
  

 

 

 

 

Integrated Method For Designing Complex 
Cyber-Physical Systems 

 

 
 

 

PhD Thesis 

CISTER-TR-181120 

 

 

Fernando Gonçalves  

 



PhD Thesis CISTER-TR-181120 Integrated Method For Designing Complex Cyber-Physical  ... 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 
 

Integrated Method For Designing Complex Cyber-Physical Systems 

Fernando Gonçalves 

*CISTER Research Centre 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail:  

http://www.cister.isep.ipp.pt 

 

Abstract 

The design of a Cyber-Physical System (CPS) is de_ned as acomplex activity, being composed of a set of design 
phases devotedto model application characteristics. In this sense, detailing thephase characteristics is required in 
order to help the design teamsduring the project design, and to aim the support of the correctapplication 
characteristics representation. However, despite some ofthese phases, such as the control systems design, being 
discussedat length by the engineering community, other phases have lessdetailed studies, i.e., the design 
activities that compose these phasesare not so well documented. In these sense, it is required moreexperience 
from the design teams to perform activities such as, thesensing and actuation subsystems representation, and 
the integrationof formal veri_cation methods on the design process, among others.Despite the lack of information 
related to them, these phases areessential to the CPS design, by the fact that they support 
applicationcharacteristics representation and the properties validation, as well as,they also provide the integration 
between designed system and theirenvironment. Regarding the CPS design process, di_erent methods 
areavailable in the literature, aiming to guide the designers to performthe modeling tasks. However, these 
approaches do not provide enoughinformation related to those described activities. In this context, thisthesis 
proposes an integrated method applied to CPS design, morespeci_cally devoted to the Unmanned Aerial Vehicles 
(UAV) design.That proposed method aims to integrate di_erent modeling processessuch as functional, 
architectural, sensor and actuator integrations, andformal veri_cation design processes. Based on the proposed 
activitiesthis method aims to support the UAV embedded system design, andallow the integration between the 
embedded platform and the set ofsystem devices. The Model Driven Engineering (MDE) is used as basisto the 
proposed approach, and aims to support the automated modelgeneration based on the application 
characteristics. It is intended toensure the maintainability of the system information over all the designsteps and 
provide the property evaluation and validation, consideringthe model transformation principles. Two di_erent tools 
are designedwith the proposed method, the ECPSModeling and the ECPSVeri_er,for supporting the design 
activities. The ECPSModeling provides thetransformation process from functional model to architectural model,in 
order to integrate sensor and actuator characteristics. On the otherhand, the ECPSVeri_er provides the CPS 
behavior representation,based on the architectural model, by using timed automatas, whichallows the formal 
veri_cation evaluation by performing model checking.The proposed method and the designed tools are applied on 
the projectof a tilt-rotor UAV design. The details of the method proposed in thisthesis are demonstrated by 
performing the UAV project, described asa case study. 

 



UNIVERSIDADE FEDERAL DE SANTA CATARINA

DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS

Fernando Silvano Gonçalves

INTEGRATED METHOD FOR DESIGNING COMPLEX

CYBER-PHYSICAL SYSTEMS

Florianópolis

2018





Fernando Silvano Gonçalves

INTEGRATED METHOD FOR DESIGNING COMPLEX

CYBER-PHYSICAL SYSTEMS

Tese submetida ao Programa de

Pós-Graduação em Engenharia

de Automação e Sistemas para

a obtenção do Grau de Doutor

em Engenharia de Automação e

Sistemas.

Orientador: Prof. Dr. Leandro Buss

Becker - PGEAS - UFSC

Florianópolis

2018



Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Gonçalves, Fernando Silvano
   Integrated Method for Designing Complex Cyber
Physical Systems / Fernando Silvano Gonçalves ;
orientador, Leandro Buss Becker, 2018.
   175 p.

   Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós
Graduação em Engenharia de Automação e Sistemas,
Florianópolis, 2018.

   Inclui referências. 

   1. Engenharia de Automação e Sistemas. 2. Projeto
de CPS. 3. VANT. 4. Engenharia dirigida por
modelos. 5. Transformação de modelos. I. Becker,
Leandro Buss. II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Engenharia de
Automação e Sistemas. III. Título.



Fernando Silvado Gonçalves

INTEGRATED METHOD FOR DESIGNING COMPLEX
CYBER-PHYSICAL SYSTEMS

Esta Tese foi julgada aprovada para a obtenção do Título de
Doutor em Engenharia de Automação e Sistemas", e aprovada em

sua forma final pelo Programa de Pós-Graduação em Engenharia de
Automação e Sistemas.

2018Flor

JuniorProf. l)r

LaçaoA

Prof. Dr. Leandro Buss Becker - PGEAS - UFSC

PGEAS - UFSC
Coordenador do Programa de Pós-Graduação em Engenharia de

Orientador



Banca Examinadora

Prof. Dr. Eduardo
(])Nvideoconfi

Prof. Dr. /ntânio .dugusto FYõhlich - INE - UFSC



To my caring parents, Claudi and Juçara,

to my sister, Daniele, and to my love,

Katren.





ACKNOWLEDGMENTS

First of all I would like to thank God, for the gift of life, for
giving me wisdom and science, being with me constantly and guiding
me in my choices.

I want to thank my lovely family, because without then none
of this would be possible. Thank you for your love, attention, and
understanding, as well as, for always encouraging and supporting me
in my choices, contributing to my personal and professional growth. I
give special thanks to my love Katren that despite not always being
physically present, has led me doing things that I never imagined.
Thank you for being by my side while developing this project and for
helping me.

I am grateful for all support from the ProVANT Project
members, my friends Gabriel Manoel, Juliano Grigulo, Henrique
Misson, Diego Sales, and Rosane Passarini. Thank you for your
friendship and support during the writing of this thesis, because
without you this work would not be possible.

I would also like to thank my friends, especially Rodrigo Donadel,
Martin Bloedorn, Vinicius Stramosk, Gabriel Fernandes, and Richard
Andrade, for your support to make this to make this thesis possible,
and the text easier to read. Thanks for the friendship started at the
Federal University of Santa Catarina (UFSC) and that will be continue
for the rest of our lives.

I want to thank my PhD colleagues of automation and systems
engineering from UFSC, thanks for the friendship and companionship,
as well as for the discussions that have supported the construction of
this thesis.

A special thank is devoted to Eduardo Tovar and David Pereira,
my internship advisors from Cister in Oporto city Portugal. Thank you
for supporting me during this period, especially for the discussions that
contributed enormously to my thesis. I want to say thank you to my
Portuguese friend Claudio Maia, who worked with me on Cister, thank
you for the all that you have done. During the internship I also made
some Brazilian friends, especially Marcel Bueno and João Rogano, who
I would like to thank for the support, friendship and for making this
period far from home easier.

I would like to thank the postgraduate program in automation
engineering and systems (PPGEAS) from UFSC, and the Brazilian
research agencies CAPES and CNPq for their support and financial
contribution to the accomplishment of this work.



I would also like to thank to my advisor professor Leandro
Becker, for the opportunity given to me and for supporting me with
great disposition throughout my thesis. I appreciate all you have made
for me.

Finally, I want to thank all those who have contributed in some
way to making this research possible.



Once you have tasted flight, you will

forever walk the earth with your eyes

turned skyward, for there you have been,

and there you will always long to return.

Leonardo da Vinci





RESUMO

O projeto de sistemas ciberf́ısicos (CPS) é considerado uma atividade
complexa, sendo composto por diferentes fases, essenciais para sua
concepção. Neste sentido, a definição detalhada das fases de projeto
se faz necessária, visando facilitar o projeto das aplicações e auxiliar
na representação das suas caracteŕısticas. Algumas dessas fases têm
ampla discussão por parte da comunidade da engenharia, tais como
o desenvolvimento dos sistemas de controle, por exemplo. Outras,
no entanto, têm um menor grau de detalhamento, ou seja, as
atividades que devem ser desenvolvidas não são amplamente discutidas
ou detalhadas, dificultando a sua aplicação. Dentre estas temos a
especificação dos subsistemas de sensoriamento e atuação, integração
de processos de verificação formal, entre outras. Essas etapas,
apesar de menos discutidas, também são essenciais no escopo do
desenvolvimento dos CPS, pois suportam a especificação e validação
de propriedades das aplicações, assim como são responsáveis pela
integração da aplicação com o ambiente de atuação. No projeto
dos CPS, um número considerável de métodos de desenvolvimento
está dispońıvel na literatura, visando guiar os desenvolvedores nas
tarefas de modelagem, porém eles não apresentam adequado ńıvel
de detalhamento para as atividades supracitadas. Nesse contexto,
este trabalho propõe o desenvolvimento de um método integrado
que auxilie no processo de modelagem e integração dos CPS, mais
especificamente dos Véıculos Aéreos Não Tripulados (VANTs). O
método proposto busca integrar os processos de modelagem funcional,
de arquitetura, integração de sensores e atuadores e verificação
formal, contribuindo no projeto do sistema embarcado, bem como
na interface com o conjunto de sensores e atuadores, culminando,
consequentemente, na construção das aplicações. O método proposto é
baseado na engenharia dirigida a modelos (MDE) e sua abordagem
busca permitir a construção automatizada dos modelos, garantindo
a manutenção das caracteŕısticas da aplicação durante todo o
processo de desenvolvimento, permitindo a integração dos modelos
gerados e auxiliando na validação das propriedades do sistema.
Aliadas ao método proposto, duas ferramentas foram desenvolvidas,
denominadas ECPSModeling e ECPSVerifier. Estas têm por objetivo
dar suporte ao processo de desenvolvimento. O ECPSModeling
opera na transformação do modelo funcional para o modelo de



arquitetura, permitindo a integração das caracteŕısticas de sensores e
atuadores. Já o ECPSVerifier atua na extração do comportamento
do sistema, transformando o modelo de arquitetura em um modelo de
comportamento representado por autômatos temporizados, permitindo
a aplicação da técnica de verificação formal model checking. Visando
detalhar o método proposto e as ferramentas desenvolvidas, esses são
aplicados ao projeto de um VANT birotor na configuração Tilt-rotor.
Dessa forma, objetiva-se municiar o processo de desenvolvimento dos
CPS, em especial dos VANTs, descrevendo suas principais fases de
desenvolvimento.

Palavras-chave: Projeto de CPS, VANT, Engenharia dirigida por
modelos, Transformação de Modelos



RESUMO EXPANDIDO

Introdução

Os sistemas ciberf́ısicos (CPSs) são descritos como aplicações
caracterizadas pela intensa interação com o ambiente em que estão
inseridas. Os CPS são definidos como sistemas complexos, tipicamente
aplicados ao controle de dispositivos eletromecânicos. No ambiente
dos CPS plataformas embarcadas e monitores em rede são utilizados
visando o controle de processos f́ısicos, geralmente com o uso de loops
de retroalimentação onde os processos f́ısicos e computacionais afetam
um ao outro (LEE; SESHIA, 2015; ALUR, 2015).

O projeto de CPS, especialmente dos véıculos aéreos não
tripulados (UAV), é considerado um processo gradual composto por um
conjunto de etapas que visam detalhar as caracteŕısticas da aplicação
e validar a informação fornecida por meio de simulações e análises
(LEE; SESHIA, 2015; JENSEN; CHANG; LEE, 2011a; BECKER et al., 2010).
Devido a esta caracteŕıstica seu processo de desenvolvimento requer
uma maior atenção durante a fase de concepção, de forma a gerar um
produto que atenda aos requisitos de projeto (MARWEDEL, 2010).

Neste sentido, o projeto de CPS é considerado uma
atividade complexa, sendo composta por diferentes fases essenciais
para sua concepção. Considerando a complexidade associada ao
desenvolvimento destes projetos a definição detalhada de suas fases
se faz necessária, auxiliando no projeto e construção das aplicações.

Considerando o processo de desenvolvimento dos UAVs, alguns
desafios são observados, descrevendo o desenvolvimento do sistema de
controle, a especificação e integração do seu conjunto de dispositivos
e a avaliação e validação de suas propriedades. Considerando o
projeto do sistema de controle, este é descrito como um processo
complexo que exige o desenvolvimento de algoritmos sofisticados. A
especificação e integração do conjunto de dispositivos à aplicação CPS
também é descrita como uma tarefa não trivial, sendo necessário a
avaliação de diferentes caracteŕısticas, assim como, a definição da
plataforma embarcada para integração destes componentes também é
um desafio. O projeto dos UAVs requer um alto grau de confiança
quanto a validação de suas propriedades, sendo este processo muitas
vezes realizado somente por meio de simulações, atividade esta que
não é suficiente para garantir a avaliação e validação da aplicação,
sendo necessário o uso de técnicas adicionais associadas ao projeto das



aeronaves.
Além dos desafios descritos, considerando os diferentes métodos

de desenvolvimento aplicados a CPS descritos na literatura é observado
que algumas destas fases são mais discutidas do que outras. Neste
sentido, é verificado que alguns pontos do processo de desenvolvimento
não são suficientemente detalhados, gerando dúvidas aos times
de projeto. Da mesma forma, apesar de muitas das propostas
considerar como base a engenharia dirigida por modelos (MDE),
também é observado que não há grande integração entre as diferentes
representações de projeto geradas, dificultando a manutenção das
informações durante o desenvolvimento do projeto.

Objetivo

Esta tese tem como objetivo prover contribuições para o
processo de desenvolvimento de CPS, permitindo a especificação das
propriedades dos subsistemas, a integração dos dispositivos e o suporte
para avaliação e validação de propriedades por meio do uso de técnicas
de verificação formal. As contribuições apresentadas serão aplicadas
principalmente ao processo de desenvolvimento de Véıculos Aéreos Não
tripulados.

Metodologia

A metodologia utilizada para o desenvolvimento desta tese
se baseia em três componentes principais: (i) metodológicos, (ii)
modelagem do conjunto de sensoriamento e atuação, e (iii) verificação
formal.

Considerando (i) uma proposta de método de desenvolvimento
aplicada a UAVs foi desenvolvida, buscando sistematizar o processo de
desenvolvimento e detalhar tanto as etapas espećıficas do projeto de
UAVs, quanto atividades de gerenciamento de projeto. Desta forma,
se busca guiar o processo de projeto da sua concepção à validação pelo
cliente. O método proposto é baseado na MDE e prevê a construção de
representações complementares para mapeamento das caracteŕısticas
da aplicação. A construção de alguns destes modelos é automatizada
pela aplicação de processos de transformação de modelos, permitindo
a geração de novas representações com base em seus dados de entrada.

O Item ii propõe contribuições aplicadas ao processo de
modelagem do conjunto de sensoriamento e atuação das aplicações.
Neste sentido a extensão de um processo de transformação de modelos
foi proposta. Neste processo, modelos funcionais (Simulink) são



utilizados como base para geração de modelos de arquitetura (AADL).
Neste sentido, visando ampliar o ńıvel de detalhe dos dispositivos do
sistema, assim como permitir a especificação do conjunto de sensores
e atuadores durante o processo de transformação, etapa anteriormente
não coberta pelo processo de transformação original, foi desenvolvida
como extensão do processo de transformação proposto, permitindo
aos desenvolvedores a especificação das caracteŕısticas de sensores e
atuadores, assim como a definição de funções e tarefas responsáveis
por prover a interface com os dispositivos.

Visando integrar técnicas de verificação formal ao processo
de desenvolvimento de UAV (Item iii), um segundo processo de
transformação de modelos foi proposto. Neste caracteŕısticas são
integradas ao modelo de arquitetura AADL, permitindo extração
do comportamento do sistema representado por meio de autômatos
temporizados, os quais serão utilizados como base para o processo de
avaliação e validação do sistema por meio do uso do Model Checking
na ferramenta UPPAAL.

Resultados e Discussão

Os resultados apresentados nesta tese de doutorado são divididos
em conformidade com os três componentes principais da tese
mencionados anteriormente. Sobre o primeiro, o Caṕıtulo 4 desta
tese apresenta o desenvolvimento do método aplicado ao projeto de
UAVs, bem como a sua validação com o desenvolvimento de um UAV
bi-rotor de configuração tilt-rotor aplicado a missões de busca e resgate.
Os resultados apresentados mostram que o método proposto busca
detalhar não só as atividades técnicas, relacionadas ao projeto do UAV,
como também descreve atividades gerenciais de projeto, além disso
dois processo de transformação de modelos são associados ao método
proposto descrevendo suporte à geração de modelos e contribuindo
para o aumento na integração destas representações e a manutenção
da informação de projeto durante todas as fases de desenvolvimento.

Referente ao segundo componente, o Caṕıtulo 5 desta tese
apresenta a extensão de um processo de transformação pre-existente
(de modelo funcional Simulink para modelo de arquitetura AADL).
Neste uma etapa intermediária de processamento foi adicionada visando
dar suporte a análise e especificação dos subsistemas de sensoriamento
e atuação, processo este que era considerado como uma etapa a
ser realizada posteriormente na proposta de transformação original.
Para dar suporte ao processo de transformação a ferramenta ECPS
Modeling foi desenvolvida auxiliando na representação e organização



das informações. Os resultados apresentados indicam a viabilidade de
inclusão de informações ainda durante o processo de transformação,
permitindo a geração de um modelo de arquitetura que integra o
sistema de controle ao seu conjunto de sensores e atuadores. Visando a
validação do processo desenvolvido a ferramenta foi aplicada ao projeto
de um UAV detalhando as etapas aplicadas bem como o modelo de sáıda
gerado.

Considerando a integração do processo de verificação formal
(terceiro componente), o Caṕıtulo 6 descreve o desenvolvimento
do processo de transformação do modelo de arquitetura AADL
em autômatos temporizados. Esses são submetidos ao processo
de verificação formal por meio do uso da técnica Model Checking
na ferramenta UPPAAL. Esse processo tem suporte da ferramenta
ECPS Verifier, desenvolvida no escopo desta tese para permitir a
transformação automatizada dos modelos. Os resultados obtidos
demonstram que com o refinamento aplicado ao modelo de arquitetura
AADL se faz posśıvel extrair o comportamento da aplicação,
permitindo a avaliação e validação das propriedades do sistema. A
ferramenta desenvolvida foi aplicada ao processo de desenvolvimento
de um UAV para detalhamento e validação das suas propriedades.

Considerações Finais

Neste tese contribuições foram apresentadas visando aprimorar
o processo de desenvolvimento dos CPS, em especial dos UAVs. Essas
foram propostas após uma extensiva análise de diferentes métodos
para projeto de CPS, considerando as caracteŕısticas requeridas no
projeto de UAVs. Estudos foram realizados para avaliar a integração
do conjunto de dispositivos do sistema nestas aplicações. A aplicação
de métodos de verificação formal a esse processo também foi avaliada.
Com base nos estudos realizados três contribuições foram propostas,
com objetivo de prover um maior detalhamento de fases não tão
amplamente discutidas no projeto de UAVs, descrevendo o método de
projeto aplicado a UAVs e dois processos de transformação de modelos
que visam dar suporte ao método proposto.

Em resumo esta tese descreve uma solução integrada aplicada
ao projeto de UAVs detalhando suas fases e atividades. Esse método
é complementado por meio de dois processos de transformação de
modelos que permitem a integração das caracteŕısticas dos dispositivos
do sistema e a avaliação e validação das propriedades por meio do
uso da verificação formal. O método proposto foi aplicado ao projeto
de um UAV tilt-rotor UAV. Os resultados obtidos demonstram que



com a aplicação do referido método representações complementares são
geradas ao longo do processo de desenvolvimento do projeto, garantindo
ummaior detalhamento das informações. Por meio do uso dos processos
de transformação se busca reduzir o tempo de projeto e contribuir para
tornar o processo menos propenso a erros.

