

Handling Mobility on a QoS-Aware Service-
based Framework for Mobile Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-101202

Version:

Date: 12-01-2010

Joel Gonçalves

Luis Lino Ferreira

Luis Miguel Pinho

Guilherme Silva

Technical Report HURRAY-TR-101202 Handling Mobility on a QoS-Aware Service-based Framework for

 Mobile Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Handling Mobility on a QoS-Aware Service-based Framework for Mobile
Systems
Joel Gonçalves, Luis Lino Ferreira, Luis Miguel Pinho, Guilherme Silva

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources.
Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-
party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices
applications which supersede currently available resources. It is therefore important to provide frameworks which allow
applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other
nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of
Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded
by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This
paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled
applications on top of the Android Operating system.

Handling Mobility on a QoS-Aware Service-based Framework for Mobile Systems

Joel Gonçalves, Luis Lino Ferreira, Luis Miguel Pinho, Guilherme Silva
CISTER Research Center

Polytechnic Institute of Porto (ISEP/IPP)
Porto, Portugal

{vjmg, llf, lmp, grss}@isep.ipp.pt

Abstract—Mobile applications are becoming increasingly more
complex and making heavier demands on local system
resources. Moreover, mobile systems are nowadays more open,
allowing users to add more and more applications, including
third-party developed ones. In this perspective, it is
increasingly expected that users will want to execute in their
devices applications which supersede currently available
resources. It is therefore important to provide frameworks
which allow applications to benefit from resources available on
other nodes, capable of migrating some or all of its services to
other nodes, depending on the user needs. These requirements
are even more stringent when users want to execute Quality of
Service (QoS) aware applications, such as voice or video. The
required resources to guarantee the QoS levels demanded by
an application can vary with time, and consequently,
applications should be able to reconfigure themselves. This
paper proposes a QoS-aware service-based framework able to
support distributed, migration-capable, QoS-enabled
applications on top of the Android Operating system.

Quality of Service, mobile systems, Android OS

I. INTRODUCTION
Mobile applications are increasingly more ubiquitous and

more dynamic. Furthermore, mobile systems are now open
to third-party developed applications, being expectable that
users put more and more pressure on the locally available
resources. Even considering the substantial increase in
devices’ capabilities, it is not expectable that they will be
able to simultaneously support all applications the users may
want to execute over time. This lack of support can be
dynamic (lack of execution resources such as CPU or
memory) or even static (lack of space for application code).
The solution to this is to allow applications to scavenge
resources available in other nodes by migrating some or all
of its services (or of other applications) into other nodes (or
from other nodes). In mobile devices it is also of paramount
importance to provide applications with consistent
performance parameters, i.e. application that offer adequate
QoS levels to the users.

Therefore, there is a growing need to develop
frameworks and applications which rely on global resources
and that are able to reconfigure considering system-wide
distribution of application and resources, at the same time
guaranteeing the QoS levels required by the applications.

For that to succeed, applications must be able to work in
a distributed manner and reconfigure themselves
autonomously in response to system resource or
configuration changes. Reconfiguration may occur due to

resource scarcity (e.g., a node is going to shutdown), due to
new nodes becoming available, or due to user-induced
changes (e.g. the user may want to change location and/or
device where the application is executing). Therefore,
applications must support: i) the capability to connect
seamlessly to remote services; ii) the capability to move
some of its services to remote nodes. The first characteristic
can be supported by component [1] or service-based [2]
frameworks. The second characteristic must be supported by
extending those frameworks with code mobility capabilities,
allowing to both install and run(parts of) applications in
remote nodes [3].

A mobility framework must also enable the run-time
relocation of services in response to system changes, either
structural or quality-driven. QoS parameters, like timeliness
and bandwidth requirements, must be considered both in the
regular operation of the applications, and in reconfiguration
transients. Code mobility can have a large impact on the
system’s performance [4]. Such operations may,
momentarily, require large amounts of resources such as
network bandwidth (to transfer code and state), and CPU
time (needed to reconfigure the system). Consequently,
transient QoS impairments, such as delays, on applications
must be accounted for when trying to guarantee its QoS
requirements.

From the point of view of application developers, the
introduction of new functionalities must require a small
amount of effort. The integration of new functionalities with
the currently existent concepts and architectures should be
(quasi-)transparently with the existent middleware and
operating system. The goal must be to provide a
development framework where configuration issues are
hidden from applications (except in management code).
Therefore, development frameworks must use the same
concepts of interaction both for local and remote services.
This is the concept behind the approach proposed in this
paper. It provides reconfiguration and migration capabilities,
extending the main application abstractions used in the
Android operating system – Activities, Services and Intents –
allowing for transparent interaction in distributed
configurations.

