant RQL2 would
see its ready queue insertion delayed by task τ2 by at most
Q2 time units. Since, by definition, Q2 � β1 this job from
task τ1 would still meet the deadline.

The concept may be generalized to n tasks by using the
following relations:

Qi
def
=

�
0 , if i = 1

minj∈hp(i)(βj) , if 1 < i � n
(9)

Equation 9 defines the maximum blocking time (Qi) that
all task of higher priority than i may endure without missing
a deadline.

Assuming RQLi = Di −Qi ensures then that, after lock-
ing the ready queue, a job from task τi can only maintain
it blocked by at most Qi time units, hence not jeopardising
higher priority task’s temporal behaviour. Even if a syn-
chronous release of all tasks in the i− 1 priority level occurs
after a ready-queue lock, at time instant rqli then the queue
will not be locked by more than Qi.

In a scenario where Ci < Qi then RQLi = Di −Ci. Since
values are only inserted into the rlist at time of the first
dispatch of a job, it might be the case that the first dispatch
of the job occurs after rqli, and hence the job might suffer
more interference than it is admissible. By setting RQLi =
Di − Ci it is ensured that the first dispatch of the job will
always occur before rqli.

For each task in the system, the RQLi is then set in the
following manner:

RQLi = Di −min(Qi, Ci) (10)

Theorem 2. The ready-queue locking scheduling policy

dominates over fully preemptive fixed task priority.

Proof. The maximum interference UIi is smaller or equal
to the interference the same task τi may endure without
the ready-queue locking mechanism, hence all the task-sets
scheduled by fully preemptive fixed priority are schedulable
with ready-queue locking. Since the UIi may at times be
smaller than the maximum interference in fully preemptive
scheduling there exist task-sets schedulable by ready-queue
locking which fail to be in fully preemptive scheduling.

It is worth noting that setting RQLi = Di−min(Qi, Ci) is
not necessarily the optimal RQLi time instant assignment.
This is driven by the fact that an earlier locking will be pos-
sible in many situations, caused by a worst-case response
time of a task which is shorter than RQLi. Even more, the
higher priority task τj which limits Qi may have a worst-
case phasing such that an earlier RQLi will not lead to a

reduction of direct interference and thus have no negative
effect on the higher priority task and a later than worst-case
release would mean more progress for the locking task. How-
ever, deriving the optimal RQLi is non-trivial and beyond
the scope of this paper.

6. READY-Q LOCKING WITH PREEMPTION
THRESHOLD

The initial preemption-threshold assignment algorithm has
been presented in [10]. The main drawback of the preemption-
threshold assignment method is that it does not easily allow
for a maximum blocking time per task computation. With
this in mind the algorithm is rethought. As opposed to the
solution proposed in [10] the taskset is parsed from the high-
est priority task to the lowest priority one.

Let us assume that the preemption threshold (πi) of a task
τi is πi = min(j|Ci � mink∈{j+1,··· ,i−1} βk). Upon release
a job from task τi is inserted into the ready queue (in case
the ready queue is not locked) with priority i. At the time
of its first dispatch onto the processor its priority is elevated
to πi. The set Γh

i denotes the set of tasks of higher priority
than πi, whereas the set Γl

i denotes the set of tasks with
priority higher than i but lower than or equal to πi. In or-
der to ensure schedulability of the system, for each task, an
initial upper-bound on the maximum blocking tolerance is
provided. Initially βi = min(Di−Ci, Qi), which is the max-
imum value that the blocking time could potentially take.
The level − i busy period is then parsed and checked for
deadline misses.

Let us first define t
q
s as the worst-case time instant for the

first dispatch of the qth job from task τi. This time would be
similar to computing the length of the level− i busy period
without considering the q

th job from task τi. where t
q
s is

the worst-case instant in time when the q
th job of task τi

starts to execute considering a blocking of βi time units in
the beginning of the busy period.

t
q
s = min{t|t− (βi + rbf(Γi, t) + (q − 1)× Ci) � 0} (11)

Notice that if tqs > r
q
i (0) + RQLi then the q

th job from
task τi would miss a deadline since Di − RQLi � Ci.
A deadline is missed in the q

th frame when there does not
exist any idle time instant for the level − i busy period in
the interval [tqs, r

q
i (φ)+Di] . This condition may be written

in the following form:

�t ∈ [tqs, r
q
i (φ) + RQLi]|t − (βi + rbf(Γh

i , t
q
s) + rbf(Γl

i, t) + q × Ci) � 0
(12)

∧

Di − (βi + rbf*(Γh
i , t

q
s) + rbf*(Γl

i, r
q
i (φ) + RQLi) + q × Ci) � 0

(13)

The condition expressed in 12 relates to the idle time oc-
currence in the interval between the release time of the q

th

job of task τi and the instant in time at which it locks the
ready queue. The second condition 13 relates to the search
of idle time after the ready-queue is locked by task τi, in an

interval where higher priority workload with higher prior-
ity than τi’s preemption threshold do not interfere with the
execution of τi.