Palavras-chave: Projeto de CPS, VANT, Engenharia dirigida por
modelos, Transformação de Modelos





ABSTRACT

The design of a Cyber-Physical System (CPS) is defined as a
complex activity, being composed of a set of design phases devoted
to model application characteristics. In this sense, detailing the
phase characteristics is required in order to help the design teams
during the project design, and to aim the support of the correct
application characteristics representation. However, despite some of
these phases, such as the control systems design, being discussed
at length by the engineering community, other phases have less
detailed studies, i.e., the design activities that compose these phases
are not so well documented. In these sense, it is required more
experience from the design teams to perform activities such as, the
sensing and actuation subsystems representation, and the integration
of formal verification methods on the design process, among others.
Despite the lack of information related to them, these phases are
essential to the CPS design, by the fact that they support application
characteristics representation and the properties validation, as well as,
they also provide the integration between designed system and their
environment. Regarding the CPS design process, different methods are
available in the literature, aiming to guide the designers to perform
the modeling tasks. However, these approaches do not provide enough
information related to those described activities. In this context, this
thesis proposes an integrated method applied to CPS design, more
specifically devoted to the Unmanned Aerial Vehicles (UAV) design.
That proposed method aims to integrate different modeling processes
such as functional, architectural, sensor and actuator integrations, and
formal verification design processes. Based on the proposed activities
this method aims to support the UAV embedded system design, and
allow the integration between the embedded platform and the set of
system devices. The Model Driven Engineering (MDE) is used as basis
to the proposed approach, and aims to support the automated model
generation based on the application characteristics. It is intended to
ensure the maintainability of the system information over all the design
steps and provide the property evaluation and validation, considering
the model transformation principles. Two different tools are designed
with the proposed method, the ECPSModeling and the ECPSVerifier,
for supporting the design activities. The ECPSModeling provides the
transformation process from functional model to architectural model,



in order to integrate sensor and actuator characteristics. On the other
hand, the ECPSVerifier provides the CPS behavior representation,
based on the architectural model, by using timed automatas, which
allows the formal verification evaluation by performing model checking.
The proposed method and the designed tools are applied on the project
of a tilt-rotor UAV design. The details of the method proposed in this
thesis are demonstrated by performing the UAV project, described as
a case study.

Keywords: CPS design process, UAV, Model Driven Engineering,
Models transformation



LIST OF FIGURES

Figure 1 Concept of CPS.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 2 UAV architectural representation.. . . . . . . . . . . . . . . . . . . . . . 3

Figure 3 Model Transformation Overview . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 4 AADL Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 5 Relations between AADL components. . . . . . . . . . . . . . . . . . 22

Figure 6 UAV design method workflow. . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 7 Rapid Intervention Vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 8 VTOL-CP physical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 9 VTOL-CP UAV architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 10 VTOL-CP UAV Functional Model. . . . . . . . . . . . . . . . . . . . . 74

Figure 11 High-level view of the UAV architecture. . . . . . . . . . . . . . . . 75

Figure 12 High-view of UAV Architectural model. . . . . . . . . . . . . . . . . 76

Figure 13 Position estimation task behavior. . . . . . . . . . . . . . . . . . . . . . 78

Figure 14 GPS behavior representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 15 Main activities and artifacts of the method to develop
CPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 16 UAV Simulink model: first hierarchical level. . . . . . . . . . . . 87

Figure 17 ECPSModeling process workflow. . . . . . . . . . . . . . . . . . . . . . . 88

Figure 18 ECPSModeling definition of mathematical block. . . . . . . 89

Figure 19 ECPSModeling analyzing the block inputs. . . . . . . . . . . . . 90

Figure 20 ECPSModeling pre=processing functions definition. . . . . 91

Figure 21 ECPSModeling actuators definition. . . . . . . . . . . . . . . . . . . . 92

Figure 22 Define the actuation software structure. . . . . . . . . . . . . . . . . 93

Figure 23 ECPSModeling output analysis. . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 24 Define post-reading functions. . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 25 PositionEst function definition. . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 26 ECPSModeling sensor specification. . . . . . . . . . . . . . . . . . . . . 96

Figure 27 ECPSModeling sensing threads specification. . . . . . . . . . . 97

Figure 28 UAV model with sensing and actuation process.. . . . . . . . 99

Figure 29 AADL representation of sensing and actuation process. 99

Figure 30 ECPS Verifier Top View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 31 ECPS Verifier Tasks Behavior and Interferences



evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 32 ECPS Verifier Schedulability Analysis. . . . . . . . . . . . . . . . . . 107

Figure 33 AADL meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 34 UPPAAL meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 35 Scheduler model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 36 UAV Behavior model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 37 AADL design conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 38 UAV model with sensing and actuation process.. . . . . . . . 118

Figure 39 AADL representation of sensing and actuation process. 119

Figure 40 Split of UAV model with a subset of devices. . . . . . . . . . . . 120

Figure 41 AADL representation of position estimation components.120

Figure 42 GPS fault tree representation. . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 43 AADL GPS error representation. . . . . . . . . . . . . . . . . . . . . . . 121

Figure 44 AADL position thread behavior. . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 45 Position estimation task.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 46 GPS template.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 47 AADL position thread behavior. . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 48 Tasks template.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 49 Evaluated UAV properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 50 Obtained results of evaluated UAV properties. . . . . . . . . . 128



LIST OF TABLES

Table 1 Evaluation of CPS design works. . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 2 Evaluation of Integration of Sensors and Actuators . . . . . 44

Table 3 Evaluation of CPS Formal Verification . . . . . . . . . . . . . . . . . . 50

Table 4 UAV control stability requisite . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 5 UAV load transportation requisite . . . . . . . . . . . . . . . . . . . . . . 73





LIST OF ACRONYMS

CPS Cyber-Physical System

IT Information Technology

UAV Unmanned Aerial Vehicle

MDE Model-Driven Engineering

CASE Computer-Aided Software Engineering

AADL Architecture Analysis and Design Language

AST Assisted Models Transformation

DSML Domain-Specific Modeling Languages

QoS Quality of Service

M2M Model to Model

M2C Model to Codel

OMG Object Management Group

MDA Model Driven Architecture

PIM Platform-Independent Models

PSM Platform-Specif Model

EMF Eclipse Modeling Framework

XML eXtensible Markup Language

UML Unified Modeling Language

MoC Model of Computation

SAE Society of Automotive Engineers

SELT State/Event LTL model-checker

TTS Timed Transition Systems

RTOS Real-Time Operating System

PM Platform Model

CERBERO Cross-layer modEl-based fRamework for
multi-oBjective dEsign of Reconfigurable systems in unceRtain
hybRid envirOnments

MDD Model-Driven Design

FR Functional Requirements

NFR Non-Functional Requirements

VTA Vistual Target Architecture

TSAM Timed Abstract State Machines



TPN Timed Petri Nets

NPTA Networks of Priced Timed Automata

VTOL-CP Vertical Take-Off and Landing Convertible Plane

UFSC Federal University of Santa Catarina

UFMG Federal University of Minas Gerais

SAR Search and Rescue

IMU Inertial Measurement Unit

GPS Global Position System

ESC Electronic Speed Controller

EA AADL Error Annex

BA AADL Behavior Annex



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 MOTIVATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 LIST OF PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 CONCEPTS, TECHNOLOGIES AND

TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 MODEL-DRIVEN ENGINEERING . . . . . . . . . . . . . . . . . . . 11
2.1.1 Models and Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Model Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 TOOLS AND LANGUAGES APPLIED TO CPS DESIGN 16
2.2.1 MATLAB/Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Architectural Analysis Design Language - AADL . . 20
2.2.3 OSATE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.6 UPPAAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 STATE OF THE ART. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 RELATED WORKS EVALUATION CRITERIA . . . . . . . . 31
3.1.1 Criteria for CPS Design Methods . . . . . . . . . . . . . . . . . 32
3.1.2 Criteria for Integration of Sensors and Actuators . 32
3.1.3 Criteria for Formal Verification . . . . . . . . . . . . . . . . . . . 33
3.2 CYBER-PHYSICAL SYSTEMS DESIGN METHODS . . . 34
3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 INTEGRATION OF SENSORS AND ACTUATORS . . . . 42
3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 FORMAL VERIFICATION ON CPS DESIGN. . . . . . . . . . 48
3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 SUMMARY AND ADDITIONAL REMARKS . . . . . . . . . . 54
4 DESIGN METHOD FOR UNMANNED

AERIAL VEHICLES. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 PROPOSED APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.1 Design Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



4.2 DESIGN OF A VTOL-CP UAV. . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 UAV Method Applied to the project Design . . . . . . 70
4.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 SENSING AND ACTUATION SUBSYSTEMS

DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1 RESEARCH CONTEXTUALIZATION . . . . . . . . . . . . . . . . 84
5.2 PROPOSED APPROACH AND RELATED DESIGN

ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Design Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.3 Output Model Generated by the Tool . . . . . . . . . . . . . 98
5.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6 INTEGRATING FORMAL VERIFICATION

INTO THE UAV DESIGN . . . . . . . . . . . . . . . . . . . . . 101
6.1 FORMAL VERIFICATION OF AADL

ARCHITECTURAL MODELS . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.1 Phase 1: Evaluation of Tasks and Interferences . . . . 104
6.1.2 Phase 2: Schedulability Analysis . . . . . . . . . . . . . . . . . . 106
6.1.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 MODEL TRANSFORMATION TOOL ECPS VERIFIER 110
6.2.1 Related Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.2 Transformation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.3 Auxiliary Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 DESIGN OF SENSING AND ACTUATION

SUBSYSTEMS OF AN UAV . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 Evaluation of tasks behavior and interferences . . . . 119
6.3.2 Schedulability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 UAV PROPERTIES EVALUATION . . . . . . . . . . . . . . . . . . . 125
6.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



1

1 INTRODUCTION

Cyber-Physical Systems (CPSs) are applications characterized
for performing intensive interaction with the surrounding environment.
CPSs consist of complex systems typically applied to control
electro-mechanical devices. In the CPS environment embedded
computers and network monitors are applied to control the
physical processes, usually with feedback loops where physical and
computational processes affect each other. (LEE; SESHIA, 2015; ALUR,
2015).

Analyzing the CPS structure at least three main components
are observed in this sketch (Fig. 1). The first describes the physical
plant, defining the CPS “physical” part. The physical plant represent
the components that are not executed by computers or digital networks,
and it can include mechanical parts, biological or chemical processes, or
human operators. The second part relates to computational platforms,
which consist in a set of devices coupled with computers, and one
or more operating systems. The third defines the communication
interfaces, which provides the mechanisms for information exchange. In
this sense, the platforms and the network interface provide the “cyber”
part of the cyber-physical system(ALUR, 2015).

Figure 1 – Concept of CPS.



2

Regarding the 20th century Information Technology(IT)
revolution, the CPS popularization was increased by the technological
evolution, that provided components with higher processing power and
more energy efficiency. In the same way, the communication protocols
and the network infrastructure has evolved, allowing more interaction
and information exchange. However, despite this evolution the
CPS design requires understanding the joint dynamics of computers,
software, networks, and physical processes. In this sense, this
design process is considered a multidisciplinary task, which involves
different teams working in a collaborative way to properly address the
application features (DERLER; LEE; VINCENTELLI, 2012).

Over the last years the CPS has been applied to different
environments, requiring particular levels of reliability and safety
according the problem domains. These domains include robotic
manufacturing systems; electric power generation and distribution;
process control in chemical factories; distributed computer games;
transport of manufactured products; heating, cooling, and lighting into
smart buildings; people movers such as elevators; bridges that monitor
their own state of health; the automotive industry; and aerospace
applications (LEE, 2008).

Regarding the aerospace environment, different applications
have been designed over the CPS scope such as satellites, spacecrafts,
and Unmanned Aerial Vehicles (UAVs). In relation to UAVs its
observed that the use of these aircrafts has grown tremendously in
recent years, mainly due to technological innovation in fields like
control design, estimators, and system components (PAPACHRISTOS et

al., 2011).
Initially, the UAVs were widely used in military applications,

due to their flexibility to integrate into different environments and
their ability to be remotely operated and transmit information in
real-time, being applied into surveillance, and reconnaissance mission
for example (KEANE; CARR, 2013). However, the UAVs also began
to be used in civilian applications, promoting much research. These
vehicles have shown potential for missions such as remote sensing,
cargo transportation, search and rescue, precision agriculture, border
monitoring, among others (COSTA et al., 2012; NAIDOO; STOPFORTH;

BRIGHT, 2011; PING et al., 2012).
Evaluating the different UAV characteristics and configurations,

it is possible to identify two big UAV groups of architectures in the
literature: fixed wing and rotary wing. The fixed wing aircrafts are
characterized by high autonomy and high speed (Fig. 2a); on the other



3

hand, rotary wings (namely helicopters), have as main characteristic
the good maneuverability (Fig. 2b).

Despite these defined groups another UAV category has emerged,
describing the Tilt-rotor aircraft, which is an aerial vehicle whose design
is between both these two architectures, propelled by two tiltable rotors.
One of the most notable aircraft is the Bell-Boeing V-22 Osprey, which
is used by US military to perform several kinds of missions such as
troops or military equipments transportation, as shown in Fig. 2c.
Nowadays other Tilt-rotor UAVs has been developed such as, TR918
Eagle Eye shown in Fig. 2d, whose construction began in 1993 with its
final version being released in 1998. This was designed and built for
Bell by the research company Scaled Composites.

Figure 2 – UAV architectural representation.
(a) Ebee - fixed wing UAV.

Source: SenseFly (2018).

(b) TURAC - rotatory wings UAV.

Source: Cai et al. (2008).

(c) Bell-Boeing V-22 Osprey. (d) Bell Eagle Eye TiltRotor UAV.

Source: UAVGLOBAL (2008).

Regarding the UAV design process, considerable challenges are
observed to provide such system work. First, controlling the vehicle
is not trivial task and sophisticated control algorithms are required.



4

Secondly, specifying and integrating the set of required devices into the
CPS application is not a trivial task, and several characteristics need
to be evaluated, as well as the definition of the embedded platform
to integrate these components is also a challenge. Thirdly, the vehicle
needs to operate in a context, interacting with its environment. It
might, for example, be under the continuous control of a watchful
human who operates it by remote control. Or it might be expected to
operate autonomously, to take off, performing a mission then returning
and landing.

Providing the autonomous operation is enormously complex and
challenging, because it cannot benefit from the watchful human. The
autonomous operation demands more sophisticated sensors, the vehicle
needs to keep track of where it is, requires that the aircraft senses
the obstacles, and it needs to know where the ground is. These
vehicles also needs to continuously monitor their own health, in order
to detect malfunctions and react to them so as to contain the damage.
It requires detailed modeling of the environment dynamics, and a
clear understanding of the interaction between these dynamics and the
embedded system.

In this context, different CPS methods are proposed nowadays,
aiming to provide a guideline to the design teams to build these
applications. Some of these methods are based on Model-Driven
Engineering (MDE) (SCHMIDT, 2006) in order to support the capture
and representation of CPS characteristics. By performing MDE
principles, complementary models can be created and different system
dimensions represented (BECKER et al., 2010; JENSEN; CHANG; LEE,
2011b; DERLER; LEE; VINCENTELLI, 2012).

An MDE characteristic propose the use of model transformation
aiming to automate the design tasks. Theses processes are applied to
provide the automated models generation, where based on a source
model, a target complementary model can be generated, as well as the
application code derived.

Despite the different CPS methods proposed, and considering
the UAV design complexity, at least three difficulties are observed
on theses processes. The first describes that some design steps are
more discussed than others, such as the control systems design, being
discussed at length by the engineering community, while sensing and
actuation subsystems design less detailed studies.

The second problem is related to the weak integration between
the project phases and the tools support. This problem is caused
by the difficulty of providing the model mapping, making it difficult



5

to maintain any information during the design process. Similarly,
tools and methods sometimes do not provide enough characteristic
representation for the UAV design process needs, requiring that manual
work be performed by the development team, which can be subject to
project errors.

Integration of formal verification methods applied to validate
the UAV project properties is observed as a third difficulty. Some
methodologies do not integrate these techniques into their approaches.
In this way, the validation process of application properties becomes
difficult and not precise, often this validation is based on project team
experience.

1.1 MOTIVATION

Design CPS applications, specially UAVs, is considered a gradual
process composed by a set of steps that detail the application
characteristics and validate the provided information by performing
simulations and analysis (LEE; SESHIA, 2015; JENSEN; CHANG; LEE,
2011a; BECKER et al., 2010). Due to this process complexity, the
application design requires a higher carefully during its conception,
in order to provide a product that fulfill its requirements (MARWEDEL,
2010).

Computer-Aided Software Engineering (CASE) tools based on
functional characteristics and that support simulations are typically
used to represent the CPS behavior (functional representation) (LEE;
SESHIA, 2015) such as the Ptolemy (BERKELEY, 1999) and the Simulink
(MATHWORKS, 2018). However, beside they provide support to
generate application code, they do not present enough support to
represent architectural aspects (GONCALVES et al., 2013b).

Represent the architectural characteristics of CPS application
is required independently of the applied approach. These aspects
usually are described by creating an architectural model, describing
the integration between software and hardware components.

To provide the architectural properties representation languages
are applied to properly describe these characteristics. An example
of these languages is defined as Architecture Analysis and Design
Language (AADL) (FEILER; GLUCH; HUDAK, 2006), that have been
extensively applied on critical embedded systems design (ZHAO; MA,
2010). Based on the language properties, application characteristics
can be evaluated, such as temporal characteristics (scheduling and flow



6

latency), and physical properties (weight, power consumption) (FEILER;

GLUCH, 2012).
Perform formal verification methods to evaluate and validate the

system properties is cited by different authors as essential to ensure the
CPS properties validation (CORREA et al., 2010; MOON, 1994). In this
sense, regarding the UAV complexity this technique is described as
essential to ensure that the designed application fulfills its restrictions
and can perform the missions. The properties validation is performed
confronting the system description and its specifications, validating the
system properties (ONEM; GURDAG; CAGLAYAN, 2008). Synchronous
languages can be applied to evaluate these properties. Based on
these representations characteristics such as liveness, invariance, and
reachability can be evaluated (INRIA, 2012).

Another point observed in different approaches regards the
fact that despite built different models to represent the application
properties, these representations do not have much integration between
themselves, i.e. most of these models are manually built. This
fact requires that designers put additional effort into representing the
application characteristics either for the transition between models or
to provide the application code.

This additional effort applied to the design process, usually
performed by the design teams in manual tasks and does not ensure the
models mapping, by the fact that these characteristics are only based
on the design team experience. In addition, performing manual tasks
makes it difficult to provide project maintenance, as well as making the
project more prone to errors.

Based on the presented information some challenges are verified
in the CPS project, for example the integration between the generated
models, definition of the set of sensor and actuator and representation of
its properties, the integration of the system devices with the embedded
platform, and the integration of the formal verification methods during
the design phase. These topics are seen as essential to provide
the integration between the designed application and the real world.
However, a desired integration level between the design steps is not
observed, furthermore some activities are less discussed than others.

Regarding the models integration and aim to automate the
generation of these representations, techniques that perform model
transformation processes can be applied to support the generation of
the application models. The Assisted Models Transformation (AST)
(PASSARINI, 2014) can be cited as one transformation technique that
aims to generate the architectural software representation based on the



7

functional model.
The AST main objective regards the translation of the control

subsystem to the architectural model, leaving other features that are
also essential to the application such as, the sensing and actuation
subsystems. The AST considers that the integration of these
subsystems is an external activity of the transformation process, and
its designers responsibility to perform it.

Due to the fact that the CPS design process is composed of a
set of phases and that these steps are not properly integrated, performs
the CPS design is considered as a complex activity, as well as, maintain
these applications is not an easy task. In this sense it is observed that
the existing approaches are lacking and do not properly guide the design
team. Similarly, the design processes do not properly provide a means
for integration of generated models, validation of systems properties or
integration of the set of system devices. This characteristics indicate
that automating some of these design steps can contribute to the CPS
design process especially in relation to UAV design.