The Android operating system is used both due to its
open source nature and potential market, but also due to its
innovative architecture. Although its use to support real-time
applications is still debatable [5] it nevertheless provides a
suitable architecture for quality of service-aware applications
in ubiquitous, embedded systems [6].

!000111000 IIIEEEEEEEEE///IIIFFFIIIPPP IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn EEEmmmbbbeeeddddddeeeddd aaannnddd UUUbbbiiiqqquuuiiitttooouuusss CCCooommmpppuuutttiiinnnggg

!777888-­-­-000-­-­-777666!555-­-­-444333222222-­-­-222///111000 $$$222666...000000 ©©© 222000111000 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///EEEUUUCCC...222000111000...222444

!777

Applications like multimedia and gaming are usually
resource hungry, either in terms of CPU utilization but also
in relation to memory. These applications usually adapt their
QoS levels to the current device, but obviously users would
always like to have the highest QoS level possible. To that
purpose parts of the application can be offloaded to other
nodes in order to achieve a higher QoS level.

The participating nodes (coalition) might be physically
near and in the same IP network. But with the advent of the
Internet of Things it is expected that not only smartphones
can cooperate but also fixed nodes, like game consoles,
televisions, PDAs and notebooks. Another possibility is that
participating nodes might also connect to cloud services. In
fact, the main requirement is that these nodes should achieve
the QoS level required by the application, which due to
network QoS management limitations, might be more
achievable on a LAN environment.

Coalition establishment depends on the availability of
nodes and on the algorithms used to choose the participating
nodes. We assume that the availability of the envisaged
services depends mostly on the kind of enrolment, which can
be mandatory (e.g. in the case of corporate users and home
devices) or voluntary. If the enrolment is voluntary then
there must be some kind of incentives for the users, by
paying for the processing time, giving them more credit to
use the system or simply by being the person which has
contributed most for the system [7].

Security issues, although being important, are outside the
scope of this paper, therefore, we will rather focus the
remainder of the paper on architecture issues to implement
our vision.

The paper is organized as follows. Section II provides the
considered system model, relating to previous relevant work.
Afterwards, Section III describes the Android operating
system, a relevant platform for mobile applications. Then
Section IV provides a description of the architecture and
main functionalities of the proposed mobility framework.
Section V presents and discusses some results related to the
use of the framework. Finally, in Section V we draw some
conclusions and discuss future work..

II. SYSTEM OVERVIEW

A. Generic System Model
We assume a system constituted by several cooperating

services with Quality of Service (QoS) requirements. In such
a system, an application is supported by connections between
services, either local or remote.

Our model assumes that the system is formed by a set of
N nodes ! = {"1, "2 … "N} and a set of M services S = {s1,
s2, …, sM}, each of these services can be connect to other
services, therefore links (lx,y) characterize connections
between services Sx and Sy. An application (Ai) is represented
by its services (Si), which are a subset of S.

Figure 1 depicts an example system where an application
A1 is constituted by services {s1, s2, s3, s4, s5, s6}. Service s1
uses local services s2 and s6. Service s2 requires the use of
two remote services, s3 and s4, while service s6 only issues
service requests to s5.

Figure 1. System model

A generic QoS model is used, where each service (Si) or
link (lx,y) QoS requirements are defined by a tuple of o
elements Rc = {rc1, rc,2, …, rc,o}, being the actual QoS model
outside the scope of the paper. As a simple example these
requirements can be the deadline, the execution time and the
period between consecutive evocations of a service i:
(Ri={di, ci, Ti}), but other more complex models may be
used, like Q-RAM [8] where the QoS requirements are
defined in terms of minimum and maximum values and the
resource allocation tries to maximize a reward function.
Another approach, the CooperatES framework [9], defines
its QoS requirements as a set of possible values and it also
tries to maximize a system reward function, its main strength
is that this it is able to operate in a truly distributed and
decentralized way.

During run-time some of the system services might
migrate to a different node. This mobility requires the
transfer of code and state and the rebinding of connections
between services. As a consequence, there will be an interval
of time during which some of the application services are in
a reconfiguration mode. In a QoS-enabled system such mode
might also imply the momentary reservation of extra
resources (e.g. CPU or network bandwidth). Although code
can be sent independently in parallel while the service is still
in execution, state transfer requires the controlled stopping
(also referred as passivation) of the service previously to its
migration. This can be done according to the rules defined in
[10,11]. After or during state transfer, connections between
services have to be redirected.