If both conditions are met simultaneously, then for the
given βi a deadline may be missed in the q

th frame of task
τi In this case, the βi parameter has to be decreased.

β
−
i

def
= min(min

t∈A
{t− (βi + rbf(Γi, t) + (q − 1)× Ci)},

min
t∈[tqs,r

q
i (φ)+RQLi]

{t− (βi + rbf(Γh
i , t

q
s) + rbf(Γl

i, t) + q × Ci)},

Di − (βi + rbf*(Γh
i , t

q
s) + rbf*(Γl

i, r
q
i (φ) + RQLi) + q × Ci))

(14)

where A is the set of time instants when higher priority
releases occur in the time interval [rqi (φ), t

q
s]:

A
def
= {0} ∪

�

j∈hp(i)

���
r
q−1
i (φ)

Tj

�
, · · · ,

�
t
q
s

Tj

��
× Tj

�
(15)

In Equation 14 there are three terms present. The first
one relates to the tqs value, and both the second and the third
relate to the idle time available in the q

th frame of task τi

for the given φ parameter. In the second and third terms
the minimum amount of βi reduction required to compute
all the workload in the frame is computed. In the first pa-
rameter the minimum βi decrease which ensures that the t

q
s

time instant occurs before one higher priority job is com-
puted. The β decreased computed in the first term aims at
decreasing the t

q
s such that the q

th job from τi starts ear-
lier potentially suffering smaller interference from tasks of
higher priority which is still lower than the τi preemption
threshold. The minimum value between the three param-
eters is then chosen to be the value of β−

i for the current
algorithm iteration.

Finally the current maximum blocking time allowed by
task τi is obtained by:

βi = βi − β
−
i (16)

If the deadline is met for the q
th frame with φ = 0, using

ready-q locking still requires all the possible offsets to be
tested. As is the case for the ready-q locking mechanism
only a subset of all possible φ values has to be tested, this
subset Φq

i is defined in Equations 15.
When the following condition is met

∀q ∈ {0, · · · , K}, ∀φ ∈ [0, Li−1(β)], ∃t ∈ [rqi (0), r
q
i (0) + Di] :

t − βi + rbf(Γh
i , t

q
s) + rbf(Γl

i, t) + q × Ci � 0 (17)

then no deadlines are missed for task τi. Ensuring that the
condition is met for all the tasks in the taskset will ensure
the schedulability of the taskset.

The insertion of the rqli value into the rlist data structure
is considered at the first dispatch of a job, which coincides
with the time instant of priority promotion of the job to πi,
hence the priority ordering between jobs with valid entries
in the rlist is never changed after the insertion.

Algorithm 2: Preemption Threshold Assignment
with Ready-q Locking

Input : T

β1 = D1 − C1

π1 = 1
for i = {2, · · · , n} do

πi = min(j|Ci � mink∈{j+1,··· ,i−1} βk)
Qi = minj∈hp(i){βj}
RQLi = Di −min(Qi, Ci)
βi = min(Di − Ci, Qi)

K =
�

Li(βi)
Tj

�

for q ∈ {1, · · · ,K} do

for φ ∈ Φq
i do

t
q
s = min{t|t− (βi + rbf(Γh

i , t) +
rbf(Γl

i, t) + (q − 1)× Ci) � 0}

while �t ∈ [tqs, r
q
i (φ) + RQLi]|t− (βi +

rbf(Γh
i , t

q
s) + rbf(Γl

i, t) + q × Ci) �
0 ∧Di − (βi + rbf*(Γh

i , t
q
s) +

rbf*(Γl
i, r

q
i (φ) + RQLi) + q × Ci) � 0 do

β
−
i = min(mint∈A{t−(βi+rbf(Γi, t)+

(q−1)×Ci)},mint∈[tqs,r
q
i (φ)+RQLi]

{t−
(βi + rbf(Γh

i , t
q
s) + rbf(Γl

i, t) + q ×
Ci)}, Di − (βi + rbf*(Γh

i , t
q
s) +

rbf*(Γl
i, r

q
i (φ) + RQLi) + q × Ci))

βi = βi − β
−
i

if βi < 0 then

return UNSCHED

t
q
s = min{t|t− (βi + rbf(Γh

i , t) +
rbf(Γl

i, t) + (q − 1)× Ci) � 0}

return SCHED

Notice that in a situation where RQLi = Di the pro-
vided schedulability test and preemption-threshold assign-
ment technique is still valid for the regular [6] preemption-
threshold mechanism.

Contrary to the method presented in [10] which assigns πi

the highest value that ensures schedulability (if such exists),
Algorithm 2 assigns πi the smallest possible value.