1.2 OBJECTIVES

The main objective of this PhD Thesis is to provide contributions
to the CPS design process, allowing the subsystems specification,
integration of system devices, and support for property evaluation by
using formal verification. These contributions are especially applied for
design of Unmanned Aerial Vehicles.

In order to achieve the main objective, some specific objectives
are defined as follows:

1. Study the existent CPS design methods identifying their
deficiencies, especially related to UAV design.

2. Propose a design method applied to UAV systems design,
providing a teams guideline and systematizing the process
activities.

3. Explore the system devices integration in the CPS design process.

4. Provide contributions to integrate device’s characteristics in the
design process.

5. Investigate the formal verification methods integration on the
CPS design process, providing the system properties evaluation
and validation.



8

6. Design tools to support models transformation processes,
contributing to device’s characteristics integration and to perform
the systems formal evaluation.

1.3 OUTLINE

In this introductory chapter, the problem of design CPS,
especially UAVs, supported by the tools usage to automate some
activities was introduced and motivated. The next chapters are
organized as follows:

• Chapter 2 presents the concepts and techniques related to
the topic that compose this dissertation such as MDE, model
transformation, modeling languages, among others.

• Chapter 3 provides a survey of the CPS design state of the art,
analyzing several related works. Firstly, different CPS design
methods are presented. Secondly, a set of approaches that
propose the integration of sensors and actuators in the CPS design
process are detailed. Thirdly, works that describe the integration
of formal verification methods are presented. Finally, a discussion
related to these topics is presented.

• Chapter 4 shows the proposed CPS design method, devoted to
built UAV application. The proposed approach describe a set of
activities aiming to guide the design teams to the applications
construction. A Tilt-rotor UAV design process is presented to
steps taken throughout the proposed method.

• Chapter 5 introduces the integration of the sensor and
actuator properties on the CPS design process. This process
is supported by the ECPS Modeling tool, that performs the
transformation from Simulink model to AADL model, integrating
the components characteristics. A case study was presented to
detail the transformation process.

• Chapter 6 presents the integration of formal verification
methods in the CPS design process. In this way, a transformation
process is performed from AADL models to UPPAAL timed
automata, in order to support the system properties evaluation.
This approach is supported by a tool named ECPS Verifier, and
detailed evaluating a Tilt-rotor UAV.



9

• Chapter 7 summarizes the contributions and results presented
in this thesis and suggests possible future research lines.

1.4 LIST OF PUBLICATIONS

The following papers were published along this PhD:

• GONÇALVES, F. S.; BECKER, L. B. Preparing cyber-physical
systems functional models for implementation. In: V Brasilian
Symposium on Computing System Engineering (SBESC
2015). Foz do Iguaçu - PR: [s.n.], 2015.

• GONÇALVES, F. S. et al. Vant autônomo capaz de comunicar
com uma rede de sensores sem fio. In: X Congresso Brasileiro
de Agroinformática (SBIAGRO 2015). Ponta Grossa - PR:
[s.n.], 2015.

• GONÇALVES, F. S.; BECKER, L. B.; RAFFO, G. V. Managing
CPS complexity: Design method for Unmanned Aerial Vehicles.
In: 2016 1st IFAC Conference on Cyber-Physical &
Human-Systems. [S.l.: s.n.], 2016.

• GONÇALVES, F. S.; BECKER, L. B. Model driven engineering
approach to design sensing and actuation subsystems. In:
2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA). [S.l.: s.n.],
2016. p. 1–8.

• GONÇALVES, F. S. et al. Formal verification of aadl models
using uppaal. In: VII Brazilian Symposium on Computing
Systems Engineering (SBESC 2017). Curitiba - PR: [s.n.],
2017.



10



11

2 CONCEPTS, TECHNOLOGIES AND TECHNIQUES

Represent the CPS application characteristics in order to
correctly describe its properties is defined as one of the CPS design
challenges, especially when the UAV systems design is considered. This
complexity is inherent of this applications environment, as well as on
the required guarantees that can be applied to these systems (LEE;
SESHIA, 2015). This process is composed of a set of phases, aiming to
detail the application characteristics. In this sense, aiming to support
the design activities, different tools and techniques may be applied
(JENSEN; CHANG; LEE, 2011b; BECKER et al., 2010).

Aiming to improve the model characteristics and make the
designers work less prone to errors, different technologies may be
applied into the UAV design. In this context, techniques, modeling
languages, and tools are applied to these design processes are presented
in this chapter.

2.1 MODEL-DRIVEN ENGINEERING

MDE (SCHMIDT, 2006) the method applied to capture and
represent systems characteristics. By the MDE usage complementary
models may be created, representing different system viewpoints such
as, the physical representation, the control system, the architectural
structure, the functional representation, the electrical components,
among others.

This technique is focused on representing the application
characteristics by model construction. Different to the traditional
approaches, MDE is not centered on codding but instead defining the
specification of the system characteristics before writing the application
code (ALANEN et al., 2004; SCHMIDT, 2006). MDE was proposed by
Stuart Kent (KENT, 2002) as an approach that describes the application
design, analysis, and representation.

The design of complementary models applied to represent
the system characteristics is proposed by MDE, and based on this
characteristic different viewpoints are created. In addition to the model
design, the MDE support the automated code generation process,
where based on the designed models, the software structure, to be
applied to the target platform, can be extracted (ALANEN et al., 2004).

During the evolutionary CPS design process, different models



12

are generated, providing more project information, and increasing the
team’s productivity. However, these structures need to be integrated in
order to compose the CPS application. By the use of MDE standards,
the model representation should be reused, simplifying the design
process. The MDE aims to face the platform’s complexity as well as
the inability of the third generation languages to effectively express the
domain application concepts. The MDE introduce technologies that
incorporate (SCHMIDT, 2006):

• Domain-Specific Modeling Languages (DSML): Languages
that support the definition of an application’s structure, system
behavior, and domain characteristics. By using these languages,
properties are defined based on meta-models, that represent the
relation between domain concepts, which furthermore express the
model semantic associated with its restrictions;

• Transformation engines and generators: That analyze
the model aspects and synthesize different artifacts, such
as source code, alternative model representations, among
others. The synthesis of these artifacts ensures consistency
between application implementations and information analysis
associated with functional analysis and Quality of Service (QoS)
requirements captured in the models.

This technique proposes model transformation processes, where
based on an initial domain application model (defined as source-model),
it is possible to generate different representations (defined as
target-models), which should be in accordance with the source-model.
The model transformation can be carried out in two ways, to generate
new representations (Model to Model - M2M), or to provide application
code (Model to Code - M2C).

An approach based on MDE was proposed by the Object
Management Group (OMG) defining a standard to the platform
independent applications design. This standard is defined as Model
Driven Architecture (MDA), that is focused on the specification of
system functionalities as an independent process detached from the
specific platform implementation (OMG, 2003).

Methodologies based on MDA provide the application design
by automated mapping processes, attaching the models to its
implementations. By MDA usage the OMG aims to provide means by
which designers can focus on application requirement definition without
regard for implementation aspects of the target platform.



13

The MDA is based on a mapping concept, where the
defined Platform-Independent Models (PIM) are mapped into the
Platform-Specific Models (PSM) by the use of automated or
semiautomated mechanisms to perform model transformation. The
definition of PIM and PSM models is performed with the use of
metamodels that describe the syntax, and operational semantic use
of each modeling language(LOPES et al., 2006a).

Another MDE approach its defined as Eclipse Modeling
Framework (EMF) that provides a framework to design and perform
the application code generation based on structured data models
(STEINBERG; BUDINSKY; MERKS, 2009). By the use of EMF its possible
to build models and perform the java code generation, allowing the
design, edition and storage of a designed model instance.

The EMF unify three technologies Java, XML1 and UML2

where independent of the design language the provided representation
can be considered as a common model with properties of these
three languages. These characteristics describe that defining an
EMF transformation method this method should be applied to other
technologies. The EMF framework has a metamodel that details the
model’s characteristics, i.e., defines the structure to store the designed
representations (ECLIPSE, 2004). The MDA and EMF are considered
representative approaches of MDE, describing important concepts such
as models, metamodels, and transformation processes (LOPES et al.,
2006b).

2.1.1 Models and Metamodels

A model is described as a set of formal elements that represent
a particular object of study, designed for a specific purpose, which can
be evaluated by performing some kind of analysis (MELLOR et al., 2004;
MELLOR; CLARK; FUTAGAMI, 2003). Models can also be defined as a
real life simplified view (SELIC, 2003), or as a set of prepositions that
describe characteristics of the studied objects (SEIDEWITZ, 2003). This
representation is essential to the engineering being applied to represent
complex problems to be solved, reducing the implementation time and
cost of the complex solutions projects (SELIC, 2003).

The MDE makes use of programing and modeling languages,
and based on these components models are generated during different

1eXtensible Markup Language
2Unified Modeling Language



14

project phases, providing not only the system documentation, but
being part of its design. By this fact, models are considered as the
main artifacts generated during the application project. In this sense,
greater accuracy is required for the design of these representations,
specifying the system characteristics, and considering them as part of
the development process, i.e., these objects are used as a basis for the
final solution, by performing transformation processes (MAIA, 2006).

The models can be created as descriptive or prescriptive
representations (KÜHNE, 2006; HENDERSON-SELLERS, 2012).
Descriptive models detail characteristics of an existing object, while
prescriptive models (also named as specification models) represent
the object to be implemented. The use of descriptive or prescriptive
models is defined according the application context (SEIDEWITZ, 2003;
HENDERSON-SELLERS, 2012). In software engineering, models usually
represent pieces of the application domain while also defining software
characteristics applied to this domain (HESSE, 2006).

A model is considered suitable only if evaluated in a simulation
environment that behaves similarly to a real object. Due to the
abstraction property (MDE characteristic), the models represent a set
of relevant information related to the studied object, i.e., that describe
the application subset aspects allowing for properties evaluation. In
this sense, aiming to obtain a complete application view, the design
process includes the use of multiple complementary models, describing
the application characteristics(MELLOR; CLARK; FUTAGAMI, 2003).

Metamodels are created to provide model specification, these
representations detail language expresiveness, i.e., specify the set of
prepositions to guide the valid model construction (SEIDEWITZ, 2003;
GAAEVIC et al., 2006). A model definition is based on its metamodel,
that represents a metamodel instance. The model is considered in
conformity with its metamodel only if it is syntactically correct, and
meets the constraints imposed by the metamodel (KÜHNE, 2006).

As described by Mellor et al. (2004) a metamodel details the
structure, the semantic, and the restrictions of model families, i.e.,
model groups that share syntaxes and semantics. In this way, a
metamodel describes a precise definition and the required rules to create
semantic models, and its structure defines the relations between the
model’s elements.



15

2.1.2 Model Transformation

The model transformation represent the automated model’s
generation, where based on source model a target representation is
provided. This activity describes an important role of the MDE
scope (KLEPPE; WARMER; BAST, 2003). The OMG defines the model
transformation as a translation process between models in the same
system (OMG, 2003). Baudry et al. (2006) on the other hand, describe
the model transformation as a kind of language relation.

The definition of a set of rules is required for the transformation
process. These structures detail how the source model is translated into
an equivalent representation in the target language. The definition of
transformation rules defines the way that one or more structures on the
source language are represented in the target representation (KLEPPE;

WARMER; BAST, 2003). This process is exemplified in the Fig. 3, that
represents a top view description of this process, and detail its concepts
and relationships.

Figure 3 – Model Transformation Overview

Source: Eclipse (2006).

The transformation process is composed of a source model Ma,
which must comply with its metamodelMMa, that will be transformed
into a target model Mb, and the target model must comply with its
metamodel MMb. The transformation is defined by the use of a
transformation model Mt, which must comply with its transformation
metamodel MMt. The source and target metamodels (MMa and
MMb), joined with the transformation metamodel (MMt) shall be
in conformity with an metametamodel MMM (ECLIPSE, 2006).

The transformation is composed of a set of mapping rules to
guide the process. By rules usage, the source model components



16

are related or mapped with the target model components. These
rules define mapping standards, specifying relations between different
metamodel elements. The identification and characterization of these
relations between elements is defined as a mapping scheme (RAHM;

BERNSTEIN, 2001).
Lopes et al. (2006a) describes that the mapping provides

relations between source and target models, where the target model
elements represent the same structure and semantic as the source
model. This mapping establishes different relations between elements,
and defines one to one relations, one to multiple, and multiple to one.

One-to-one mappings (1:1) represent that one element from the
source model is directly mapped to one element from the target model,
and they have the same semantic. On many-to-one mappings (n:1) a
set of source elements represent the same semantic of one element to
the target model, i.e, a target element represents the characteristics and
semantic of a set of source elements. Finally the one-to-many mappings
(1:n) describe the representation of one element from the source model
for a set of elements from the target model, i.e a set of target elements
are required to represent the same semantic of an element from the
source model.

Based on the MDE principles and aiming to support the CPS
design process, different languages and tools have been proposed over
the last year. These structures usually provide a design environment
and a set of components, providing means by which to detail the
application characteristics.

2.2 TOOLS AND LANGUAGES APPLIED TO CPS DESIGN

As described in the introduction (Chapter 1) the CPS
applications are composed of a set of complementary models, that
detail the application characteristics. Regarding the generated
models produced during the design process, at least three different
representations are provided, defining the functional characteristics
(Functional design), the architectural aspects (architectural model),
and the system formal evaluation of its set of properties (Formal
verification).

Regarding the heterogeneity applied to these models, usually
it’s difficult to represent all the system characteristics using just one
language or tool. In this way, different model languages and tools can be
applied to represent the application characteristics. The design process



17

is usually started by performing the functional modeling, as described
by Lee & Seshia (2015). The authors define these representational
designs in order to specify the system dynamics. In this way, a set
of mathematical expressions are created to represent the application
behavior. Based on this behavioral description, control approaches may
be proposed, guiding the system according to the imposed requisites.

Jensen, Chang & Lee (2011a) define functional modeling as the
process to represent the physical characteristics to be controlled, i.e.
models that specify the real system properties by using mathematical
expressions. By using this representation control algorithms are
defined, and hardware components can be specified, as well as making
the evaluation of the designed subsystems a reality.

On the other hand, Alur (2015) states that the functional model
is composed by an architecture that aims to support the control system
design, being composed of a control system and the physical plant. The
control system sends its references in this environment, and the physical
plant representation returns the set of system states according to the
received inputs.

In this context, aiming to properly represent the application
characteristics, different tools should be applied to the functional
modeling such as Ptolemy (BERKELEY, 1999), VisualSim (MIRABILIS,
2018), MATLAB/Simulink (MATHWORKS, 1994), among orders. These
tools provide a set of components that support the representation of
the system properties.

The Ptolemy project aims to provide an environment aimed
at design and evaluation of concurrent systems, real-time systems,
and embedded systems. By using an open framework the authors
propose an actor oriented approach, that has been in design since 1996.
The actors are defined as software components that runs concurrently
exchanging information by using communication ports (PTOLEMAEUS,
2014).

The proposed environment provides a hierarchical system
construction, where the actors are interconnected by the use of
communication ports. These structures are managed by a director
component that is responsible for implementation of the model of
computation (MoC) . The MoC details how the application runs,
supporting the behavioral representation (BERKELEY, 1999).

Different MoC are supported on Ptolemy such as discrete events,
data flows, reactive synchronous, continuous time model, among others.
By using the hierarchical approach, each level can have a director,
and different MoC can be applied to its directors. In this way, the



18

framework provides a means for combining different MoCs in the same
project, by using different directors. By using this structure hybrid
systems can be designed, providing a means to simulate and evaluate
these systems.

The VisualSim is proposed as a modeling and simulation software
applied to perform the systems engineering exploration of performance,
power and functionality. By the use of a proposed environment,
users can construct debug, simulate, analyze their specifications. The
systems are built by using a graphical interface that creates the design
process with a set of blocks (MIRABILIS, 2018).

The pre-defined blocks have been optimized for simulation
performance, and pre-compiled to reduce development time. Custom
components can also be created by combining blocks with scripts
written in VisualSim Script language.

By using VisualSim interface the user can evaluate logic flows,
check the operation correctness, debug, validate requirements and
optimize the system to meet the requirements. The designed models
can combine different abstraction levels, and different models of
computation. VisualSim contains three different simulators describing
the timed computation, the untimed digital, and the continuous time.

Another tool widely applied to functional modeling is the
MATLAB/Simulink, that provides an environment to design, simulate,
and validate the CPS systems. Considering that this tool was applied
to this thesis scope, a section was created to represent this tool’s
characteristics.

2.2.1 MATLAB/Simulink

MATLAB is a high-performance design and evaluation tool,
and its resources enable the representation of different system
characteristics. Designed by MATrix LABoratory at the end of
1970, this tool has been widely applied to represent applications
characteristics by using mathematical expressions (MATHWORKS,
1994).

A set of extensions are provided by the tool, these components
enable different functionalities representation, and the integration with
external tools. This set of extensions include the Simulink tool, where
the designer can perform the system specification based on a block
diagram structure (MATHWORKS, 2018).

By using MATLAB/Simulink different systems can be



19

represented such as: linear and nonlinear, continuous time, discrete
time, and mutivariable systems. Its design environment provides
a means to specify the system’s properties, and simulate these
systems, which are usually composed by heterogeneous representations
(MATHWORKS, 1994).

The Simulink structure is composed of a set of blocks
responsible for implementation of different functions application model
construction. Its graphical interface supports the design process and
allows the hierarchical applications to be built, defining abstraction
levels and making block connection easier (MATHWORKS, 2018).

The implemented Simulink blocks are considered as black boxes,
i.e., the designers ca only change the set of configuration parameters,
but not its functionality itself. However, the tool provides the user
with blocks, where the designer can write their own code and integrate
it with the existing blocks. A set of inputs and outputs are attached
to each Simlunk component, that coupled with a set of internal states
defines the relation between received inputs and produced outputs.

Regarding the Simulink hierarchical approach applied to the
applications design, different abstraction levels can be added. In this
way, the complex system can be specified in a set of subsystems,
increasing the application details. By the use of Simulink block its
also possible to perform the interface between the designed model
and external tools, allowing for example the design of simulation
environments.

Besides the functional modeling the CPS design process includes
the representation of the architectural characteristics, by using an
architectural model. This representation define aspects that provide
the integration between software and hardware elements.

As described by Feiler, Gluch & Hudak (2006) the architectural
modeling process is defined as the structural software representation
applied to support the system execution, as well as this it allows the
integration between hardware and software components. By the use of
this representation the required execution characteristics are defined,
and a set of system properties evaluation allowed.

Based on the architectural model, system properties can be
evaluated ensuring characteristics such as scheduling, latency, weight,
power consumption, among others. These analysis allows the designers
to evaluate if the defined architecture is capable of supporting the
designed application. By the use of this model, software characteristics
are defined, specifying properties such as support of control execution
and device interface (ZHAO; MA, 2010).



20

Regarding the design of architectural models different languages
can be applied to detail the application aspects. In this sense, AADL
has been widely used to design these representations.

2.2.2 Architectural Analysis Design Language - AADL

The Architectural Analysis Design Language was designed by
The Society of Automotive Engineers (SAE) in 2004 (SAE, 2015). This
language was proposed with the aim of being a standard devoted to
modeling and designing avionic, aerospace, automotive and robotics
applications (FEILER; GLUCH; HUDAK, 2006).

The AADL notation is based on a set of components that
describe the system characteristics. By usage of modeling tools
the designers can create, analyze, validate real time applications,
and perform the code generation for the embedded platforms. The
architectural models integrate hardware and software components,
describing their characteristics and connections (WANG et al., 2009).

The designers may choose to perform the system representations
by using textual, graphical, or XML files. These inputs are supported
by the AADL and provide a means by which to express the system
properties, helping integration with other tools. The AADL standard
provides a hierarchical structure, organized by package usage. These
packages provide a means for system specification to be composed
of hardware elements (devices, buses, platforms, among others), and
software structures (processes, tasks, function calls). By the use of
software and hardware structures the system properties are detailed,
and the component’s integration is represented (ZHAO; MA, 2010).