The operation mS5
!3# !4 represents the mobility operation

for service S5, between node !3 and node !4. In such case !3
is denoted as the source node, in relation to the mobility
mechanism and node !4 is denoted as the destination node.
Link l’7,6 represents the connections which have to be
established after the service mobility is complete,
consequently, connection l7,6 will have to be seamlessly
deleted prior to the entry into operation of l’7,6.

During this reconfiguration the QoS provided to the
application may be momentarily reduced. Therefore, each
service that has migration capabilities and QoS requirements
must also specify the minimum QoS level, or the maximum
inaccessibility time (tina) which it can support. This timing
combined with the current system scheduling mechanism
enables the calculation of the QoS parameters to be used for
entities involved in code mobility procedures, which are
described in Section IV.

S1

S2

S3 S4

S6

S5

S'5

"2

l1,6

mS5
 !3#!4

l7,6

l1,2

l2,4
l6,1

l’7,6

"3

"4 l2,3

"1

!888

B. Related Work
The area of service/component architectures and code

mobility is highly studied and several software frameworks
have been proposed in the last decade.

OSGi [3] is one of the most disseminated platforms for
component integration in Java. It defines the means for the
distributed deployment of applications through several nodes
(Life Cycle management) and its reconfiguration in run-time.
It also supports discovery and registry of services. This
framework has been extended with component mobility
services, particularly adapted for context aware applications
[12]. From the original framework, they changed the key
value format of the bundles manifest file to an ontology
format. Services life cycle is augmented by new states
related to the service migration and state dissemination.
Concerning the services discovery, the extensions rely on the
CoGITO framework. The OSGI framework has also been
ported to the Android operating system, but no code mobility
capabilities had been implemented.

Other works had focused on providing a mobility
framework which not only provides a specific architecture
for component interaction but also incorporates QoS
parameters (which model the system) into the design [13],
and uses that model to determine the most useful system
configuration in reconfiguration events.

The European project Runes [14] created a middleware
which can be used on the development of reconfigurable
software components in embedded systems. The objective of
this project was to create a homogeneous platform for
heterogeneous environments, connecting sensor networks
nodes, mobile devices and mobile computers. It implements
weak code mobility without an explicit support for state
transfer, the main services are related to the installation of
new components and for the replacement of old ones.

Other projects, like FRESCOR [16] and ACTORS [17]
had also provide component-based frameworks specifically
for embedded systems, focusing its particularly on real-time
issues.

Our framework integrates support for the development of
distributed QoS-enabled applications for mobile systems.
Such applications are composed of services capable of
migrating between nodes. Contrarily to previous approaches,
it integrates seamlessly with the Android operating system,
by extending the functionalities provided by the Intent,
Activity and Service abstractions used to interact between
application components. Additionally, this framework also
provides the necessary means to handle all kinds of QoS
requirements during service mobility operations.

We also assume the use of a higher level framework like
Q-RAM [8] or CooperatES [9], which are able to determine
the initial allocation of the system resources between the
applications. Additionally, during run-time such an
framework should also be able to recalculate a new resource
allocation in response to environment changes (like the
departure of a node or energy scarcity in a node).

Consequently, to our best knowledge the framework
being proposed in this paper is the first one that addresses

both the QoS issues for mobile systems and also the mobility
of services with QoS needs.

III. ANDROID PLATFORM

A. Android stack
The Android operating system is structured in 4 layers

and several modules (Figure 2). It can be divided in a static
unchangeable part and a changeable part. The static part is
the System Image which is based on the Linux kernel, the
Libraries together with the Android Runtime and the
Application Framework. The changeable part is the User
Applications layer, which can be freely installed and
uninstalled from a device. The underlying layers and
modules can only be changed by creating and installing a
new system image, thus it cannot be changed by a simple
application install.

Figure 2. Android architecture (known as Android Stack)

The Linux kernel is responsible for memory and process
management. The main advantage of Linux is that it has a
wide community support and allows to easily add device
drivers for specific hardware components. The Libraries
layer provides native libraries which offer a set of
functionalities to be used for application development. Since
these libraries are written in native code (C code), the
performance is higher than for programs running over the
Dalvik Java virtual machine.

The Android Runtime is composed by several Java
libraries and the Dalvik Virtual Machine (VM), capable of
running applications in Dalvik bytecode format, which
differs from the Java Byte code by being more adapted to
systems with low memory and processor speed.