Notice that similarly to the Ready-q locking assigning
RQLi = Di − min(Qi, Ci) is not optimal. Given the RQLi

value for each task, the schedulability test provided in Al-
gorithm 2 is necessary and sufficient.

6.1 Floating Non-preemptive Regions
In a floating non-preemptive region scheduling, each task

has the parameter Qi defined. When a task τi is executing
and τi is not the highest priority task in the ready queue,
then it is said that a preemption deferral chain is occurring.
A preemption deferral chain, as is shown in Figure 5 starts
with a higher priority release, and lasts at most Qi time
units. At the end of a preemption deferral chain a preemp-
tion invariably happens. In Figure 5 task τi is executing

Qi

τi

τj

τk

t

Figure 5: Floating Non-preemptive Region Schedul-

ing Example

when a job from τj is released, at some time in between a
job from τk is released. The deferral chain ends exactly Qi

time units after the first higher priority release.
All the scheduling policies presented so far were created

with the intention of enabling the floating non-preemptive
regions usage. Effectively by extending the schedulability
of fixed task priority as a consequence the Qi values will
be greater. Having bigger values for the non-preemptive re-
gions is obviously advisable since this will inevitably allow
for a reduction on the number of preemptions, and will en-
able less pessimism in the preemption delay computation [7].
In the simple ready queue locking, and in the ready queue
locking with preemption threshold maximum blocking times
admissible for all the tasks are computed. This information
alone enables the usage of the floating non-preemptive re-
gions scheduling.

7. PREEMPTION UPPER BOUNDS
In this section a brief comparison between the preemption

upper bound guarantees of the proposed solutions is pro-
vided. The value WCRTi denotes the worst-case response
time of task τi. For fully preemptive

�

j∈hp(i)

�
WCRTi

Tj

�
(18)

The simple ready-queue locking scheduling policy ensures
that preemptions may only occur in the time interval be-
tween release and the locking of the ready-queue. Hence
with ready queue locking the worst-case number of preemp-
tions will never be greater than in the fixed task priority
scheduling.

�

j∈hp(i)

�
min(WCRTi,RQLi)

Tj

�
(19)

The regular preemption threshold mechanism ensures that
only tasks with higher priority than the preemption thresh-
old priority may in fact preempt.

�

j∈hp(πi)

�
WCRTi

Tj

�
(20)

For the preemption threshold with ready queue locking
scheduling policy, the preemption upper-bound for each task

is guaranteed to be smaller or equal than the value for
any other policy described in this work. In the worst-case
scenario the job from task τi would start execution im-
mediately after release. In this situation assuming it exe-
cutes for the worst-case execution time, suffering the worst
possible interference it can be at most preempted during
min(WCRTi,RQLi) time units by the tasks with priority
greater than πi.

�

j∈hp(πi)

�
min(WCRTi,RQLi)

Tj

�
(21)

Obviously with floating non-preemptive regions the max-
imum number of preemptions each job would suffer is upper
bounded by:

�
Ci

Qi

�
(22)

As as been shown in [8], for small enough values of Qi this
bound is worse than the ones dictated by the higher priority
releases. Hence for all the scheduling policies provided the
upper bound on the number of preemptions is given by the

min(fully preemptive bound,
�

Ci
Qi

�
).

8. EVALUATION
In this section the proposed solutions are evaluated in

terms of schedulability performance against fully preemptive
fixed task-priority and regular preemption threshold.

Both proposed scheduling policies were evaluated with re-
spect to schedulability. In each model all tasks are generated
using the unbiased task-set generator method presented by
Bini (UUniFast) [3]. Tasks are generated for every utiliza-
tion step in the set {0.8, 0.82, 0.85, 0.87, 0.93, 0.95, 0.97, 0.98}
randomly. Their maximum execution requirements (Ci) were
uniformly distributed in the interval [20, 400]. For every uti-
lization step 1000 task-sets are trialled and checked whether
the respective algorithm considers it schedulable. Task set
sizes of 4, 8, and 16 tasks have been explored.

In the first situation the task-set behaves in a fully peri-
odic manner with implicit deadlines (Di = Ti). The results
are depicted in Figures 6(a) to 6(c). Note, that the task
set itself, might be sporadic, but the analysis does take only
the minimal inter-arrival times and arbitrary phasings into
account. In the second situation constrained deadlines are
investigated. The constrained deadline model was imple-
mented by randomizing the period of the tasks in relation to
their deadlines. For this data run the relative deadlines are
constructed in the following manner Di = Ti−S, where S is
a random variable with uniform distribution in the interval
[0, 0.2× Ti]. The results of these are put into juxtaposition
with the implicit deadlines results in Figures 7(a) to 7(c).