The set of resources covered by the AADL are described in Fig.
4, being organized essentially into three categories software, hardware,
and composition elements. The software elements (Application
Software) describe the informational structure representation, i.e. the
set of elements that provide the application structure allowing for its
concurrent running (FEILER; GLUCH, 2012).

The hardware elements (Execution Platform) detail the physical
components. By the use of these, structural properties related to
the real hardware are defined, and based on these characteristics
properties can be evaluated and validated such as scheduling, flow
latency, memory usage, weight, power consumption, among others.
The compositional elements (Composite) are included to support the
hierarchical representation. By the use of these components the system



21

Figure 4 – AADL Components.

Source: Feiler & Gluch (2012)

is described as a set of systems. In this way, the generation of
independent systems integrated into the application is allowed.

The AADL components are specified based on a set of properties,
applied to detail the system characteristics. These properties are
summarized in Fig. 5, providing an overview of the relations between
components and properties.

As defined in the AADL standard, each component is classified
according to category type, represented by component declaration,
where the general characteristics are defined. These declarations should
be instantiated by the definition of a component implementation.
These structures improve the components declaration, providing more
information related to component properties.

Regarding component declaration, these structures support the
representation of different properties such as input and output ports,
subprograms, data flow definition, among others. On the other hand,
on the implementation component characteristics such as connections,
and operation modes can be described.

The AADL language can be extended by the use of extension
paths called annexes. In this way, different properties can be added
to architectural representations, in order to detail properties such as
behavioral and error characteristics. The extension provided by the
behavioral annex enables the representation of the system behavior
characteristics, defining properties like its operation modes. On the
other hand, by using the error annex, the designers can represent



22

Figure 5 – Relations between AADL components.

Source: Feiler & Gluch (2012).

the performed behavior in case of failure, aiming to detail the error
propagation and cover aspects of architecture reliability.

Aiming to support the system property evaluation, the AADL
support the design of system instances, that represent an architectural
scenario. By the use of instances the designers can evaluate system
properties, ensuring that the designed application meets its restrictions.

Regarding the architectural model design, different tools can be
applied to represent its aspects, such as the TOPCASED (FARAIL et

al., 2006), and Osate 2 (SEI, 2005). These tools provide a means to
represent the architectural characteristics to integrate software and
hardware components.

The TOPCASED project is an open-source environment
designed to support the modeling process of embedded critical systems.
Its structure is based on the eclipse environment, providing a set of tools
to support the models construction (FARAIL et al., 2006).

This tool is not only a set of features to provide the integration of
different components such as communication, specification, behavior,
and architecture in real-time or statical, but is also a set of
standards proposed to guide the embedded systems design process.
The TOPCASED environment supports the hardware and software
specification from design to implementation.



23

The proposed approach makes use of different design languages,
applied according to the performed design activity. The set of tools
provided by TOPCASED allows for not only the models design,
but helps the designers establish the communication between its
representations. This characteristic is possible by the fact that the
tool is based on metamodels, that provide the graphical representation
and support the transformation processes, generating different
representations based on models properties (FARAIL; GAUFILLET,
2005).

Another tool widely used on the architectural modeling is the
Osate 2, that provides an environment to design, simulate, and validate
architectural aspect of the CPS systems. Considering that this tool was
applied to this thesis scope, a section was created to better represent
its characteristics.

2.2.3 OSATE 2

The Osate 2 is an open-source tool applied to architectural
design, supporting the second version of AADL. By using Osate 2 its
possible to represent the architectural aspects in AADL, allowing both
the graphical and textual representations (SEI, 2005).

A set of plugins integrate this tool, that is designed in the
Eclipse environment (ECLIPSE, 2000). Osate 2 has been under design
at Carnegie Mellon university since 2005, the tool structure supports
the specification of software and hardware components, providing its
integration. Based on model characteristics, application properties can
be evaluated, validating the designed system.

Different characteristics can be evaluated by using Osate 2 such
as resource allocation, security levels, flow latencies, priority inversion,
and scheduling. The resource allocation provides the evaluation of
potential processors, memory capability and bandwidth, taking into
account characteristics such as task periods, its deadline, processor
power, and scheduling police. The security levels analysis enables the
evaluation of the predefined security levels applied to each component,
evaluating if the defined value is higher between its subcomponents.
The system connections are also verified, evaluating whether or not the
transmitters have the security level less or equal to its receptors. If
any security level is defined, its level is described as zero, the lowest
security level.

Regarding the flow latency evaluation, it’s possible to analyze



24

the amount of latencies on each defined flow, analyzing if its value is in
accordance with the defined flow. The amount of latency applied to a
flow is defined by the sum of its latency connections. On the priority
evaluation, priority inversion are analyzed, evaluating whether or not
the defined priorities are satisfied during the processor calls on the
set of tasks. The scheduling analysis evaluates whether or not the set
of defined tasks can be correctly executed, by performing the defined
scheduling algorithm (rate monotonic).

Besides functional and architectural modeling processes, the
evaluation designed system properties, by the formal methods usage,
are an activity applied to the CPS design. By the use of this technique
the system characteristics are evaluated and validated.

2.2.4 Formal Verification

Considering the CPS’s inherent complexity, and aiming to ensure
that the system requirements are met, additional analysis is required
during the design process. In this sense, formal verification becomes a
natural candidate to become part of the design process.

Regarding software and hardware design of complex systems, it’s
observed that more time and effort are spent on verification than on
construction. Techniques are sought to reduce and ease the verification
efforts, increasing their coverage. In this sense, formal methods offer
a large potential to obtain the integration of verification in the design
process, in order to provide more effective verification techniques, and
to reduce the verification time.

The formal verification is different to the validation process, in
the validation process the designers aim to ensure that the system
agrees with its propose. In this sense, in order to validate the
systems different techniques can be applied such as simulation and
testing, providing a means to evaluate whether or not the system
can support, the proposed functionality (CLARKE; GRUMBERG; PELED,
1999). However, regarding the design of large and complex systems
(with higher amount of elements) this approach becomes unviable,
by the fact that applying techniques such as simulation to these
representations sometimes we may not be able to path all the existing
system states.

In this way, the verification process is defined as a set of
techniques that allow confrontation between the system description
and its properties. This process its composed by a set of elements



25

that describe the system behavior, the set of expected properties, and
the decision procedure, evaluating if the designed system meets the
defined properties.

The verification process aims to determine the system’s semantic
correctiveness, i.e., if the system meets the defined properties
(ROUSSEL; LESAGE, 1996). Similarly, Bohem (1979) states that the
verification is the process that aims to ensure if the system is being
correctly built. The performed evaluations using formal verification
usually are split in two categories, behavioral and logic.

Regarding the behavioral evaluation two essential elements are
identified, the system behavior and the expected system property, these
structures are described as graphs to detail the transition system. The
decision process aims to establish the equivalent relationship between
the designed graphs, when the equivalent relationship is established the
analyzed property is considered satisfied (MALCOLM, 1996).

On the other hand, the logic evaluation process states
that the expected properties are represented by using logical
formulas, defined by the use of temporal logic. Using this
approach the operational description is defined as graphic. In
this procedure the decisions are made based on the model checking
(CLARKE; GRUMBERG; PELED, 1999) technique, that performs a
search over all execution states of the evaluated model, defining if
the property is satisfied to the designed representation. Aiming
to apply the formal evaluation different tools are designed to
support this process, such as CADP(GARAVEL; MATEESCU, 2001),
Uppaal(BEHRMANN; DAVID; LARSEN, 2004b), MRMC(KATOEN et al.,
2011) and SELT(BERTHOMIEU; RIBET; VERNADAT, 2004).

In the formal verification world, there are different approaches
available such as Model Checking, Theorem Proving (TP), and
Runtime Verification. Each method has its pros and cons, namely:
Model Checking suffers from the state explosion problem; TP requires
highly technical knowledge and despite its latest developments it still
faces many automation problems (due to foundational limitations on
the supporting logical theories); and RV brings overhead to the CPS
since monitors have to be coupled with the components existing in
the system. Nevertheless, model checking seems to be the more
natural approach for our work since it natively supports the analysis
of safety and liveness properties via temporal logics, and it is a fully
automated method which is close to the engineering practices and to
the abstraction level of models built following the MDE approach.

Aiming to avoid the state space explosion in the Model Checking,



26

different design techniques can be applied in order to ensure the
property evaluation. These techniques include: abstractions and
reduction of unnecessary states; the use of symbolic model checking,
applying binary decision diagrams and symbolic algorithms; the
partial order reduction that concerns the identification of interleaving
sequences, eliminating this redundancy reducing the state space.

In order to support the formal verification based on model
checking, timed automatons should be created to express the system
behavior, supporting the evaluation of different properties such as
safety, reachability, liveness, and deadlock (BAIER; KATOEN, 2008).
However, generating these representations is not a simple task and
requires sufficient knowledge of the design team to correctly express
the system properties, and therefore there is a clear need for techniques
to automate the automata generation process in order to make it less
error prone. To perform model generation in an automated way, we
believe that model transformation techniques should be applied.

2.2.5 Model Checking

In computer science, the Model Checking is defined as an
approach that aims to automatically evaluate if a system model
meets a specification. Essentially this representation describes
hardware, software, and communication protocol components, and its
characteristics define requisites such as safety, and deadlock absence
(CLARKE; GRUMBERG; PELED, 1999).

Model checking is a verification technique that explores the set of
possible system states in a brute-force manner. Similar to a computer
chess program that evaluates the possible moves, a model checker, the
software tool that performs the model evaluation, examines all possible
scenarios. In this way, it’s possible to determine if a given system model
truly satisfies a certain property (BAIER; KATOEN, 2008).

This technique requires a precise and unambiguous statement of
the properties to be examined. To create an accurate system model,
the designer needs to lead to discovery of several ambiguities and
inconsistencies in the informal documentation.

The system model is usually automatically generated from a
model description that is specified in an appropriate programming
languages. The property specification prescribes what the system
should do, and what it should not do, whereas the model description
addresses how the system behaves. The model checker examines the set



27

of system states to evaluate if the system satisfies the desired property.
If a state violates the property under consideration, the model checker
provides a counterexample that indicates how the model could reach
the undesired state. The counterexample describes an execution path
that leads from the initial system state to the state that violates the
property being verified (BAIER; KATOEN, 2008).

The designed logics are interpreted over transition systems that
describe how a reactive system may evolve from one state to another.
Considering synchronous systems, and transition systems, logics such
as LTL or CTL can be applied to express timing constraints. Transition
system representations of asynchronous systems without additional
timing information are indeed too abstract to adequately model timing
constraints.

In order to support the formal verification based on model
checking, timed automatons should be created to express the system
behavior, supporting the evaluation of different properties such as
safety, reachability, liveness, and deadlock (BAIER; KATOEN, 2008).
However, generating these representations is not a simple task and
requires sufficient knowledge of the design team to correctly express
the system properties, and therefore there is a clear need for techniques
to automate the automata generation process in order to make it less
error prone.

Aiming to support the systems evaluation by using this
technique, different languages and tools should be applied, representing
the system behavior, and the set of expected properties such as
Lustre (HALBWACHS et al., 1991), SELT/Tina (BERTHOMIEU; RIBET;

VERNADAT, 2004) and UPPAAL (BEHRMANN; DAVID; LARSEN, 2004b).
Lustre is defined as a synchronous and declarative language

applied to design reactive systems. Its structure supports the design of
critical, and real-time systems. This language is defined as declarative,
and provides a means to specify a set of equations that are evaluated
based on system variables. The synchronous characteristic enables
the integration with external events, ensuring their interpretation
instantaneously (HALBWACHS; RAYMOND, 2001; HALBWACHS et al.,
1991).

Semantic language is defined using a data flow approach,
describing the output flow according to received inputs. In this sense,
a flow is defined as a sequence of finite or infinite values, associated
with a variable, in this way, on each reaction an value is generated
(HALBWACHS, 2005).

The State/Event LTL model-checker (SELT) is a tool applied



28

to formal verification properties, being part of TINA (BERTHOMIEU;

RIBET; VERNADAT, 2004) toolbox, and applied to the Topcased project.
This toolbox was designed by the French laboratory LAAS, aiming to
support design, and analysis of Timed Petri Nets, and Timed Transition
Systems (TTS), conducting the model checking evaluations based on
logical verification.

The SELT inputs are defined as Kripke structures that describe
the system characteristics based on mathematical formalisms, and by
using LTL logical formulas, the expected properties to be evaluated are
defined. These structures are the result of a system model compilation,
represented as a TTS system. The Kripke structures are commonly
known as unlabeled transition systems, being represented as directed
graphs that specify the set of reachable model states.

The SELT provided verification results may be stored on a text
file. In this structure the result of each evaluated property, and if some
formula is not verified a counterexample of that violation, is presented.
The counterexample can be loaded into the TINA tool to observe the
execution path that invalidates the property.

The another tool widely applied to model checking is the
UPPAAL, that provide an environment to design, simulate, and
validate CPS properties by using formal methods. Considering that
this tool was applied to this thesis, a section was created to better
represent its characteristics.

2.2.6 UPPAAL

The Uppaal tool is an integrated environment that allows users
to represent the system behavior in terms of states and transitions,
simulating and analyzing the model’s results. The tool was designed
in collaboration with the Department of Information Technology at
Uppsala University in Sweden and the Department of Computer Science
at Aalborg University in Denmark. The first UPPAAL version was
released in 1995. The tool is available for free for non-commercial
applications in academia, and for private persons via http://www.

uppaal.org. For commercial applications a commercial license is
required, see http://www.uppaal.com (BEHRMANN; DAVID; LARSEN,
2004a).

Uppaal is a toolkit with a wealth of possibilities to model and
analyze systems. The tool was designed to verify systems that can
be represented as networks of timed automata extended with integer



29

variables, data types, user defined functions, and synchronization
channels. The main UPPAAL structure is composed of a set timed
automata, describing the system behavior, and a query language,
applied to express the set of expected system properties to be evaluated
(BEHRMANN; DAVID; LARSEN, 2004b).

The tool is composed essentially of three main parts: the system
editor, that can be used to built the models; the simulator, in which
the system behavior can be simulated and behavior evaluated; and the
verifier, in which the system behavior can be analyzed (BEHRMANN;

DAVID; LARSEN, 2004a).
Regarding the model’s construction, UPPAAL is composed by

a set of four different components, describing system variables, system
functions, templates, and property queries. The system variables are
applied for information exchange, or to support the system design.
These variables can have different types, as is commonly on program
languages such as C for example. However, The UPPAAL also
have some specific variable types such as chan, to represent the
communication channels between templates; and the clock, that is
defined to represent time in advance.

To represent the system behavior system functions can be
implemented, supporting the system design. These structures may be
applied to different components such as transition guards, transitions
updates, among others. By the function usage some characteristics
can be abstracted from the designed templates, providing a clearer
representation.

The system templates support the timed automata
representation in order to detail the system components behavior.
These structures are composed of a set of states, that represent the
execution possibilities, and by a set of transitions that define the
communication paths between the system states. To each designed
template an initial state is required, and a set of properties can
be associated with these structures such as, urgent and committed
properties, and associated invariant. The defined transitions should
also contain a set of information associated such as: a restriction guard;
an update expression, to be executed on the transition occurrence; and
an synchronization, where based and defined channel the transition
can be activated.

In order to provide the systems evaluation, queries need to
be created to represent the expected system properties. To support
this specification the UPPAAL uses a simplified version of Timed
Computation Tree Logic (TCTL)(ALUR; COURCOUBETIS; DILL, 1990).



30

In this way, the designer translates the defined restrictions and
properties from natural language to formal representation, in order to
perform the system property evaluation.

The UPPAAL tool supports the probabilities definition
associated with it’s transitions. Based on these specifications, and
supported by the SMC (DAVID et al., 2015) tool, evaluations can be
performed seeing these probabilities. In this sense, characteristics such
as the probability of a state being reached or activation of a system
behavior can be evaluated with different levels of confidence.

The property evaluation describes the execution of MC itself,
i.e., the designed models are submitted to the evaluation of the defined
queries, analyzing the produced results. If a defined property is not
satisfied a counterexample is produced, allowing that the designers
evaluate the situation, and if possible they adjust the system to satisfy
the property. Based on the defined queries different characteristics can
be evaluated such as reachability, liveness, safety, deadlock freeness
among others.

2.3 SUMMARY

In this chapter different technologies and techniques applied to
CPS applications design are presented. These components include the
MDD, concepts of models, metamodels, and model transformations,
and a set of tools and languages applied to this propose. Based on these
technologies different projects, and complementary representations
are generated in order to ensure the applications characteristics
specification.

Regarding CPS complexity, especially when considering the UAV
applications, its design process is not a simple task. In this way,
different techniques, languages, and tools may be applied aiming to
support the systems characteristics representation. In this sense,
some of the presented components in this chapter are applied to this
thesis scope including MDD, Matlab/Simulink, AADL, Osate 2, Model
Checking, and UPPAAL. These items are used as a basis to propose a
method applied to CPS design and support this thesis construction.

Considering the CPS design process, despite the existing
languages and techniques some additional components are required in
order to support the application design. In this sense, the next chapter
presents some existing approaches, that based on presented technologies
provide a means to represent the applications characteristics.



31

3 STATE OF THE ART

Design CPS applications is a complex activity that requires
experienced designers to represent the system’s characteristics
correctly. Regarding the UAV applications, its design process needs
to cover several characteristics aiming to engineer aircrafts that fly safe
and fulfill the planned missions.

To deal with the complexity design methods are constituted,
aiming to guide the teams during the application development. These
methods are usually supported by the MDE and suggest using
complementary models and tools that are applied to support these
representational designs. These tools usually automate design process
steps making its activities less prone to errors.

Regarding the design activities, although the authors propose
different set steps, some activities are present in most of the approaches,
such as functional modeling, design of system architecture, integration
with system devices, property verification, project electrics among
others. However, despite being present some of these activities do not
present sufficient characteristics to ensure its application by the design
teams.

Aiming to provide an overview related to the CPS design, in
this chapter a set of related works is presented. This set of works was
defined aiming to highlight the scientific contributions related to CPS
design methods that were proposed over the last years, evaluating and
discussing its characteristics and properties. These works are organized
into three categories that describe CPS design methods, the integration
of sensors and actuators and the formal verification process.

The three presented categories are defined based on contributions
to this thesis. In doing so, we aim to provide an overview related
to these topics, describing some essential characteristics on each topic
to correctly provide the CPS projects design, mainly applied to the
UAV design. The works are selected after an exhaustive search on the
main scientific databases including www.scielo.org, www.springer.
com, www.elsevier.com, and www.ieeexplore.ieee.org.

3.1 RELATED WORKS EVALUATION CRITERIA

Aiming to provide a better work overview, a set of evaluation
criteria was defined for each work category. The next subsections detail



32

the set of criteria specifying the objectives with its definition. The
obtained results are showed in the Table 1, Table 2, and Table 3.

For each evaluation criteria, two different symbols are defined,
describing respectively the full compliance of the evaluated criteria (X),
and the partial compliance of the criteria (♦). The absence of a symbol
defines that the work does not satisfy the proposed criteria.

3.1.1 Criteria for CPS Design Methods

In recent years different approaches were proposed to guide the
design teams to better lead with the CPS design challenges. This was
done with the objective of providing a better evaluation and discussion
related works presented, a set of criteria was subsequently defined.

The set of defined criteria includes a requirements definition,
functional modeling, architectural modeling, physical modeling,
integration of sensors and actuators, formal verification, system failures
definition, and hardware and software integration.

The requirements definition evaluates the representation of CPS
functional and non-functional requirements on the proposed approach.
The functional modeling observes the representation of the system
functionalities, such as control systems for example. The representation
of the embedded architecture to support the functional model is
observed on the architectural modeling.