The Application Framework layer is organized to support
application development. This layer is completely written in
Java so that applications, also in Java, can easily interact
with these modules. The abstractions provided to the
applications aim to promote code reusability. For instance,
the Telephony Manager provides telephone information and
contact information. The Location Manager also provides
location information. All this information can be made
available to other applications through specific interfaces.

B. Application Development
Android uses an abstraction model to organize

applications. Typically, applications are composed by several
Activities which represent a single task that a user can

!!

perform. The Activities are used for user-application
interaction, so every time an Activity is launched a new
screen is displayed to the user. The Service abstraction is
used to perform tasks in background (without a User
Interface). Communication with a Service is made through
an interface that the service exposes, but typically an Activity
is only able to return a value.

The Android application model is based on a service-
oriented architecture, where Intents are abstract descriptions
of an operation to be performed. It can be used to start an
Activity or a Service.

All the previously mentioned abstractions are
compressed and bundled in an Android Package (APK) file.
Such files are very similar to the Java Archive files (JAR),
but APK files also contain the application code (like JAR
files), resources (images, sounds, etc) and a manifest file
(describing the application requirements, interfaces and
permissions).

Besides the Dalvik bytecode format used in a APK,
another important difference is that the classes’ code is not
separated into several files but it is rather aggregated in a
single file with extension .dex. The manifest file interface is
used by the system to resolve an Intent; if the content of an
Intent matches an interface entry, then the operating system
launches the class associated with that entry.

The APK files are executed using the Intent abstraction,
which represents the intention of executing a specific
interface of a APK. Applications send Intents in order to
address an Activity or Service from a specific APK. Android
OS is then able to search, on the installed APKs, for the
desired interface, and execute it. This message mechanism
provides a simple way to use Activities and Services from the
current APK or from another one installed on the device,
thus promoting code reuse.

IV. RT-MOBFR FRAMEWORK
Android applications coarse structures are the APKs

installed in the local device. During runtime, these modules
can be assembled to create dynamic applications, but these
functionalities are only available in the local node. In this
paper, we extend this concept to a fully distributed and
dynamic environment, where applications use the Activities
and Services from the APKs whether they are installed
locally or remote. Further, we allow APKs to migrate to
other nodes, by user demand or due to system’s
reconfiguration. We also allow to dynamically upgrade the
system devices with different service versions in run-time.
Finally, the framework is also able to support applications
with QoS requirements, both during its run-time operation
and particularly during the migration of services.

The APKs are then executed as independent Linux
processes, with distinct IDs, permissions, and, importantly,
also with different QoS parameters. Therefore, our approach
consists on transferring and using them as coarse grained
mobile code components, the APK packages. An alternative
approach, used in some Java code mobility frameworks [15],
relies on the transfer of classes between nodes and on the
execution of threads offering the functionalities provided by
those classes. Although, this alternative requires the transfer

of less data, the proposed approach has the advantage of
isolating the transferred application: i) allows the setting of
different QoS parameters for each service; ii) also running it
in different security and resource access context. Both kinds
of parameters can be defined on the APK manifest file.

Figure 3 provides an example which illustrates the
concepts being proposed: the initial scenario is presented in
the left part, where DEV1 is executing an application. The
application is composed by an GUI activity (Activity Menu)
and several services. Application code resides in three
distinct APKs, spread in DEV1 (APK A) and DEV2 (APK B
and APK C). This division is hidden from the application
code, which can issue Intents for a service in APK B or C.
These intents are mapped by the framework into the remote
services in DEV2.

Figure 3. Example scenario

The right side of Figure 3 provides a new system
configuration, which includes a new device: DEV3. After
being detected by the other nodes and assuming that this
device has more available resources, then an improved
configuration of the system can be achieved if APK B
migrates to DEV3. This new configuration might, for
example, allow achieving a higher QoS level for the
application or allow reducing the battery consumption in
DEV2. Algorithms and frameworks as the ones proposed in
CooperatES [9], FRESCOR [16] or ACTORS [17] can be
used to find the new configuration for the system services,
maximizing the rewards for the overall system. As a result of
the evaluation, DEV3 now offers the services of APK B in
order to increase the QoS of the application.

The Mobile code mechanisms of the RT-MobFr can
support such approach, making possible to transfer the code
and state of service B from DEV2 to DEV3, install the
corresponding APK file, rebind the connections between
DEV1 and the service in APK B, and continue its operation.