The data relative to regular fixed priority is tagged with
FP. Preemption threshold is shown with tag PT. The simpler
method of ready queue locking is addressed by RQ and the
simple ready queue locking used together with preemption
threshold is tagged with PTRQ.

8.1 Discussion
The pattern present in the results is clear. The simple

ready-queue locking mechanism outperforms regular fixed
priority as expected. However, it only rarely outperforms
preemption threshold and that comparison deteriorates with
increasing task set sizes and only gives it an overall gain
for 4 tasks in the constrained deadline case. It is however
noteworthy that there is no clear dominance relationship
between PT and ready-queue locking, as some tasks sets
are deemed schedulable with one, but not the other. This
lack of dominance holds both for implicit and constrained
deadlines models as well as for the different task set sizes
investigated. The PTRQ solution performs always better
than the simple preemption-threshold mechanism or simple
ready queue locking. Though again the benefits of PTRQ
dilute with the increase of the taskset size.

9. CONCLUSIONS AND FUTURE WORK
In this work several scheduling policies are proposed which

aim to reduce the interference suffered by lower priority
tasks in fixed task-priority scheduling. A new schedula-
bility and preemption-threshold priority assignment algo-
rithm is provided, which is much less complex than the one
available in literature [10]. To the best of our knowledge,
this is the first work which extends the schedulability of
fixed task-priority systems and enables the usage of float-
ing non-preemptive regions. Previous work either required
fixed preemption points inserted into the tasks’ code [13],
or would not allow for the computation of the maximum al-
lowed blocking times of each task [10]. We have also shown
that the preemption delay upper-bound per task is smaller in
the case of the preemption threshold with ready queue lock-
ing scheduling policy. All the proposed mechanism maintain
low complexity of operation while enabling a considerable
increase on the schedulability of task-sets. As future work
we intend to implement all the scheduling policies proposed
in this work in a real-time kernel in order to assess its im-
plementation overheads. Furthermore, we will devote more
effort to identify an RQL instance closer to the optimal one
to increase the performance of the RQL mechanisms.

Acknoledgements
This work was partially supported by national funds through
the FCT (Portuguese Foundation for Science and Technol-
ogy) and by ERDF (European Regional Development Fund)
through COMPETE (Operational Programme ’Thematic Fac-
tors of Competitiveness’), within REPOMUC project, ref.
FCOMP–01-0124-FEDER-015050, by FCT and the EU by
ARTEMIS JU funding, within RECOMP project, ref. ARTE-
MIS/0202/2009, JU grant nr. 100202 and by FCT and the
ESF (European Social Fund) through POPH (Portuguese
Human Potential Operational Program), under PhD grant
SFRH/BD/81085/2011.

(a) Implicit Deadlines, 4 tasks (b) Implicit Deadlines, 8 tasks (c) Implicit Deadlines, 16 tasks

Figure 6: Simulation Results for the Implicit Task Model

(a) Constrained Deadlines, 4 tasks (b) Constrained Deadlines, 8 tasks (c) Constrained Deadlines, 16 tasks

Figure 7: Simulation Results for the Constrained Task Model

10. REFERENCES
[1] S. Altmeyer, C. Maiza, and J. Reineke. Resilience

analysis: tightening the crpd bound for set-associative
caches. In LCTES 2010.

[2] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao,
F. Esposito, and M. Caccamo. Preemption points
placement for sporadic task sets. In ECRTS 2010.

[3] E. Bini and G. Buttazzo. Biasing effects in
schedulability measures. In ECRTS 2004.

[4] A. Burns. Preemptive priority-based scheduling: an
appropriate engineering approach. In S. H. Son,
editor, Advances in real-time systems. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1995.

[5] U. Keskin, R. Bril, and J. Lukkien. Exact
response-time analysis for fixed-priority
preemption-threshold scheduling. In ETFA 2010.

[6] W. Lamie. Preemption threshold. White paper,
Express Logic. Available online.

[7] J. Marinho, V. Nélis, S. M. Petters, and I. Puaut.
Preemption delay analysis for floating non-preemptive
region scheduling. In DATE 2012.

[8] J. Marinho and S. M. Petters. Job phasing aware
preemption deferral. EUC 2011.

[9] M. Saksena and Y. Wang. Scalable real-time system
design using preemption thresholds. In RTSS 2000.

[10] Y. Wang and M. Saksena. Scheduling fixed-priority
tasks with preemption threshold. In RTCSA 1999.

[11] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the
maximum length of non-preemptive regions under
fixed priority scheduling. RTCSA 2009.

[12] G. Yao, G. Buttazzo, and M. Bertogna. Comparative
evaluation of limited preemptive methods. In ETFA

2010.

[13] G. Yao, G. Buttazzo, and M. Bertogna. Feasibility
analysis under fixed priority scheduling with limited
preemptions. Journal Real-Time Systems, 47(3), 2011.