The physical modeling evaluates whether or not the authors
propose activities to represent the system dynamics during the design
process. The integration of sensors and actuators are with regard to
the specification and integration of a set of devices on the application
structure. The evaluation of CPS properties using formal methods is
observed on the formal verification. The integration of hardware and
software elements is verified in the hardware and software integration.

3.1.2 Criteria for Integration of Sensors and Actuators

To better evaluate and discuss the integration of sensors and
actuators on the embedded applications the following evaluation
criteria are defined including: hardware abstraction, software and
hardware mapping, detailed devices specification, validation and tests,
software interface, and requirement of a Real-Time Operating System
(RTOS) .



33

Hardware abstraction evaluates the use of an abstraction layer to
provide isolation between the embedded application and the hardware
components. This layer establishes the required information to provide
the device’s interface. This topic also evaluates how the devices can be
integrated into the application architecture, i.e., analyzes if the authors
provide information related to the integration of the components on the
embedded application. The integration between hardware and software
elements is observed in software and hardware mapping, which analyzes
how the software structures (functions, threads, device drivers) are
organized in order to be executed on the embedded platform. The
organization related to the thread’s execution and the functions to
access the system devices on each thread is also observed.

The detailed devices specification covers the addition of detailed
information related to the specification of these components, evaluating
whether or not the described characteristics are enough to provide its
interface. Validation and tests relate to the analysis of the mechanisms
or methods to evaluate the behavior of the integrated devices, both
physically and on the device driver level. The Support execution on
embedded platform requires an embedded OS or RTOS to support the
proper application execution, as well as providing the device’s interface.

3.1.3 Criteria for Formal Verification

To evaluate the presented formal verification approaches the
following criteria are defined including: behavioral characteristics
coverage, error properties coverage, reachability, safety, liveness,
deadlock, timing properties, and statistical analysis.

The behavioral characteristics coverage (behavioral coverage)
evaluates the CPS behavior representation on the proposed approach,
and the translation of these characteristics to the target model. The
error properties coverage (error coverage) observes the error property
representation, and its influence on the CPS behavior. The others
evaluation criteria analyze the coverage of the proposed methods
to ensure properties such as reachability, safety, liveness, deadlock
freeness, timing properties, and statistical analysis.



34

3.2 CYBER-PHYSICAL SYSTEMS DESIGN METHODS

Regarding the CPS design, different methods have been proposed
over the last years. These approaches are usually composed of a set
of activities or steps aiming to guide the application construction.
Different coverage levels in the works can be observed i.e., some works
are proposed covering the whole design process, while others are more
focused on detail specific phases of the CPS design process. The
presented works are based on MDE to represent the characteristics
of the applications.

3.2.1 Overview

Different authors propose the definition of a set of activities
supported by the construction of complementary models Jensen, Chang
& Lee (2011a), Correa et al. (2010). These approaches propose a
set of activities to guide the complete design process covering the
main aspects of CPS design that include at least the physical and
architectural representation, and functional models to describe the
application characteristics. Coupled with the model’s constructions,
system simulations, tests and verification processes are proposed to
validate the systems properties.

Some of these works have focused on detailing specific phases
of the CPS design, proposing activities to represent CPS subsystems
characteristics such as design of the system architecture, programming
the embedded system, among others. In this sense, authors such as
Chandhoke et al. (2011), Harrison et al. (2009) present works related to
the design of CPS architectural characteristics, focusing on programing
these systems. In these works, the architectural representation
is translated to the embedded platform by the automated code
generation.

Challenges related to analysis and representation of CPS
characteristics are discussed in Derler, Lee & Vincentelli (2012), where
the authors address the difficulties related to the system characteristics
definition, and its dynamic representation to generate the embedded
application. The use of complementary models is proposed to deal
with the CPS challenges and better represent the systems properties.

Other approaches include the definition of requirements and the
capture of project requisites (DOERING, 2014; JENSEN; CHANG; LEE,
2011a; CORREA et al., 2010; MASIN et al., 2017). In Doering (2014)



35

besides the requirements definition, the design of a PIM and a Platform
Model (PM) are also required. Performing a transformation process,
these models are merged generating the target application (PSM).

The Cross-layer modEl-based fRamework for multi-oBjective
dEsign of Reconfigurable systems in unceRtain hybRid envirOnments
(CERBERO) project is proposed in (MASIN et al., 2017). This approach
aims to develop a design environment for CPS to provide a cross-layer
model based approach to describe, optimize, and analyze the system
and all its different views concurrently. CERBERO provides: libraries
of generic Key Performance Indicators for reconfigurable CPSs in
hybrid/uncertain environments; formal and simulation-based methods;
a continuous design environment guaranteeing early-stage analysis and
optimization of functional and non-functional requirements, including
energy, reliability and security.

Works based on the functional model represent the system
dynamics on the project design. Based on this representation different
artifacts can be generated by performing transformation processes,
increasing the project information providing more detailed applications
(BRADE et al., 2010; DELANGE et al., 2010; MORELLI; DI NATALE,
2014; DI NATALE et al., 2014). In Brade et al. (2010) the functional
model is used as the base for code generation of the target platform
AVR. Delange et al. (2010) propose the integration of this model
with the architectural model, translating the validated architectural
and functional models to code and provide the embedded application.
Regarding Delange et al. (2010), Morelli & DI NATALE (2014) these
authors propose the generation of the system architecture to support
the functional model execution. These representations are based on
SysML/Marte to specify the system architectures, as well as a code
generation process that is performed to provide the FPGA hardware
integration and perform the system execution.

Specifying and integrating hardware components during the CPS
process is another design challenge, where the designers need to define
a set of devices coupled with the embedded platform to support the
application execution. In this sense, a method to specify and integrate
hardware components for small-scale helicopters is presented in (CAI

et al., 2008b). The authors propose a set of activities to guide the
teams to find a better components arrangement considering structural
and electrical characteristics such as vibration, and electromagnetic
interference, avoiding these effects on the embedded system.

Approaches focused on the design of specific applications are also
proposed in the scope of CPS Design. In particular, regarding the UAVs



36

design in (WANG et al., 2011), the authors propose a method for avionic
systems based on ARINC653. This approach describes the design of
the architectural model to meet the AIRNC 653 requirements.

3.2.2 Evaluation and Discussion

The evaluation of the proposed criteria in respect to the CPS
design methods are analyzed in Table 1.

Table 1 – Evaluation of CPS design works.

P
P
P
P
P
P
P
P
P
P
P

Related Work

Evaluation

Criteria R
e
q
u
ir
e
m

e
n
t
s

D
e
fi
n
it
io

n

F
u
n
c
t
io

n
a
l
M

o
d
e
li
n
g

A
r
c
h
it
e
c
t
u
r
a
l
M

o
d
e
li
n
g

P
h
y
s
ic

a
l
M

o
d
e
li
n
g

In
t
e
g
r
a
t
io

n
o
f
S
e
n
s
o
r
s

a
n
d

A
c
t
u
a
t
o
r
s

F
o
r
m

a
l
V
e
r
if
ic

a
t
io

n

H
a
r
d
w
a
r
e

a
n
d

S
o
ft
w
a
r
e

In
t
e
g
r
a
t
io

n

Cai et al., 2008b X X X

Harrison et al., 2009 X ♦

Brade et al., 2010 X X X

Delange et al., 2010 X X X ♦ ♦

Correa et al., 2010 X X X X X X X

Chandhoke et al. 2011 X ♦

Jensen; Chang; Lee, 2011 X X ♦ X ♦ ♦ ♦

Wang et al., 2011 X ♦

Derler; Lee; Vincentelli, 2012 X X X ♦ ♦

Doering, 2014 X X X X

Morelli; Di Natale, 2014 X X X ♦

Natale et al., 2014 X X X ♦

Massin et al., 2017 X ♦ ♦ ♦ ♦ ♦ ♦

Design Method for UAVs (Chpt. 4) X X X X X X X

A methodology related to the design of small-scale helicopters
is presented in (CAI et al., 2008b). This approach is focused on the
representation of the embedded hardware, detailing the component



37

selection, virtual design, definition of embedded hardware, component
integration, as well as the ground and flight tests. The authors propose
a set of activities related to the hardware project. However, the
software characteristics required to perform flights are not detailed,
and neither are aspects such as how to define the required devices, and
how to better select the components.

An MDE approach based on modular semantics and concurrent
languages is proposed in (HARRISON et al., 2009). This method is based
on cheap threads1 that define the task properties. These structures are
translated to VHDL language and executed on FPGA hardware. An
intermediary language (FSMLang) is used in this process to generate
code for the Xilink Microblaze FPGA. Besides the design of threads and
the code generation, other CPS design characteristics are not covered
by the authors such as the functional modeling, and the architectural
model design. The integration of the system devices is not described,
and this process is only based on the FPGA support. The use of formal
verification methods is also not defined in the proposed approach.

Brade et al. (2010) describe the design of embedded systems by
the use of Model-Driven Design (MDD). This process is supported by a
framework named FAMUSO that supports the systems design based on
the construction of XML specifications for the embedded platform, and
for the set of sensors and actuators. These models are submitted to a
transformation process generating a functional model in Simulink. The
code for the AVR target platform is generated by using the proposed
framework.

Analyzing (BRADE et al., 2010) one can observe that, despite the
functional modeling and the sensors and actuators integration, these
representations are restricted to the XML constructions. In this sense,
the integration of the devices on the embedded platform is not detailed.
The definition of an architectural model is not discussed in this
approach, not allowing for the evaluation of temporal requirements and
others characteristics. Another aspect not presented is the definition
of the application system requirements.

The design of architectural and application models integrated
with the implementation process is presented in (DELANGE et al.,

1Cheap Threads is a collection of routines for implementing synchronous threads.
It includes a scheduler and a facility for passing messages among threads. Threads
may run in a round robin or according to a priority scheme. Each thread must
voluntarily relinquish control from time, via an ordinary function return, so that
other threads can run. Since the threads are synchronous, i.e. they don’t interrupt
each other, they don’t need to use semaphores, mutexes, critical sections, or other
facilities to keep from interfering with each other.



38

2010). The authors propose the model’s construction and validation
separately, and these representations are translated into code to be
integrated, generating the embedded application. Analyzing the
proposed approach it is observed that besides the architectural model
representing the set of devices and the application model, the system
behavior, the authors do not detail how the sensors and actuators are
integrated into this structure. Its also verified that the integration
of generated code on the target platform is not clearly defined, not
mentioning the requirements of the embedded software to correctly run
the designed code.

Aiming to guide the design process, in Correa et al. (2010) the
authors propose a methodology that provides a set of steps to guide
the teams in the application construction. This approach describes
the requirements definition, the functional modeling and simulation,
the environmental description, the design of software architecture,
the architectural hardware description, the software and hardware
mapping, the architectural simulation, the refinement of real-time
properties, and the timing verification.

Based on Correa et al. (2010) it is possible to observe that
the functional modeling does not detail the integration of sensors and
actuators, i.e., the characteristics of the devices need to be manually
extracted by the designers based on the physical model, and manually
expressed on the architectural model. Besides the proposed hardware
and software mapping, the device’s integration with the software
components is not detailed.

In Chandhoke et al. (2011) the authors have focused on
programming the CPS, substantially covering the software architecture
design that can be centralized or distributed. The software and
hardware integration is partially covered by the generation code
process, as well as the clock synchronization properties aiming to
manage and support the application execution.

The weakness related to (CHANDHOKE et al., 2011) is the only
focus on programming CPS, not detailing the others required CPS
characteristics to its design process. Considering the programming
methodology it is observed that details related to the sensors’ and
actuators’ integration on the system architecture are not presented,
and other CPS subsystems are detailed such as control systems, for
example.

Jensen, Chang & Lee (2011a) define a CPS design method
devoted to guiding the CPS applications design. The method is
composed of ten complementary steps that describe different project



39

phases. These phases start with the state of the problem, modeling of
the physical process, and characterization of the problem. The control
algorithm is then derivated, the model of computation is selected,
and the hardware specified. The system’s evaluation is based on
simulations. The application is built, the software synthesized, verified,
validated and tested.

Besides the approach proposed in (JENSEN; CHANG; LEE, 2011a)
covering almost the whole design process, the integration of the
system’s devices is not detailed, the authors only remark that these
components need to be specified. The integration of formal verification
methods is also cited. However, the proper integration of these
methods on the approach is not described. The authors do not cite
the architectural model construction, only citing the use of the MoC,
but not describing the integration of these models on the architectural
representation.

Wang et al. (2011) propose a methodology to design avionics
systems based on ARINC6532. This approach is based on the
AADL behavioral annex that details the task’s behavior. An AADL
model named AADL653 was created as an abstract representation
of these applications, aiming to support the systems design. The
application model details the software structure, and the execution
model specifying the hardware components to support the system
execution. The avionics application’s design is based on the model’s
integration.

Analyzing the approach proposed in (WANG et al., 2011) it is
observed that the method has focused on the representation of the
architectural characteristics supported by AADL. In this way, the
integration of the software and hardware components, the design of
control system, as well as the representation of the system dynamics
are not detailed by the authors.

An approach that uses multiple models to represent the CPS
properties is presented in Derler, Lee & Vincentelli (2012). The
authors propose the use of different techniques to represent the CPS’
properties including the representation of its MoC, the use of abstract
semantics, actor-oriented models, the hybrid systems, and the system
heterogeneity. Both the the design of functional models using Ptolemy,
and the system architecture based on MoCs are proposed. The devices

2ARINC 653 (Avionics Application Standard Software Interface) is a software
specification for space and time partitioning in safety-critical avionics real-time
operating systems (RTOS). It allows the hosting of multiple applications of different
software levels on the same hardware in the context of an Integrated Modular
Avionics architecture.



40

integration is verified only on the design of the physical model that is
integrated with the control system. However, this integration is not
detailed by the authors.

In Derler, Lee & Vincentelli (2012) it is noticed that the
sensors’ and actuators’ integration is only based on the physical and
architectural models, detailing neither the characteristics related to the
devices’ properties nor the method of how to integrate these structures
to the selected MoC. Another weakness is related to the integration of
a formal verification process that is not predicted by the authors.

An MDE approach to design embedded systems named HIPAO2
is presented in (DOERING, 2014). This method includes the definition of
functional (FR) and Non-Functional (NFR) requirements. The design
of a PIM and a PM model represents the application characteristics,
and these models are merged during the design process to generate the
PSM. The PSM is submitted to a transformation process to provide
the code generation for the target platform.

Analyzing Doering (2014), some weaknesses may be observed,
like the fact that the functional modeling is based only on PIM
design, not detailing how the model properties can be validated. The
PM details the target platform’s characteristics, however it does not
describe how to manage the set of tasks or how to include the scheduling
policies on the application. The integration between hardware and
software is restricted to the integration of PIM and PM models not
describing how to integrate the sensors and actuators on this approach.

Morelli & DI NATALE (2014) propose a framework that
provides an execution platform based on Simulink models. The
proposed approach details the representation of the architectural model
in SysML/Marte to support the Simulink functional representation
execution. In this work, the authors have focused on the generation
of the execution system, while approaching neither the hardware
components’ integration nor the use of formal verification methods.

Similarly, in DI NATALE et al. (2014), the authors propose a
process focusing on the generation of the system execution platform.
This approach also defines the architectural model representation in
SysML/Marte based on the Simulink functional model. The mapping
between software and hardware is proposed by the use of FPGA
components, where the code generating and the usage of abstract
interfaces provides the connection between software and hardware
structures. However, the component integration is not well detailed
by the authors, who provide only a basic process overview, making its
reproduction difficult. The use of formal verification methods on this



41

approach is not cited by the authors.
In (MASIN et al., 2017) the authors propose the CERBERO

framework to provide a cross-layer model based approach that supports
the CPS design process, some weakness are observed in this approach.
The authors describe the support to functional and architectural
models, however they do not present details related to how these
characteristics are describe in the framework. A MoC is proposed
to support the system execution, as well as the integration with the
system devices. However characteristics to support this integration
between software and hardware elements are not described. Support
for formal verification and simulation is also cited by the authors, but
the techniques supported by the framework, as well as the type of
simulations that can be performed are not described.

Aiming to guide the CPS design process towards facilitating
UAV constructions, a design method is proposed on this Thesis and
presented in details in Chapter 4. This method depicts a set of phases
and activities, covering the design steps and particularities applied to
the UAV design.

Based on the characteristics presented in Table 1 and discussed
in this section, it is observed that the design process of CPS applications
does not have a definitive solution. According to the proposed
evaluation criteria, some approaches cover more design steps, providing
solutions that can guide almost the complete design process. Other
works have focused on detailing a specific project phase and can be
used in a complementary way to provide a complete design process.
Even though the proposed method targets UAVs design, since such
applications is a typical CPS, it can be further generalized to make it
suitable to any other similar application design.

The analysis of the mentioned characteristics show that
adequately identifying the CPS design phases and proposing activities
to guide design teams is an open research area. In this way, works have
been proposed to improve the design process and provide more complete
solutions. The usage of tools can support the proposed approaches,
automating some design activities or steps making the process less
prone to errors.

In addition to CPS design methods, evaluation of specific process
phases is performed. One of these phases relates to the integration of
sensors and actuators on the CPS architectures.



42

3.3 INTEGRATION OF SENSORS AND ACTUATORS

The integration of sensors and actuators on the CPS architecture
consists of a set of activities to properly incorporate the system devices
on the CPS structure. These activities can include the evaluation of
the required devices, the selection of components that fulfill the project
requirements on the existing products, and the integration of these
different devices into the system architecture.

3.3.1 Overview

It is observed that some approaches are proposed to support
designers performing this task, providing solutions with different
coverage levels, i.e., some authors propose the integration of these
components based only on software aspects while others represent
both the software and hardware characteristics, providing the device’s
interface. In this way, the set of works presented in this section aim to
discuss the integration process of these components.

Based on the use of software structures such as shared objects,
platform models, Virtual Target Architecture (VTA), and languages
such as AADL, SysML, and CPSADL, different authors have proposed
approaches to represent the characteristics of the devices, and
embedded platform properties (HARTMANN et al., 2011; DOERING, 2014;
YU et al., 2013; PAMPAGNIN et al., 2008; SUN; ZHOU, 2013; YU et

al., 2011). Hartmann et al. (2011) details the characteristics of the
devices by using the SystemC language, while Pampagnin et al. (2008)
represent these characteristics using SysML models. Other authors
describe the devices’ aspects with the design of architectural models
(DOERING, 2014; YU et al., 2011; SUN; ZHOU, 2013).

Besides the representation of the system devices, in (YU et al.,
2011) the authors provide a MoC to support the system execution. Yu
et al. (2011), Sun & Zhou (2013) define the use of an AADL model to
represent the device’s properties, however, (SUN; ZHOU, 2013) proposing
an extension of this language to represent the characteristics of the
devices correctly. (DOERING, 2014) proposes the use of UML Marte to
describe the device’s aspects.

Conquet et al. (2010) propose a tool named Taste that provides
support to represent the system devices. These components are detailed
by using an RTOS, which provides an abstraction layer to support the
application design. This layer is responsible for providing the device’s



43

interface. However, the authors do not detail how to integrate these
components into the software architecture.

A programming language designed to implement CPS
applications named CPAL is presented in (NAVET et al., 2015). The
authors propose a C-like programming language coupled with a
framework to support the CPS design process. Based on CPAL,
devices properties are detailed by specifying characteristics such as the
device’s interface, the functions for sending and receiving data, among
others. An interpretation engine is provided to support the application
execution. In this way, the designed application is translated into
machine code to run on the embedded platform. Besides the CPAL
support of the CPS design and specification of device interfaces, some
details are not clearly defined by the authors, such as GPIO mapping
for example.

Some authors define a robotic platform as an information
processing structure instead of only defining the sensors and actuators
in the CPS (CHEN et al., 2015). An architecture named CPSR is
proposed, providing a physical layer to integrate the system sensors
and actuators properly. Regarding this integration, besides the defined
layer, some project’s characteristics are not detailed, such as how to
select the system devices, and the device’s integration with the proper
layer. It is also not clear what the designers need to code and what is
provided by the CPSR architecture to provide the device’s interface.