If the application has real-time QoS requirements then
this complex set of operations must be done within a
bounded time, limiting or even eliminating any QoS
disruption, which can be noted by the users of the
application. As a concrete example of such a scenario,

111000000

assume that the application is a 3D game which can offload
some of its computations to other devices (e.g. the game
intelligence, rendering or physical engines) in order to raise
its quality. The player of the game should not notice any
disruption on the game flow due to the system
reconfiguration including the mobility of services. Usually
for such a kind of interactive application a user does not
notice any temporal misbehaviour if the interruption of
service is less than 200 ms.

A. Architecture Overview
In order to implement this approach we propose the

architecture depicted in Figure 4. The architecture assumes
the existence of a QoS Manager on the Linux kernel, the
addition of Application Layer features to support the core
functionalities of a mobile code framework and the use of
supporting libraries (the RT-MobFr libraries) which allow
programmers to use the full set of capabilities offered by the
framework.

Figure 4. Implementation Overview

At the operating system level, we assume the existence of
a QoS Manager module, which interacts with several
distributed resource management modules, for the
acceptance of new, and adaptation of existent, QoS-aware
services. This can be based in implementations currently
being provided (e.g. [6] or [18]), and use available solutions
particularly adapted to wireless networks, like IEEE 802.11e
or IEEE 802.15.1. Our framework can also use the Resource
Reservation Protocol (RSVP) [19], which already provides a
set of well defined QoS-related functionalities in WANs.
This module can also encapsulate the functionalities of high
level QoS control frameworks, like the one defined in [9].
Although, for convenience purposes we had represented this
module at the kernel level it can also have some other
components at the User Applications level, to control the
RT-MobFr framework sending to it orders including QoS
changes and orders to migrate services to other nodes.

The Framework Core functionalities (Figure 5) constitute
a separate module implemented as 4 Android services, which

takes care of service migration, to and from a node,
interacting with the QoS Manager.

Any Android application can use the services of the
framework in order to support some simple mobility
operations, like transferring, installing and running an
Android APK, without dependencies from other services, in
another node. More advanced services, which require the
rebinding of connections between components, are only
supported if applications use the RT-MobFr library.

The RT-MobFr library offers a set of helper classes that
extend the core functionalities of Android with real-time and
distributed capabilities. The library allows to transparently
extend the Activity and Service abstractions for distributed
systems. Consequently, application code is only required to
send an Intent, after which the framework is responsible for
determining if it refers to a local or remote component. The
library also implements the services required for
communication establishment and automatic rebinding of
component connections when a component migrates.

Figure 5. Framework core modules

The proposed framework is implemented at the
Application layer level since this layer is more appropriate to
deploy new software components, as it does not require any
changes to the Android Operating System image. The
installation of the framework is equivalent to an ordinary
application installation, and since it is implemented as a
standard Android Service its functionalities are accessible to
all applications installed on the device.

B. Framework managers
The core services provided by the framework are:

Discovery Manager, Package Manager, State Manager and
Execution Manager.

1) Discovery Manager
The Discovery Manager module is designed to discover

neighbour devices on a local network and advertise the host
device capabilities. To that purpose, every node in the
network periodically broadcasts information regarding its
status and installed services, such as the APKs installed, their
associated Intents interfaces and QoS capabilities.

111000111

These messages allow the QoS Manager to determine the
state of the system and consequently, when required,
determine a new system wide configuration. In this work we
assume that this entity is responsible to send orders to the
RT-MobFr framework which triggers the reconfiguration of
the QoS parameters of applications and also the mobility of
its services between nodes.

2) Package Manager
The Package Manager is used to install, uninstall and

transfer the code of APKs between Android devices.
Applications can start executing when the node receives an
Intent request from a remote Execution Manager (see
below). During the installation process the code is stored in a
specific directory, which, for security reasons, can only be
accessed by the Discovery Manager to detect the new APKs.
It is very common to use these kinds of frameworks to
support the evolution of services; therefore, this module is
also able to manage multiple versions of the APKs.

The Package Manager is also responsible for the
interaction with the QoS Manager in order to request specific
QoS levels for the service being handled. It is the
responsibility of the QoS Manager to accept or reject service
installations if the QoS required level cannot be guaranteed.

3) State Manager
The State Manager handles the transfer of state for

statefull services. Services are responsible for explicitly
defining their state as different state items. By separating the
service state into several pieces it is possible to apply
different techniques for the transfer of the service complete
state. We define a State Item (SIi) as the tuple: !"# $ %"&' (')*+,-./0
where ID is a string which univocally indentifies this State
Item, $ is a byte array which contains the state item and
version is an integer that corresponds to the version number
of this state item. By using this constructor it is possible to
separate the state of a service into different variables,
different objects or even combinations of several objects and
variables. It is up to the service using this functionality to
define how to use state items.

The State Manager is responsible for transferring either
the full state or specific state items. This allows
implementing strategies, as the ones proposed in [12] (which
use the publish/subscribe model for the migration of context-
aware applications) and [20] (which propagates only the
operations performed over the data instead of the data itself),
or any other strategy more appealing to the application being
implemented. The flexibility on the implementation of the
state migration policies can be of paramount importance for
the use of code mobility techniques in real-time systems
since it can allow the reduction on the unavailability time of
a service.

In [4] we propose the division of state transfer in two
phases, where during the first phase we assume that the
service will not be stopped, e.g. it can be used to transfer the
initialization parameters of a service. Only, on the second
phase the service will be stopped (passivated) and this phase
is used to transfer items which reflect the internal state of the

service, e.g. variable values. This simple strategy reduces the
unavailability time of the service.

It is also important to note that the framework can
(optionally) store different version of a state item, thus
“browsing” through different state items of a service can be
useful for error recovery or for debugging purposes.

4) Execution Manager
The Execution Manager allows launching services on a

host device or on a remote node. Android Intents are
exchanged between devices and used locally to start up a
service, which can be a standard Android Activity or Service.
Intents that address Activities or Services in remote nodes are
parsed to extract their parameters and sent to the remote
Execution Manager, which then reconstructs the intent and
launches it locally (on the remote node).

This module can also be used to start up Activities and
Services that were developed without considering mobility
issues – legacy APK. Since Android abstractions (Intents,
Activities and Services) operate locally, the framework
assumes the existence of a proxy mechanism which allows
the interaction between local and remote legacy services.
Services which are based on the framework use the new
versions of Service and Activity classes; therefore, when
calling for a remote service they connect directly using the
functionalities provided by the RT-MobFr Library.

C. RT-MobFr Library
The RT-MobFr Framework core functionalities are

implemented as normal Android services, but such interface
only offers a basic set of functionalities, mainly for service
mobility and discovery. Full transparency is only achieved
by using the extended functionalities provided in the RT-
MobFr Library. Based on this library, developers can easily
create services with mobile and QoS requirements.
Additionally, it is also possible to extend the functionalities
in order to adapt to the application being developed.

The MobileServiceAbstraction is the core class
on the development of a service. It is mainly an aggregation
of five classes (Fig. 6), which are capable of accessing the
core functionalities of the framework.

Our framework extends the MobileActivity and
MobileService classes, which should be used, instead of
the standard Activity and Service classes since the new
versions provide the necessary means to abstract the
developer from the inherent distribution of services.
Additionally, this technique also significantly reduces the
effort involved on the porting of standard applications to the
new paradigm.

The IMobileService is a common interface,
implemented by the MobileActivity and
MobileService classes, which enables the handling of
both types of abstractions in a common way by the other
classes of the framework. As example the Synchronize
ServiceAbstraction can use that interface to stop a
service or activity.

The SynchronizeServiceAbstraction class
has been designed to handle any kind of events between
services, either local or remote. It should also be used to

111000222

control the mobility of a service, when commanded by an
external entity (e.g. by the QoS Manager) or to signal
changes on the QoS level of a service. Other kinds of events
can also trigger actions by this class, like the handing of
stopping and resuming commands for a service. As an
example if the QoS manager determines that it can increase
the QoS level of an application, then sends an event to this
class, which, by its turn, adapts the application to the new
QoS availability.

The SynchronizeServiceAbstraction class
also takes care of handling the installation of local or remote
services and of its execution on a destination node, by using
the classes PackageManagerConnection and
Execution ManagerConnection, respectively.

The ConnectionServiceAbstration allows
communications between services, either in the same node or
on a remote node. Local communications are supported by
inter-process communication mechanisms. Communications
between services in different nodes, are also supported by
this class. Specifically, it insures the closing of old
connections and the establishment of new ones, in a
controlled fashion (rebinding) when a service migrates.

Figure 6. Mobile Library abstraction model

The library also offers classes to perform queries based
on the information retrieved by the framework core
Discovery Manager module, to perform state saving and
transfer operations, implemented by the Discovery
ServiceAbstraction and by the StateService
Abstraction.