Ahmed, Kim & Kim (2013) propose an architecture to integrate
cyber and physical worlds. This structure is composed of six modules
that describe: sensing specification; the application data management;
the next generation of the internet; the services aware modules; the
application module; and the specification of sensors and actuators.
Based on this architecture the authors aim to provide a standard for
the CPS design. However, it is not detailed how the set of devices are
integrated into this architecture.

3.3.2 Evaluation and Discussion

The evaluation of the set of works that integrate sensors and
actuators properties is presented in Table 2.

Regarding the avionic hardware design, in (PAMPAGNIN et al.,
2008) the authors proposed an approach devoted to these application’s
designs. In this way, the construction of SysML representations is
proposed to represent the application characteristics. This approach



44

Table 2 – Evaluation of Integration of Sensors and Actuators

P
P
P
P

P
P

P
P
P
P
P
P
P
PP

Related
Works

Evaluation
Criteria

H
a
r
d
w
a
r
e

A
b
s
t
r
a
c
t
io

n

H
a
r
d
w
a
r
e

a
n
d

S
o
ft
w
a
r
e

M
a
p
p
in

g

D
e
t
a
il
e
d

D
e
v
ic

e
s

S
p
e
c
if
ic

a
t
io

n

V
a
li
d
a
t
io

n
a
n
d

t
e
s
t
s

S
u
p
p
o
r
t

e
x
e
c
u
t
io

n
o
n

e
m

b
e
d
d
e
d

p
la

t
fo

r
m

Pampagnin et al., 2008 ♦ ♦ ♦ ♦

Conquet et al., 2010 ♦ X ♦ ♦

Hartmann et al., 2011 X ♦ ♦ ♦ ♦

Yu et al., 2011 X X X

Yu et al., 2013 X X X ♦

Sun; Zhou, 2013 X X X

Ahmed; Kim; Kim, 2013 ♦ X

Doering, 2014 X X ♦ ♦

Navet et al., 2015 X X ♦ X X

Chen et al., 2015 X ♦ ♦

Sensing and Actuation
Subsystems Design (Chpt. 5)

X X X X ♦

defines the generation of multiple models to provide application
construction, and some of these models provide an abstraction layer
for the application design. Models are also constructed to represent
the characteristics of the devices, as well as the integration between
software and hardware components being provided by performing a
transformation process that generates the application code. However,
details related to these transformation processes from model to the
application code are not described by the authors.

The ASSERT project (CONQUET et al., 2010) proposes a
development process with the focus on the design of complex systems.
Based on the MDE principles ASSERT aims to integrate different
subsystems as transparently and efficiently as possible. The authors
propose the design of multiple models in the engineer’s domain language
to represent the application’s properties. These different models are
integrated into the TASTE tool to provide the software and hardware
mapping. The final application requires an RTOS to support its



45

execution. To interact with the sensors and actuators, the RTOS must
be programmed appropriately. TASTE support the code generation
to a set of embedded systems such as Ada runtime, GNAT, and
RTEMS, however besides the ASSERT principles its required that the
designer addresses some details related to the low-level development,
i.e., manually implement architectural aspects such as the device drivers
and the mapping pins on the target platform.

The approach presented in (HARTMANN et al., 2011) is based on
shared objects to describe the set of system devices. By the design
of a VTA, an abstraction layer is proposed to properly interface the
hardware components with the shared objects properly. The hardware
and software mapping is based on the integration of the shared objects
and the VTA. However the authors do not detail what the designers
need to perform to integrate these components. Although the devices
specification is based on the shared objects described using system C,
characteristics like sample time, communication protocol, and ports
declaration are not addressed in these structures. This approach
supports simulation to evaluate the system characteristics, but the
set of properties that can be evaluated is not presented, besides the
fact that to run the application n the embedded platform a proper
embedded OS is required.

An approach based on AADL is presented in (YU et al., 2011),
where the authors propose a CPS design method that includes the
AADL and timed automata. On this approach, the characteristics of
the devices are based on the AADL components, providing the mapping
of the hardware and software components. A verification process is
performed based on the generated timed automata, and on the AADL
properties to validate the system properties. Despite the proposed
transformation process, the authors do not detail its coverage, i.e., what
AADL components are used to the timed automata generation. The
transformation rules are not detailed, nor are they informed if this
process is supported by a tool or manually created based on a designed
rules.

An MDE approach named Polychronous is presented in (YU et

al., 2013), that provide the functional behavior representation by the
Simulink model construction, and the architectural aspects are defined
in the AADL model. The architectural model provides the hardware
and software mapping detailing the organization of the software
structures and its integration with the hardware components. Based
on the AADL model the characteristics of the devices are described
defining aspects such as sample time, communication protocol, priority,



46

required access function, input and output ports among others. A
model of computation named polychronous multiclock is provided
to integrate the designed models and support the system execution,
allowing the system simulation and verification. To run the embedded
applications, Polychronous provide a proper interpretation engine.
However, this engine must be supported by an embedded OS with
proper software structures to provide the interface with sensors and
actuators and support the application execution.

Sun & Zhou (2013) propose an AADL extension to provide the
CPS architecture representation. The CPSADL adds physical and
interaction entities to the AADL to better represent the architectural
aspects. Discrete computing and continuous physical processes are
modeled by the unified CPSADL. The physical process details the
sensors and actuators property representation. The software and
hardware mapping are provided based on the AADL properties, as
well as that the language provides a means to evaluate the system
characteristics. Although AADL supports the representation of the
architectural characteristics, the authors do not detail the set of
properties that can be specified by using this extension. It furthermore
details how the language extension details the application property
specification.

An architecture to support the CPS design is detailed in
(AHMED; KIM; KIM, 2013), that is composed of six modules to
represent the CPS characteristics. The sensors and actuators module is
integrated into this structure defining the characteristics of the devices
as well as integrating of the proposed modules and describing the
hardware and software mapping. With the proposed architecture the
authors aim to provide a standard for the CPS systems. However, it is
not detailed how the set of devices are integrated into this architecture.

Doering (2014) proposes the use of PIM, PM, and PSM models
to represent the CPS characteristics. By the use of the PIM, an
abstraction layer is provided, allowing for application design without
concerns related to the embedded platform. The PM provides a
means for representation of the hardware characteristics. However, the
authors do not detail what kind of device properties can be defined.
The integration of the PIM and PM models is provided generating
the PSM model. However, these processes are not well detailed.
Characteristics related to the evaluation of the proposed architecture
are not presented, and details concerning the execution of the PSM
model on the embedded platform are not discuss.

The CPAL is devoted to modeling, simulation, and verification



47

of CPS (NAVET et al., 2015). The proposed language provides an
abstraction layer for the applications construction, i.e., it describes
both the functional behavior and the system architecture (i.e., how
the functions are arranged, activated, and the data ow among them).
Regarding the software and hardware mapping its properties are
supported by the provided language, as well as, the characteristics
of the devices also being represented using the CPAL. The provided
tool supports simulations to evaluate the applications, and a real-time
execution engine supports the application running on an embedded
platform. To properly interact with sensors and actuators, such an
execution engine must be appropriately programmed. So far, CPAL
only provides a complete engine for the Freescale FRDM-K64F board.
Besides it’s coverage of limited spectrum of boards, the CPAL design
principles allow the designer address the intricate details regarding
embedded programming (e.g., pin 0 of GPIO represents the “push
button” reading).

Chen et al. (2015) propose the CPSR architecture applied to
the robot’s design. This architecture provides a physical layer, that
is responsible for the resource management and device interface. An
informational layer describes high-level application characteristics. The
integration between these layers provides the hardware and software
mapping. However, the architectural characteristics definition applied
to the system devices as well as these components integration into the
system are not detailed.

Regarding the support of CPS sensing and actuation subsystems
properties representation, a transformation process is proposed in this
thesis (Chapter 5), providing the generation of AADL architectural
representation based on functional Simulink models. More details
related to this transformation process are presented in Chapter 5.

Based on characteristics presented in Table 2 and discussed in
this section, it is observed that to integrate sensors and actuators
into the CPS architectures is not an easy task, furthermore according
to the design approach different information is required to express
these component properties and provide their interface. In this sense,
its observed that this integration process does not have a definitive
solution. In this sense, our proposed transformation process aims to
improve the representation of the sensing and actuation properties
during the CPS design process.

According to the proposed evaluation criteria, its observed that
device characteristics specification and the hardware and software
mapping is covered in all of the cited works. However, the presented



48

information sometimes is not enough to represent these activities.
The validation and tests, aims to evaluate the component integration
and the application behavior and are not covered in any approaches.
Furthermore some authors do not discuss the requirement of the
embedded software to support the system execution by sometimes not
providing a solution that can be executed on the embedded platforms.

These characteristics demonstrate that adequately identifying
the required information to provide the interface to the system sensors
and actuators with the embedded architecture is an open research area.
In this way, it is essential to correctly identify the required information
to provide the device’s interface, as well as, allowing the applications
to interact with these components receiving measurements and sending
references according to the application requirements.

3.4 FORMAL VERIFICATION ON CPS DESIGN

Due to the CPS design process complexity, robust system
analysis is required to ensure the system requirements. In this way,
the MC became a natural candidate to become part of the overall CPS
design process, and this process requires adequate tools and methods
to support the systems properties evaluation.

In this context, a set of works that provide MC applied to the
CPS design are presented in this section, highlighting its characteristics
and the set of evaluated properties. The authors provide different
approaches to ensure the formal systems evaluation.

3.4.1 Overview

Some approaches are based on architectural an AADL model
as input and provide different representations to support the MC
evaluation. Yan et al. (2014), Hu et al. (2015) propose the generation
of Timed Abstract State Machines (TASM) to support the system
evaluation. Correa et al. (2010), Berthomieu et al. (2015) introduce
the MC process based on a model transformation chain that uses
fiacre as intermediary language and then translate it to Timed Petri
Nets that are evaluated by using the TINA tool. Renault, Kordon
& Hugues (2009) propose the generation of TPN based on AADL
models. However these authors do not use an intermediary language.
Furthermore, the selected tool to support the property evaluation is



49

CPN-AMI instead of TINA. Hamdane, Chaoui & Strecker (2013), Yu
et al. (2011) propose the evaluation of the system properties by the
use of the UPPAAL tool. In order to perform this evaluation timed
automata are generated based on AADL model.

The Networks of Priced Timed Automata (NPTA) generation
based on AADL models are proposed in (BAO et al., 2017), aiming
to provide the system properties evaluation against various complex
performance and safety queries. Other authors also propose the
NPTA generation to evaluate the CPS properties (XU et al., 2016).
However, its transformation process is not based on AADL, providing
its representation based on ThingML language.

A subset of AADL is proposed in (BOZZANO et al., 2009). This
language is named SLIM and integrates some behavioral properties
(from AADL behavior annex) directly onto the native language. In
this way, a transformation process is proposed from SLIM to LTS to
support the MC evaluation.

The evaluation of the digital-systems is proposed in (ISMAIL et

al., 2015). In this work, the authors formally evaluate the designed
control systems. This process is based on the control laws that are
integrated into a designed tool to support the properties evaluation.

3.4.2 Evaluation and Discussion

The evaluation of the proposed criteria that includes formal
verification methods is presented in Table 3.

Renault, Kordon & Hugues (2009) propose the mapping of
AADL behavioral semantics into TPN. This process focuses on threads
and their interactions with the ports connections. Based on the TPN
the designers can evaluate behavioral properties. These properties
include deadlock detection, message flow, communication boundness
and safety. Time-based properties are also evaluated such as a missed
deadline and missed thread activation. The property evaluation is
performed by connecting a Petri Net model checker, and defining LTL
properties.

Analyzing the proposed work, the main verified weakness is the
sole focus on thread behavior, without consideration for any other
properties for example reachability or liveness. The authors do not
describe the AADL behavior annex usage, characteristics related to the
transformation process nor is it made clear whether or not the process
is automatically or manually performed. The authors do not cite the



50

Table 3 – Evaluation of CPS Formal Verification

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
Related Works

Evaluation
Criteria B

e
h
a
v
io

r
a
l
c
o
v
e
r
a
g
e

E
r
r
o
r

c
o
v
e
r
a
g
e

R
e
a
c
h
a
b
il
it
y

S
a
fe

t
y

L
iv

e
n
e
s
s

D
e
a
d
lo

c
k

T
im

in
g

P
r
o
p
e
r
t
ie

s

S
t
a
t
is
t
ic

a
l
A
n
a
ly

s
is

Renault, Kordon & Hugues, 2009 X ♦ X X X

Bozzano et al., 2009 ♦ X X

Correa et al., 2010 X X X X X ♦

Yu et al., 2011 X ♦ ♦ ♦ ♦ ♦

Hamdane, Chaoui & Strecker, 2013 X X X X X

Yan et al., 2014 X ♦ ♦ ♦ ♦ ♦

Hu et al., 2015 X X X X

Berthomieu et al., 2015 X X X X

Ismail et al., 2015 ♦ X ♦

Xu et al., 2016 X ♦ ♦ ♦ ♦ ♦ X

Bao et al., 2017 X ♦ X X ♦ ♦ ♦ X

Integrating Formal Verification

into the UAV Design (Chpt. 6)
X X X X X X X X

use of AADL EA. However, considering the flow message analysis and
mission of thread activation, we can conclude that error characteristics
are partially covered in this approach. Also, they do not consider the
AADL hardware element properties in this process.

In (BOZZANO et al., 2009) a subset of ADDL language named
SLIM is proposed, integrating behavioral properties directly into the
native language. To provide the formal verification the SLIM language
is translated to LTS, to support the safety and liveness properties
evaluation. The transformation process is automated by using a
provided tool support. The authors do not define the covering of
the timing properties supported in AADL on the SLIM language.
In this way, it is not possible to conclude the evaluation of timing
properties. The major weakness of this approach comes from the
fact that AADL specifications are not fully supported (due to the
use of SLIM). Furthermore, error properties are not considered in this
approach.

A formal verification approach is proposed integrated into a CPS



51

design method in (CORREA et al., 2010). In this way, a transformation
process form AADL to an intermediary language named Fiacre is
performed for further model verification. To support model checking
the Fiacre model is compiled into a format for the Tina tool to be
verified by using LTL specifications. Tina tool supports the evaluation
of properties such as reachability, safety, liveness, and deadlock freeness.
Some timing analysis can also be performed by using the AADL
model. The transformation omits the hierarchical information of AADL
syntax and concentrates on the thread execution and communication.
The major weakness comes from not adequately covering the AADL
specifications in the transformation process to Fiacre (Not covering the
AADL EA).

A transformation process from AADL to timed automata is
presented in (YU et al., 2011). An AADL annex was proposed to
represent the CPS properties, supporting the transformation process.
The timed automata representations are generated based on the
AADL structures (native components, and designed annex), and its
properties verified by using the UPPAAL tool. However, although
the authors propose a new AADL annex, they do not detail the
transformation process coverage, i.e., what set of AADL components
and characteristics are used as the basis for the timed automata
generation.

With this approach, it’s not clear how to perform the
transformation process, nor is describing the transformation rules or
any information related to a tool support clear. Based on AADL
and UPPAAL representations characteristics like reachability, safety,
liveness, deadlock, timing properties, and statistical analysis can be
performed, however, by the fact that the authors do not detail the set
of available properties evaluation makes it difficult to describe if all of
these properties can be validated by using this approach. The authors
define the use of device components. However, they donot indicate the
use of AADL EA.

A verification process of AADL architectures by using timed
automata formalism is also proposed in (HAMDANE; CHAOUI;

STRECKER, 2013). In this way, a transformation process is proposed
to extract and analyze the temporal behavior of AADL components
defined in the behavior annex. The UPPAAL toolbox is used to
verify properties such as timing, deadlock absence, reachability, and
liveness. However, the authors not present any information related
to the integration of hardware components on this structure. Error
characteristics, defined by using AADL EA are not considered in this



52

approach, neither is statistical analysis.
A model transformation approach to provide TASM based on

AADL models is presented in (YAN et al., 2014). TASM allows the
application of model checking by using the UPPAAL tool. In this sense,
properties such as reachability, safety, liveness, deadlock freeness, and
timing properties can be evaluated. However, the authors do not detail
the verification process in the proposed approach. The major weakness
of this approach relates to the fact that hardware elements are not
taken into consideration (e.g., Devices) and that there is no support for
probabilistic model checking. Regarding the transformation process, its
observed that error properties are also not taken into account.

A methodology applied to translate a subset of AADL language
into TASM is proposed in (HU et al., 2015). This AADL subset includes
thread components, port communication, behavior annex and mode
change. In this approach, the authors have focused on the evaluation
of functional properties such as deadlock freeness, state reachability,
timing correctness, and resource consumption. A transformation tool
AADL2TASM was designed which can be integrated into an OSATE
environment to support the transformation process. The weakness
related to this approach is the fact that both hardware components as
error properties are not taken into account, and probabilistic analysis
is not performed. Regarding the system evaluation characteristics such
as safety and liveness are not evaluated in this approach.

Berthomieu et al. (2015) propose an approach to formal
verification systems based on AADL and Tina. In this process,
the AADL model is translated to an intermediary language (Fiacre)
and then translated to Tina tool to be verified. This approach
covers the fundamental AADL properties coupled with the behavioral
Annex. Despite the transformation process, the authors do not
detail the generated tina models, and they only define the set of
transformation rules. Regarding the verification process mainly three
kinds of properties are evaluated, the deadlock absence, liveness, and
reachability. Evaluating the transformation process, it is observed
that the authors do not cover the error annex, as well as not using
probabilistic analysis. The authors do not cite the properties evaluation
related to the system safety, despite Tina tool supporting its evaluation.

The use of a bounded model checking tool named as
Digital System Verifier (DSVerier) applied to verify digital-system
implementation issues, aiming to investigate problems that emerge in
digital controllers designed for UAV attitude systems is presented in
(ISMAIL et al., 2015). This approach provides an SMT-based BMC



53

approach, for verifying low-level properties of digital controllers. By the
fact that authors have focused on the evaluation of a control system, the
application’s behavior is not covered. By performing these evaluations
safety properties of control subsystems as well as checking of timing
constraints can be validated. However, by the fact that the authors
have focused on the control system, other system properties cannot be
validated. Furthermore, the influence caused by an error event is not
taken into consideration by the authors. Likewise, probalistic analysis
is not taken into consideration.

Xu et al. (2016) propose a quantitative uncertainty evaluation
framework for ThingML-based IoT designs. In this approach, by
the use of NPTA (UPPAAL model) and statistical model checking
uncertainties caused by external environments can be modeled, as
well as, evaluating different performance queries. By using the
proposed transformation rules, the extended ThingML designs can
be automatically translated into NPTA models, to conduct the
quantitative evaluation against specified performance queries.

Regarding (XU et al., 2016), probabilistic analysis can be
performed to validate the system characteristics. UPPAAL tool also
supports the evaluation of properties such as reachability, safety,
liveness, deadlock freeness, and timing properties. However, the
authors do not detail the evaluation of this property on this approach.
Regarding the error properties, the authors not detail support in
ThingML support to the representation of these characteristics, nor
do they present its evaluation.

In (BAO et al., 2017) the authors propose a statistical model
checking based framework to perform quantitative evaluations of
uncertainty-aware Hybrid AADL design against performance queries.
This approach is based on AADL, providing a transformation process
from AADL to NPTA models. A language extension is introduced in
AADL, called Uncertainty annex for the stochastic behavior modeling,
enabling quantitative performance evaluation considering uncertain
factors caused by physical environments. By the use of statistical
model checker (UPPAAL-SMC), its possible to evaluate reachability
and safety queries. The UPPAAL tool also supports the evaluation of
liveness, deadlock and timing characteristics. However, these properties
are not detailed by the authors. Despite the probabilistic analysis, the
authors do not present many details related to the error characteristics
evaluation, they only describe the evaluation of uncertainties related to
the physical environments.

Regarding the support to make formal verification integrated



54

into the CPS design process, a transformation process is proposed in
this thesis (Chapter 6), providing the automatic generation of timed
automata based on AADL architectural representation. Based on these
representations the systems can be evaluated by using the UPPAAL
tool. More details related to this transformation process is presented
in Chapter 6.

As can be observed in the presented works, different approaches
are proposed to validate the CPS properties by using MC. The primary
focus of its approaches relates to the representation and validation of
behavioral properties, and only some works cover the evaluation of error
characteristics.

Regarding the set of evaluated properties presented in Table 3,
we consider that validating these characteristics is essential to a CPS
project. In this sense, it is observed that some approaches almost
cover all of this characteristics. On the other hand, some approaches
just cover part of these properties, providing a partial CPS evaluation
and validation. Statistical analysis is another characteristic that is
only covered for a subset of these works. In this sense, the proposed
transformation process aims to integrate MC into the CPS design
process. As result, more reliable (less error-prone) models and systems
are created.

In this context, it is possible to conclude that despite formal
verification is considered essential to validate the CPS project
properties, a definitive solution that can cover all the required
evaluation does not exist. In this way, different approaches can be
used in a complementary way, enabling the system evaluation to fulfill
the application requisites.

3.5 SUMMARY AND ADDITIONAL REMARKS

Analyzing the presented topics it is observed that many efforts
have been spent over the last year looking for the CPS development
process, as well as to the subareas of this development process. This
evolution only reinforces the complexity related to the CPS design,
and demonstrate that some topics are not widely discussed, nor do
they have a definitive solution.

Regarding the CPS design process (Section 3.2), especially
considering the UAV applications, it is observed that some works
almost cover the whole design process. However, if we consider the
UAV particularities, some characteristics are not widely discussed in



55

existing design processes. In this way, some UAV characteristics are
not covered such as the mission definition for example. To correctly
map the application’s design, the use of multiple design methods is
sometimes required, to provide a guideline to the built the applications.

Based on these characteristics the proposal for a new UAV
design method proves feasible, providing a solution that can adequately
detail the necessary design activities to build the aircrafts to fulfill the
planned missions. Also, to adequately cover the complete development
process, some specific activities need to be further discussed such
as the integration of sensors and actuators, and the formal property
evaluation.

Looking at the integration of sensors and actuators (Section 3.3),
it is observed that this process usually includes a device description
as well as hardware and software mapping. However, the defined
information on these activities is not enough to integrate these
components. Another observed point is related to the support of
embedded platform application execution, which includes the code
design to run on the embedded platform, integrating the set of devices.
Usually, this process is manually performed by the designers or is
partially automated making the software design more prone to errors.

As presented, the integration of sensors and actuators is an open
point requiring an increase in discussions related to the integration
of the devices on the embedded applications. Besides, evaluating
how to test and validate these structures is essential to ensuring the
application’s integrity.

Formal evaluation of the application characteristics is another
point to be discussed (Section 3.4). As can be observed by the authors
propose the different tools used to validate the characteristics of the
applications. However, with these approaches it has been verified
that some authors focus more on a specific property subset, partially
covering this process. Besides, the majority of authors mainly evaluate
the behavioral characteristics, not considering for example the influence
of error events on the embedded applications.

Evaluating the proposed methods we see that further exploration
of the influence of error events on the applicant’s behavior is necessary.
A probabilistic analysis to better evaluate and validate the applicant’s
is also required. On the other hand, the validation of properties
such as reachability, safety, liveness, deadlock freeness and timing
requirements are covered in different approaches, and sometimes a
complementary approach is required to validate all of these properties
in the application.



56

As presented in this section, despite different authors providing
approaches to systematize the CPS design process, either in the general
context or in relation to a specific point, this is an area that needs to
be more discussed and detailed. In this way, the next three chapters
detail these thesis contributions, providing approaches related to the
CPS design process, integration of sensors and actuators and the formal
properties evaluation.



57

4 DESIGN METHOD FOR UNMANNED AERIAL
VEHICLES

Considering the heterogeneity of the design activities performed
on the CPS applications design, as well as the process complexity, a
structured process is required to design these applications. This process
needs to be properly guide by the design teams, addressing the project
phases to express the necessary systems properties.

An Unmanned Aerial Vehicle is a typical CPS example, and
its design requires collaboration by experts from different fields.
Throughout the design, various techniques are employed, such as
the mathematical modeling of physical phenomena, formal models of
computation, simulation of heterogeneous systems, software synthesis,
verification, validation, and testing. Based on the different design
techniques previously mentioned it is possible to observe that the
design process of these applications is considered complex, requiring the
design of different representations to properly describe the application
characteristics. In this way, a reliable design method is required to
systematize these tasks and to coordinate the project teams.

Contrasting with traditional computer systems design, where
the processes usually are deeply rooted in sequential steps, on CPS
applications many things happen at once, i.e., physical processes are
composed by different things happening at the same time (DERLER;

LEE; VINCENTELLI, 2012). Regarding this concurrency and the process
heterogeneity, the CPS design process is not an easy task and requires
understanding of the joint dynamics of computers, software, networks,
and physical processes.

Besides the technical knowledge, the project manager needs to
coordinate different teams that are specialized in the specific UAV
properties, such as mechanical engineers, software engineers, electronic
engineers, aerodynamic engineers, marketing specialists, and designers.
A good communication plan is required, as well as a documentation
pattern to provide the information dissemination, and avoid that staff
replacement does not result in loss of knowledge.

In this context, this chapter presents an MDE method devoted
to UAV design. The primary goal of the proposed method is
systematizing the design process, covering the planning, development,
and implementation phases. These activities are described aiming to
guide designers to represent the UAV features, by using complementary
models.



58

The proposed method is highly inspired by integrated product
design methods, like for example PRODIP (BACK et al., 2008), which is
typically used by mechanical engineers. However, this proposal can be
seen as a kind of specialization of this technique for UAV design. This
especially comes from the use of MDD techniques, typically adopted in
computer science, and also by considering the control and electronic
requirements applied to deal with the UAV complexity. The first
version of this proposed method was published in (GONÇALVES et al.,
2017).

A Bi-rotor UAV design presents the proposed approach in detail,
specifying its aeronautical aspects, the related control system, and the
required embedded electronics.

4.1 PROPOSED APPROACH

This section details the proposed method applied to the UAV
design process. Our focus is on representing the required information
to develop such kinds of aircraft. In this way, the designers are guided
from mission planning to the UAV final construction, covering the main
characteristics of these systems.

An illustration of the proposed method is depicted in Fig. 6,
describing the method phases, its steps, and design activities. The
proposed actions address the particularities of the UAV design process.

As presented, the method is composed of three phases: planning,
project process, and implementation. On each phase, a set of steps are
proposed coupled with some activities that aim to provide the project
information. The following is the detailed description of the design
activities.

4.1.1 Design Activities

The proposed design method starts with the planning phase
(Phase 1), where the first project features are specified.

Phase 1 Planning: In the planning phase the essential UAV
characteristics to the started project are specified. The project
management information is also performed in this phase, representing
features such as communication documents, and the teams
management.



59

Figure 6 – UAV design method workflow

This phase is composed of two steps, representing the UAV initial
definition (UAV Planning) and the Project Planning (Steps 1.1 and 1.2)
respectively.

Step 1.1 UAV Planning: This step represents the UAV’s initial
characteristics elicitation. In this way, details related to the possible
mission(s) that will be performed by the UAV are defined, as well as
some aircraft characteristics like weight limit, estimated autonomy, and
payload.

The characteristics of the UAV original definition are normally
collected after a set of customer meetings, defining the initial project
information. This phase is composed of two activities: mission plan
and characteristics elicitation.

Activity 1.1.1 Mission Plan: The mission plan defines the initial
UAV description. Simple language is used to represent the mission that
resumes the application objectives. This description needs to be clear
and direct to guide the project design. As a result of this step, the
mission plan that details the application objectives is obtained.

One can say about this activity that the planning phase can be
considered specific to UAV’s design, more specifically in the mission
plan is where the designers detail the aspects that the different teams



60

need to take into account in order to properly design the application.
In this sense, the costumer provides the mission information in
order to details characteristics such as the main UAV objective, the
estimated flight autonomy, estimative of size and weight, services
that the aircraft need to provide, who will operate the application,
environmental characteristics related to the missions, requirement of
load transportation, among others. Based on the UAV’s mission, the
application aspects can be defined. The characteristics elicitation deals
with these properties’ definition.

Activity 1.1.2 Characteristics Elicitation: The possible UAV
configuration analysis is performed in this activity. Moreover, a
primary list of devices is defined, coupled with the embedded platforms.
Environmental characteristics are also considered in this activity.
These properties are defined based on the designer’s expertise together
with brainstorming sessions.

Once the fundamental UAV characteristics are defined, some
administrative activities need to be performed. These include
management decisions to conduct the project’s progress, managing
the design teams and the product information. These decisions are
performed on project planning (Step 1.2).

Step 1.2 Project Planning: Management activities are described
in the project planning, defining characteristics such as the project’s
objectives, project time, teams’ definition, communication management
plan, project constraints, risk evaluation, coding design patterns, and
documentation. These characteristics are essential to keep track of the
project’s progress.

The project’s planning is composed of three activities that define
the management actions to start the project. These activities concerns
the project’s information, teams’ definition, and project plan design.

Activity 1.2.1 Project’s information: The project’s information
regards the project’s objectives definition, followed by patterns related
to the project’s documentation and information. The design of
document templates, as well as characteristics related to information
dissemination are also part of this activity. Regarding the project
meetings, characteristics related to its periodicity and involved teams
are defined at this time.



61

Activity 1.2.2 Teams’ definition: According to the project’s
complexity and characteristics, different teams may be required to detail
the application’s aspects. In this sense, the project manager evaluates
the application aspects and defines the teams according to its expertise.

Activity 1.2.3 Project Plan: The project plan describes activities
to provide the application design plan. To generate this document,
estimations are performed, and project characteristics are defined such
as project time, project constraints, risk evaluation, resource allocation,
and the project definition phase. As output, this activity provides the
UAV’s project plan.

With the definition of the UAV’s mission, the planning phase is
concluded. This information is used to start the project process phase
(Phase 2), where the UAV characteristics are detailed.

Phase 2 Project Process: This phase details the UAV’s
characteristics based on the defined mission. According to the
MDE principles, different system models are generated in this phase.
Moreover, it also addresses model transformation techniques to deal
with the project’s complexity. As the output of this phase, a detailed
project is presented, providing information that allows the UAV
prototyping.

The project process is composed of four steps that go from
requirements definition to the complete UAV project. The first step
of this phase concerns the UAV informational project (Step 2.1).

Step 2.1 UAV informational project: The UAV informational
project provides the aircraft’s specification. Here the mission
characteristics considered represent the system requirements. In this
sense, the UAV aspects are detailed, including the system requirements
(FR) and the system constraints (NFR).

This step is composed of one activity that describes the
requirements definition (Activity 2.1.1).

Activity 2.1.1 Requirements Definition: Based on the
preliminary system description coupled with the mission characteristics,
the set of system requirements are defined, to detail the FR and NFR
characteristics. This activity generates a requirements document as
output.



62

Regarding a UAV project, the specification of requirements
details system characteristics such as flight autonomy, operating
temperature range, power source, operating power source range,
actuation limits, collision avoidance features (if required), maximum
flight altitude, among others. Based on the UAV requirements, it is
required to detail its structural characteristics. This information is
expressed in the Conceptual Project (Step 2.2).

Step 2.2 UAV Conceptual Project: This step represents the UAV
design, i.e., the designers define the aircraft mechanical structure, and
its functionalities. These characteristics include the definition of the
set of peripheral devices. Different aircraft configurations are evaluated
at this time, considering the mission’s plan, and the FR and NFR
characteristics.

The provided set of devices at this moment only describes
an overview of such components, and this information will be used
as the basis for the future detailed specification. To represent the
conceptual project characteristics three activities are proposed, defining
its physical characteristics (Physical Modeling), the detail of the
aircraft’s mechanical structure (Mechanical Project), and providing the
preliminary devices definition (Preliminary Hardware Definition). The
design of the physical model starts in this step (Activity 2.2.1).

Activity 2.2.1 Physical Modeling: The physical modeling defines
the system dynamics representation, i.e., a model is created to detail
the aircraft dynamics. Mathematical expressions are defined on this
model to express the system’s behavior in a simulated environment. As
output, the physical model is presented, receiving the control references
as input and providing the application’s behavior as output.

The physical representation can include environmental
characteristics that directly influence the application such as wind, and
other disturbances. However, representing the UAV behavior coupled
with environmental characteristics is not an easy task, given that the
designers usually spend a considerable amount of time to detail these
properties using mathematical expressions. After representing the
physical characteristics, it is necessary to define the UAV mechanical
structures. These characteristics are defined on the Mechanical Project
(Activity 2.2.2).

Activity 2.2.2 Mechanical Project: The UAV mechanical project
regards the application’s structural design to properly receive the system



63

devices and the embedded computer. This project aims to integrate the
aircraft’s mechanical components providing a complete representation.
As output, this activity provides the UAV CAD model.

The aerodynamic characteristics are fundamental to guiding
this project, providing an efficient aircraft design during the flights.
Additional properties also influence in this project such as shield
requirement, weight limit, flight autonomy, and required payload.

Based on the mechanical project a preliminary hardware
definition is provided, defining the required device components list.
This action is described in the Activity 2.2.3.

Activity 2.2.3 Preliminary Hardware Definition: The
preliminary hardware definition provides the set of possible system
devices. System characteristics directly influence the components
elicitation. If required, some of the selected devices may be replaced on
future project phases, as well as adjustments could be required on the
mechanical structure to better integrate the system components. These
modifications can occur because initially its hard to say that all the
selected devices will properly address the UAV objectives.

The UAV conceptual design defines the aircraft’s structure, and
the teams can start working on their problems domains. In this way, the
UAV subsystems characteristics are provided. This process is started
on the UAV preliminary project (Step 2.3).

Step 2.3 UAV Preliminary Project: In the preliminary project
the set of system modules, responsible for managing the UAV
functionalities, are specified. These subsystems perform the interface
with the selected devices, providing the UAV architecture. The
subsystems are integrated based on their connection ports, providing a
high-level system view. As the output of this step provides different
representations to represent the complete system architecture, that
details the UAV software and hardware structures. This step results
into different representations of the system’s complete architecture,
depicting the UAV’s software and hardware structures.

The UAV preliminary project is composed of four activities that
describe the functional representation, architectural model, hardware
definition, and the electrical project design. These activities are started
with the functional modeling and simulation (Activity 2.3.1).



64

Activity 2.3.1 Functional Modeling and Simulation: Design
of the UAV behavior representation is performed on the functional
modeling, where the control approach is proposed based on the physical
model characteristics. The control system is responsible for managing
the UAV to meet its objectives. This system design needs to be validated,
and its behavior evaluated. The control approach is validated based on
simulations, which are performed to measure, evaluate, and adjust the
proposed approach. As output, a functional model that integrates the
physical model and the control system is provided.

Analyzing functional design, one can say that proposing a control
approach that fulfills the application requirements is a complex task,
that involves knowledge of different techniques and promoting an
evaluation of which one is recommended to the designed application.
Other activities such as system parametrization and simulations also
requires high attention by the design team to properly validate the
control approach. Sometimes, this parametrization needs to be
adjusted when the system is executed on a real environment. This
occurs by the fact that the characteristics of the real sensors and
actuators are difficult to represent in a simulated environment. A
proper software architecture is required to support the control system
execution. These structures integrate the hardware and software
components. The architecture design is performed on the UAV
architectural modeling (Activity 2.3.2).

Activity 2.3.2 Architectural Modeling: The system architecture
provides the integration between software and hardware elements. This
model provides the mapping processes, and the set of required tasks
and functions are defined to support the system execution. The devices
interface and the embedded platform characteristics are also described
in this representation.

Representing the physical characteristics such as the embedded
platform processing power, available communication buses, system
power supply, and devices properties, besides associating these
characteristics with the software components is another complex task
related to the UAV design. In this sense, a considerable time is
spent on this activity in order to provide a proper integration and
communication between the application subsystems. The architectural
model provides means to evaluate a set of system properties such as
system schedulability, flow latencies, and processor usage. Structural
characteristics should also be expressed on this representation,



65

providing means to evaluate physical characteristics like total weight,
required power, energy consumption, and the buses utilization.

The set of hardware components need to be selected to integrate
with the system architecture. This definition is detailed in the hardware
specification (Activity 2.3.3).

Activity 2.3.3 Hardware Specification: The hardware
specification defines the set of UAV hardware components. Based
on the architectural, functional, and mechanical models, the devices
and the embedded platform are specified. These components provide
the system behavior and perform the UAV actuation according to
the designed control strategy. The embedded platform manages the
application execution, triggering application tasks according to its
characteristics.

To integrate the system devices into the application structure;
its electrical characteristics should be considered. These characteristics
are used as the basis to provide the system’s power source. These
properties are defined on the electrical project (Activity 2.3.4)

Activity 2.3.4 Electrical Project: The electrical project concerns
the specification of the UAV’s electrical properties. This activity
is composed of two sub-activities that regard the electrical logic
description, and the power source project. As output, this activity
provides a complete UAV electrical project.

The electrical logical project defines characteristics related to the
system’s information exchange, i.e., the logical communication level of
each device and the embedded platform are analyzed. Logical level
converters should be required to establish the system communication.

The power source project evaluates the input power of the
required devices and its power consumption, to scale out the primary
power system source. This definition may include the use of renewable
energy to provide the primary power source, or to increase the system’s
autonomy.

This project is directly influenced by the system requirements,
defining characteristics such as flight autonomy, and system weight.
Providing the proper logical communication between the application
components, as well as the required system power supply is a point
that requires the designers attention. Characteristics related to the
electrical system protections are also considered in this activity.

The definition of the electrical properties ends the UAV
preliminary project. Based on this information the UAV subsystems are



66

detailed, evaluated, and validated, providing the sufficient information
to the construction phase of the aircraft. These characteristics are
defined on the UAV detailed project (Step 2.4).

Step 2.4 UAV Detailed Project: The detailed project integrates
activities that aims to verify, validate and test the UAV applications.
Activities include the subsystems validation and the hardware and
software components mapping. As output, this step provides a validated
UAV representation.

The evaluation of the UAV behavior must be performed by the
use of simulation techniques (e.g., HIL), and the system requirements
must be validated by using formal verification techniques (like MC, or
Run-time Verification).

This step provides the required elements to the UAV
construction and is composed of five activities. The detailed project
starts with the models integration and refinement (Activity 2.4.1).

Activity 2.4.1 Models Integration and Refinement: The system
components integration provides the UAV with a complete embedded
solution. To provide this structure, the UAV subsystems are gradually
integrated, evaluating if each new inclusion does not influence meeting
the system requirements. If required, adjustments can be performed on
the designed subsystems, ensuring the modules integration. As output,
this activity provides the integrated software system running on the
embedded platform.

Once the application models are integrated, the designers can
evaluate the UAV behavior. However, to provide the complete solution,
software and hardware structures need to be mapped. This mapping is
performed in the hardware and software mapping (Activity 2.4.2).

Activity 2.4.2 Hardware and Software Mapping: This activity
describes the organization of functions, tasks, and devices mapping,
i.e., the designed functions and tasks are individually validated on
the embedded platform, evaluating the system communication and the
device’s interface. To provide the complete solution adjustments should
be required for the functions and tasks. As output, the complete software
architecture is provided, integrating hardware and software elements.