The complete framework is available online (see [21]), it
also offers some standard implementation of the classes for
demo purposes. The library still lacks integration with more
advanced QoS management services, which are being
developed [5].

V. RESULTS AND DISCUSSION
To test the framework and evaluate its timing

performance we performed several experiments which aimed

at determining the delays involved on the service mobility
phases. Our tests were run on a conventional Android OS
without any specific QoS manager. To the purpose of these
tests we had only evaluated how changes on process priority
influence the timing performance on the mobility of a service
belonging to an application.

Our test setup is constituted by two HTC Magic and an
Android emulator, all running Android OS version 2.0. In
this case the emulator simulates a fixed Android device, like
a television or a netbook. The scenario chosen is equal to the
one depicted in Fig. 3 in which a service, represented by
APK B, migrates between DEV2 and DEV3. The main focus
has been on the evaluation of the time required to migrate
APK B between the two nodes.

Our tests started by evaluating the time required to gather
information by the Discovery Manager about neighbouring
devices in the same broadcast domain. This phase occurs in
parallel to the application execution prior to the order to
move APK B, consequently, it does not influence the
application and additionally the Discovery Manager runs on
a low priority level (nice value of 10). Note that a nice value
of -20 represents the highest priority and 19 the lowest
priority for a thread. We obtained an average value of 95 ms,
but the results the varied between 6 ms and 221 ms. It is
important to note that just the execution of the garbage
collector, during this phase can require 200 ms or more.

After that, a decision must be taken in relation to the new
configuration of the system, in this test we are ignoring that
phase, but the algorithm proposed in [9] is capable of
reaching a solution in a bounded time.

Our mobility logic is implemented on the
SynchronizeServiceAbstraction class which
triggers the mobility of APK B. It all starts by shipping the
code (an APK with a size of 116 kB) and state followed by
its installation on the destination device. It is important to
note that during the execution of these operations the service
can continue active. Additionally, if the APK already exists
on the destination device it is not necessary to install it (that
is the case used in these tests).

The next three phases require the stopping of the services
provided by APK B. These phases involve the transfer of
remaining state items, the sending of an Intent to start
executing the services in APK B and the rebinding of
connections (i.e. the connection between APK A and APK B
must be redirected according to the address of DEV 3).

Our experiments varied the priority levels of the
framework and of the application in order to determine its
influence on the overall delays of the mobility operation. Fig.
7 shows a graphic in which the framework and application
priorities are varied between -15 and 15. It shows that there
is a high level of variability on the mobility timings but the
priority increase allows reducing its average values and most
importantly its variability.

It is important to note that Fig. 7 only focus represents
the overall delays from the start of the mobility procedure
until the connections between APK B and APK A are
reconfigured. In fact the only during a fraction of that time
the service is totally inaccessible. In average the

111000333

inaccessibility time is equal to 224 ms (about 50% of the
total mobility time).

VI. CONCLUSIONS
In this paper we proposed a framework for the

development of distributed QoS-aware applications with
self-reconfiguration capabilities. The framework is
particularly targeted for the Android Operating System and
its implementation extends the main abstractions used in
Android – Activities, Services and Intents, allowing for
transparent interactions of application code in both local and
distributed settings. QoS requirements of both applications
and reconfiguration services can be supported by the
underlying operating system QoS Manager module.

Figure 7. Delay of the total code mobility mechanism

This framework will be used to enhance the real-time
capabilities of the Android OS and particularly to developed
adequate strategies for multiple parameter QoS applications
(considering both tasks and communication streams). We
also plan to investigate further on how to better manage
dynamic adaptations required on the system QoS levels
during reconfiguration phases. An implementation of the
framework proposed in this paper is available at [21].

Acknowledgment. This work is partially funded by the
Portuguese Science and Technology Foundation (Fundação
para a Ciência e a Tecnologia - FCT) and project SENODs
(CMU-PT/SAI/0045/2009).

References

[1] Zachariadis, S., Mascolo, C., Emmerich, W, "The SATIN Component
System-A Metamodel for Engineering Adaptable Mobile Systems,"
IEEE Transactions on Software Engineering, Nov. 2006, pp. 910-
927.

[2] Erl, T., “Service-Oriented Architecture: Concepts, Technology, and
Design”, Prentice Hall PTR, 2005.

[3] G. O. Young, “OSGi Service Platform Release 4 Version 4.0”, OSGi
Fondation, 2010.

[4] Ferreira, L., “On the use of Code Mobility Mechanisms in Real-time
Systems”, HURRAY-TR-100508, http://www.hurray.isep.ipp.pt/,
May, 2010.

[5] Maia, C., Nogueira, L., Pinho, L., “Evaluating Android OS for
Embedded Real-Time Systems”, Proceedings of the 6th International
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT 2010), Brussels, Belgium, 2010, pp. 63-70.

[6] Maia, C., Noqueira, L, Pinho, L., “Cooperative embedded application
in Android Environments”, Submitted for publication on the 8th
International Workshop on Java Technologies for Real-time and
Embedded Systems - JTRES 2010 .

[7] Elespuru, P. R., Shakya, S., Mishra, S., “MapReduce System over
Heterogeneous Mobile Devices”, Proceedings of the 7th IFIP WG
10.2 international Workshop on Software Technologies For
Embedded and Ubiquitous Systems (Newport Beach, CA, November,
2009), Lecture Notes In Computer Science, vol. 5860. Springer-
Verlag, Berlin, Heidelberg, 168-179.

[8] Rajkumar, R., Lee, C., Lehoczky, J., Siewiorek, D., ”A resource
allocation model for QoS management”, Proceedings of the 18th
IEEE Real-Time Systems Symposium, San Francisco, USA, 1997,
pp. 298-307.

[9] Nogueira, L., Pinho, L., "Time-bounded Distributed QoS-Aware
Service Configuration in Heterogeneous Cooperative Environments",
Journal of Parallel and Distributed Computing, Vol. 69, Issue 6, 2009,
pp. 491-507.

[10] Kramer, J., Magee, J., “The Evolving Philosophers Problem:
Dynamic Change Management”, IEEE Transactions on Software
Engineering, Vol. 16, Issue 11, Nov. 1990, pp. 1293-1306.

[11] Vandewoude, Y., Ebraert, P., Berbers, Y., D'Hondt, T., “An
alternative to Quiescence: Tranquility”, Proceedings of the 22nd
IEEE international Conference on Software Maintenance - ICSM,
Washington, DC, Sep. 2006, pp. 73-82.

[12] Preuveneers, D. and Berbers, Y. (2010) “Context-driven migration
and diffusion of pervasive services on the OSGi framework”,
International Journal of Autonomous and Adaptive Communications
Systems, Vol. 3, No. 1, 2010, pp. 33-22

[13] Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J., Krka, I.,
Medvidovic, N., Mikic-Rakic, M., Sukhatme, G., ”An Architecture-
Driven Software Mobility Framework”, Journal of Systems and
Software, special issue on Software Architecture and Mobility, Vol.
83, Issue 6, Jun. 2010, pp. 972-989.

[14] Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco, G.,
Zachariadis, S., “Reconfigurable Component-based Middleware for
Networked Embedded Systems”, International Journal of Wireless
Information Networks, Vol, 14, Nº 2, Jun 2007, pp. 149-162

[15] Calder, B., Krintz C., Hölzle U., “Reducing transfer delay using Java
class file splitting and prefetching” ACM SIGPLAN Notices,
International, 1999 ISSN:0362-1340.

[16] Cucinotta, T., Palopoli, L., Lipari, G., “Control Algorithms for
Coordinated Resource-Level and Application-Level Adaptation I”,
Deliverable D-AQ2v1 from the FP6/2005/IST/5-034026 Framework
for Real-time Embedded Systems based on COntRacts (FRESCOR),
2007.

[17] Adaptivity and Control of Resources in Embedded Systems
(ACTORS), European Project, ref. 216586, http://www.actors-
project.eu/, (May 2010).

[18] Faggioli, D., Trimarchi, M., and Checconi, F., ”An implementation of
the earliest deadline first algorithm in Linux”, Proceedings of the
2009 ACM Symposium on Applied Computing (SAC '09), Honolulu,
Hawaii, 2009, pp. 1984-1989.

[19] Resource ReSerVation Protocol (RSVP): RFC2205, Sep. 1997,
http://tools.ietf.org/html/rfc2205.

[20] Bourges-Waldegg, D., Duponchel, Y., Graf, M., Moser, M., "The
fluid computing middleware: bringing application fluidity to the
mobile Internet", Proceedings of the 2005 Symposium on
Applications and the Internet, Trento, Italy, 2005, pp. 54-63.

[21] Distributed and Mobile Framework for Real-Time Systems
(DiseRTS),
http://www.hurray.isep.ipp.pt/activities/RTSoft/distFrameworkOvervi
ew.ashx/, May 2010.

111000444