Providing the integration between the different hardware and
software components, ensuring their proper interfacing and information
exchange is another point that requires especial attention from the



67

design teams. This comes from the fact that generating the embedded
code and validating all the interface with this structure requires
different knowledges such as embedded systems design, project of
device drives, system scheduling among others. After validating the
tasks’ behavior, the application needs to be formally validated. This
evaluation is performed on the formal verification activity (Activity
2.4.3).

Activity 2.4.3 Formal Verification: The formal verification
regards the evaluation of the system representation by the use of formal
techniques. This evaluation aims to ensure that the system restrictions
are satisfied. This process technique can be composed of a set of different
techniques, static and interactive, to ensure that all the requirements are
fulfilled.

Once the system properties are verified, the application is
evaluated and validated performing the missions. This process is
represented in the validation and tests (Activity 2.4.4).

Activity 2.4.4 Validation and tests: Validation and tests regard
the evaluation of the UAV construction process. The validation
activities include stress tests, evaluation of defined system limits,
operational tests including long-term tests, and extensive flight tests.
At this time the system’s properties are validated at runtime, and if
required adjustments can be made in the application structure.

To maintain the project communication, its documentation
needs to be updated, providing means for a future project reproduction.
These details are presented in the UAV documentation (Activity 2.4.5).

Activity 2.4.5 UAV Documentation: During the project’s
lifetime different documents are generated representing the aircraft’s
characteristics, detailing project decisions, and maintaining project
information. Compiling this information keeps the project
documentation up to date, gathering details of the project cycle,
and allowing its reproduction. Operation manuals are also produced in
this activity.

This activity ends the second project phase, and the UAV is
ready to be produced and released. These activities are described in
the implementation phase (Phase 3).



68

Phase 3 Implementation: The implementation phase represents the
final design step, i.e. the UAV is manufactured, validated, and released.
Due to the UAV characteristics, usually, these applications are not
built in large scale. A single solution is delivered to fulfill the client
requirements. At the end of this phase, the UAV is delivered to the
customers, and is ready to perform the missions.

Two steps compose the implementation phase, the UAV
production preparation (Step 3.1) and the product monitoring (Step
3.2), which detail the manufacturing, validation, and monitoring
processes. These phases are started by performing the UAV production
preparation (Step 3.1).

Step 3.1 UAV Production Preparation: Product preparation
regards the aircraft construction, and performing experimental tests to
validate its structure and adjust the set of subsystems (if required). As
output, this activity provides UAV solution.

Once the aircraft structure is validated the UAV can be released
to the customers. In this way, the designed solution can be evaluated
and validated by the customers.

Activity 3.1.1 UAV Release: In this activity the released aircraft
operates in the real environment. This operation is monitored, and
parameters can be adjusted to provide a proper behavior during the
execution of the missions. During the customers validation phase,
extensive experimental flights are performed, evaluating the complete
structure. After the UAV is delivered, the designers just monitor the
aircraft behavior during the customers operation.

To ensure the customers project validation, they evaluate if the
aircraft meets the proposed mission. During this step the product is
monitored, and technical activities can be performed (Step 3.2).

Step 3.2 Product Monitoring: The product monitoring concludes
the UAV design process, describing management activities. This step
includes monitoring activities such as customers product validation,
product behavior monitoring, and accident evaluation. The monitored
characteristics are later analyzed, and corrective actions may be
proposed to improve the product quality.

The product monitoring provides the project validation, where
the aircraft characteristics are analyzed evaluating properties like
product impact, customers satisfaction among others. Next, details
of these activities are presented.



69

Activity 3.2.1 Project Validation: Project validation is based on
the product impact evaluation after delivered. In this way, after the
product is in operation characteristics such as customers satisfaction,
recall actions requirement, and the preventative maintenance are
observed. Once the aircraft is validated its quality is improved, the
design teams are dissolved, and the product development cycle is ended.

The proposed method aims to guide the design teams to plan,
sketch, design, construct and commercialize the UAV applications.
This method defines a sequence of activities to adequately represent the
aircraft properties, providing means for building an UAV that fulfills
the proposed missions.

To summarize, the method starts in the planning phase, with
the mission definition and some management activities. This initial
information is used as the basis to the project process, which details the
UAV project and allows its construction. During the design process,
several models are created specifying the subsystems characteristics.
Also, the project documentation is produced. Finally, the UAV is built,
validated, and released in the implementation phase. The aircraft is
delivered to the customer, and its operation is validated.

This approach is applied to the Vertical Take-Off and Landing
Convertible Plane (VTOL-CP) UAV design, to better illustrate the
application of this method. In the next, the performed activities are
presented.

4.2 DESIGN OF A VTOL-CP UAV

To provide a better perspective in relation to the proposed
method, a VTOL-CP UAV was designed using this approach. Details
of this method are presented in practice, by performing this aircraft
design.

The VTOL-CP UAV design is conducted in the context of the
ProVant1 project created in 2012 at the Federal University of Santa
Catarina (UFSC), in partnership with the Federal University of Minas
Gerais (UFMG). ProVant’s objective is to design a small-scale aircraft
to be applied to different contexts.

In the ProVant context, the team starts a new project that aims
to design a UAV to be applied in Seach and Rescue (SAR) missions.
The use of these aircrafts in these kind of missions is important due to

1http://provant.paginas.ufsc.br



70

Figure 7 – Rapid Intervention Vehicle.

Source: Almenara (2017).

the fact that sometimes the rescuers need to access difficult regions in a
short period of time, providing proper assistance as quickly as possible.

SAR missions have some characteristics that need to be taken
into account on the UAV project. These characteristics include reduced
aircraft dimensions, versatility to perform SAR missions, and ease of
use.

Reduced aircraft dimension allows its transportation in a rescue
vehicle (Fig. 7), providing its integration into coordinated rescue
emergency situations. The aircraft’s use includes monitoring and
surveillance missions, and also transportation of medical loads, with
as much autonomy and range as possible.

Based on this information the design process is started, and some
initial aircraft characteristics needs to be defined. Next, the description
of the project activities are presented.

4.2.1 UAV Method Applied to the project Design

The planning phase (Phase 1) starts with the specification of the
required UAV characteristics (Step 1.1), where the UAV mission plan
is created (Activity 1.1.1). The mission specified to the UAV on the
SAR applications define that the aircraft will provide first support to
disasters’ victims until the rescue teams arrive. The aircraft needs to
able to perform flights up to 30 minutes. The UAV maximum weight
is set at 25 kg and needs to transport 5kg of load. This aircraft needs
to be able to maneuver in areas with limited space, allowing access in
restricted areas.

These characteristics are used as basis for the definition of the
application aspects (Activity 1.1.2). Regarding the required different



71

UAV configuration maneuverability characteristics are evaluated, and
a VTOL-CP UAV was defined as project configuration, allowing the
aircraft access restricted areas.

This kind of aircraft has fixed wings, and given this configuration
can perform flights both like a helicopter and an airplane. Designing an
UAV with a VTOL-CP configuration requires a set of devices including
sensors, actuators, and embedded platforms.

A set of required sensors are responsible for estimating the
system’s behavior: Inertial Measurement Unit (IMU); Global Position
System (GPS); Sonar; Pitot Tube; Camera; Laser sensor; and
Telemetry radio. Coupled with these components a set of actuators
are required to provide the aircraft operation: Servomotor; Electronic
Speed Controller (ESC); Motors and propellers.

Defining the embedded platform to support the application’s
execution is not an easy task. To perform this definition more
details related to the UAV structure are required to better choose
the VTOL-CP platform. However, at the current project time, a
preliminary mainboard can be defined to support the system, as well
as a secondary board to perform activities like video processing, base
station communication, and others.

Once the initial VTOL-CP characteristics are defined,
administrative activities are performed (Step 1.2), including
management decisions and the teams assembly. This step is started
by performing the project’s information (Activity 1.2.1).

This activity defines the VTOL-CP UAV, the primary aircraft
objective is to provide support to disaster victims. Document templates
are created to record the meeting’s information. These documents
will be available in a public repository, ensuring the availability of the
project information to all members.

Regarding project meetings, based on agile design techniques
it was defined that each design team will have small daily meetings
(maximum 15 minutes) to the project update. Weekly meetings take
place with the project teams to report the project’s progress, and to
discuss possible problems. Once the informational characteristics are
defined, the teams need to be assembled (Activity 1.2.2). Considering
the VTOP-CP complexity, and based on the managers previously
experience essentially five design teams are required.

The aeronautical team, responsible for the aircraft’s design
definition considering aerodynamical characteristics. The mechanical
team provides the structural project, including the aircraft fuselage
and the integration of system devices. The electrical team evaluates



72

the electrical requirements providing the logical communication, and
the power supply. The control team designs the UAV control approach
to fulfill the mission. Finally, the software team designs the embedded
software structure, and the base station software to support the control
system and the mission monitoring.

With the project’s information and the design teams defined, the
next activity aims the design of the project plan (Activity 1.2.3), ending
the first project phase. This activity regards making management
estimations related to the project cost, lifetime, required number of
designers, among others.

Regarding the project complexity, as well as the aircraft size,
evaluations are required to validate the subsystems’ properties. These
activities analyze project characteristics related to the project risks
such as the use of redundant systems, the execution of flight tests in
controlled areas, and the exhaustive tests. With the VTOP-CP UAV
mission defined and management activities performed, the planning
phase is concluded. This information is used as the basis to start the
project process (Phase 2). Initially on this phase the UAV requirements
are defined (Activity 2.1.1).

To better represent the set of VTOL-CP requirements, tables
are used to detail the FR and NFR. In this way, a document is created
defining the application’s characteristics. To illustrate the requirements
definition, two functional requirements and associated non-functional
requirements are presented in Tables 4 and 5

Table 4 – UAV control stability requisite
F1 - Stability control during flight. Hidden ( )

Description: The VTOL-CP needs to maintain its stability during flights,
be these autonomously or remote controlled.

Non-Functional Requirements

Name Restriction Category R.T. Permanent

NFR1.1 -
Maximum
lateral

inclination

The aircraft cannot tilt more

than 20o in the roll axis.
Security Hard ( X )

NFR1.2 -
Maximum
frontal

inclination

The aircraft cannot tilt more

than 30o in the pitch axis.
Security Hard ( X )

NFR1.3 -
Audible
alert

If the maximum inclination is
exceeded, the aircraft must
emit a beep until it returns to
the inclination limit range.

Interface Soft ( X )



73

Table 5 – UAV load transportation requisite
F2 - VTOL-CP load transportation. Hidden ( )

Description: The VTOL-CP needs to transport load during the missions.
This load can include medical supplies or a survival kit. The
load compartment needs to be easy to access.

Non-Functional Requirements

Name Restriction Category R.T. Permanent

NFR2.1 -
Maximum

load weight

The aircraft can transport 5kg

of maximum load.
Security Hard ( X )

NFR2.2 -
Load
access

The load can be accessed only

when the aircraft is landed and

with the motors off

Security Hard ( X )

Once the UAV requirements are described, the structural project
is started, by performing the conceptual project (Step 2.2). Physical
modeling describes the first activity of this step (Activity 2.2.1),
representing the system behavior. Based on use of the Simulink tool,
the control team design the physical model, that is composed of layers
to better represent this structure. The main view of the VTOL-CP
physical model is depicted in the Fig. 8, describing the aircraft behavior
according to the provided inputs.

Figure 8 – VTOL-CP physical model.

Based on the behavioral characteristics, detailed on the physical
model, the mechanical structure is defined (Activity 2.2.2). In this way,
the UAV CAD model is produced, to detail the aircraft structure. Fig.
9 shows the VTOL-CP structure.

A set of devices are required to support the aircraft flights.



74

Figure 9 – VTOL-CP UAV architecture.

The set of previously defined components (Activity 1.1.2) are revised,
evaluating if they can be applied in the designed mechanical structure
(Activity 2.2.3). Regarding the VTOL-CP architecture, based on the
teams experience at this time the initial set of defined devices are
maintained.

With the definition of the aircraft’s structure, the teams can start
to work on its problems domains, aiming to detail the UAV subsystems.
This process is performed in the UAV preliminary project (Step 2.3),
and functional modeling starts to be performed (Activity 2.3.1).

The functional model represents the UAV behavior and is
designed based on the physical model coupled with the control
approach. Fig. 10 depicts the VTOL-CP functional representation,
that details the control subsystem, in charge to provide the aircraft
stabilization and path tracking.

Figure 10 – VTOL-CP UAV Functional Model.

This structure is essentially composed of three blocks: path track
control (Translational controller), that provide the aircraft tracking
ability; aircraft stabilization (Rotational controller); and the Signal



75

Transformation, that converts control signals into reference signals for
each device.

Based on the control approach, a software architecture is
designed to support the system execution. This design details the
hardware components characteristics such as the embedded platform
processing power, the application buses, and devices communication
protocols that are integrated with the software structures, being
responsible to perform the hardware interfaces and to execute the
system functions. The architectural design is performed on the UAV
architectural modeling (Activity 2.3.2).

Initially, in this phase, the architecture is represented by using
the Simulink tool, providing a representation that integrates the control
system to the application subsystems. This representation is depicted
in Fig. 11, describing a high-level view of the system’s architecture.

Figure 11 – High-level view of the UAV architecture.

The software structure is composed of five subsystems
representing: communication, control, energy, actuation, and sensing.
The communication subsystem is responsible for establishing a
communication channel between the aircraft, base station, and other
UAVs. The control subsystem is responsible for managing the system
behavior while performing the missions. The energy subsystem
provides power control and monitoring of the energy consumption,
the use of renewable energy, and the battery recharge. The sensing
subsystem is responsible for estimating the aircraft behavior, as well as
some additional functionalities, such as image processing and collision
avoidance. Finally, the actuation subsystem provides the actuators
interface. This structure represents the system modules and their



76

relations.
The architectural model details the subsystems’ properties and

represents the integration between software and hardware structures.
Based on this initial representation the AADL is used to represent the
architectural model. To exemplify, Fig. 12 presents part of the AADL
code that specifies the highest abstraction level of the UAV architecture.

Figure 12 – High-view of UAV Architectural model.
1 SYSTEM IMPLEMENTATION UAV.impl

2 SUBCOMPONENTS

3 --PROCESS

4 pi_energy: PROCESS p_energy.impl;

5 pi_control: PROCESS p_control.impl;

6 pi_sensing: PROCESS p_sensing.impl;

7 pi_actuation: PROCESS p_actuation.impl;

8 pi_communication: PROCESS p_communication.impl;

9 --DEVICE

10 di_gps: DEVICE d_gps.impl;

11 di_imu: DEVICE d_imu.impl;

12 di_esc_r: DEVICE d_esc.impl;

13 di_esc_l: DEVICE d_esc.impl;

14 di_sonar: DEVICE d_sonar.impl;

15 di_radio: DEVICE d_radio.impl;

16 di_servo_r: DEVICE d_servo.impl;

17 di_servo_l: DEVICE d_servo.impl;

18 di_pitot_tube: DEVICE d_pitot_tube.impl;

19 di_camera: DEVICE d_camera.impl;

20 di_laser: DEVICE d_laser.impl;

21 CONNECTIONS

22 C1: PORT di_gps.position -> pi_sensing.position;

... Here goes all the connections (lines 23 to 48)

49 END UAV.impl;

To provide the architectural model generation, a transformation
process was designed, supported by the ECPS Modeling tool, for the
translation of the functional model into the architectural model, i.e.,
transforming the specification of Fig. 11 to the model detailed in Fig. 12.
Please refer to chapter 5 for more information about the mentioned
transformation.

The set of hardware components needs to be selected after
the system architecture is defined. This definition is detailed in
the hardware specification (Activity 2.3.3). The designers perform a
market research, evaluating the available solutions, their properties,



77

and cost. Based on device characteristics coupled with the defined
project constraints a set of sensors and actuators is selected to apply
to the project structure.

With the system components defined, its electrical
characteristics should be considered, taking into account the system’s
power source. The definition of these features is performed in the
electrical project (Activity 2.3.4). This project is split into two
sub-activities defining the electrical logic characteristics and the power
source project.

The electrical logic activity evaluates the communication levels
of each component. Given the fact that these devices usually work with
two different logical levels (3.3v and 5v), typical logical level converters
are applied to this environment. These components provide support to
establish the communication between the system different elements.

The power source project defines the central system input power.
This definition is based on the devices consumption, as well as being
influenced by the flight autonomy requisite. The use of renewable
energy is also considered in this activity, to provide the primary power
source, or to increase the system autonomy. These definitions end
the UAV’s preliminary project and based on this information the
UAV subsystems should be evaluated, and validated. These activities
compose the UAV detailed project (Step 2.4). This step starts with the
model’s integration and refinement (Activity 2.4.1).

To provide the system modules integration in the embedded
platform, the designed architectural structure receives each subsystem
gradually. In this way, the modules presented in Fig. 11 are
sequentially included, i.e. the designed functions and tasks defined to
each subsystem are executed on the embedded platform coupled with
its required devices. With each new inclusion, tests are performed to
evaluate the system behavior. If required, adjustments are performed,
ensuring the modules correct integration on the embedded platform.

With the application models integrated, software and hardware
structures are mapped aiming to provide the complete solution
(Activity 2.4.2). In this sense, the designed functions and tasks
are individually validated on the embedded platform, evaluating the
communication structures, and the device’s interfaces. This activity
also evaluates devices characteristics like configuration, response time,
and accuracy.

Once the tasks behavior are evaluated, the application needs to
be formally validated, where formal methods can be applied to verify
the system characteristics (Activity 2.4.3). This process regards the



78

Figure 13 – Position estimation task behavior.

evaluation of the system properties by the use of formal techniques,
ensuring the system constraints are achieved. The assessment can be
composed of different methods (static and interactive).

To support the formal verification methods integration on
the UAV design process a transformation process was designed,
supported by the ECPS Verifier tool to extract the timed automata
representations based on the architectural model. In this way, the
specification presented in Fig. 12 is used as a base to generate the
timed automata, evaluated using MC. Please refer to chapter 6 for
more information about the mentioned transformations.

By performing the proposed transformation process, the timed
automata are extracted based on the architectural model presented in
Fig. 12. Fig. 13 details the structure of the position estimation thread.

This thread provides the interface to the GPS device and
estimates the UAV position based on this information. In addition to
the tasks templates, device’s models are generated, aiming to evaluate
the influence of these components on the designed task. Fig. 14 depicts
a device representation that details the GPS behavioural structure with
associated possible failures.

The mission’s fulfillment needs to be evaluated after validating
the system properties. In this way, tests are performed assessing the
hardware and software structures (Activity 2.4.4). In this activity,
the VTOL UAV structure is evaluated in order to be released.
The validation activities include stress and limit tests, system limits



79

Figure 14 – GPS behavior representation.

evaluation, long-term tests, and extensive flight tests.
Maintaining the project information providing means to a future

project replication is the goal of the project’s documentation (Activity
2.4.5). Different documents are generated during the project’s lifetime,
describing the VTOL-CP UAV characteristics. In this way, this
information is compiled, updating the project documentation. At this
time operation manuals are also generated.

The documentation process ends the second project phase, and
the VTOL-CP UAV is ready to be built and released (Phase 3). This
phase represents the final design stage. Due to the UAV project
complexity, at this time this application will not be produced in large
scale, a single initial solution will be delivered to the clients.

The implementation phase starts with the UAV production
preparation (Step 3.1). This step deals with the aircraft construction,
where tests are performed on the VTOL-CP UAV to validate its
structure, and its composition by the UAV release activity (Activity
3.1.1).

To provide the UAV release the aircraft is operated in the real
environment. This operation is monitored to validate its behavior
during the execution of the missions. The aircraft is delivered to the
designers monitoring the customers VTOL-CP operation, evaluating



80

the application behavior. Once the aircraft’s structure is validated,
the UAV is released to the customer’s validation. After delivery its
operation is monitored (Step 3.2) evaluating of unexpected behavior
occurrence during the missions performing.

Product monitoring provides the project validation (Activity
3.2.1), where several project characteristics are analyzed. This
validation evaluates the UAV impact after in operation by the
customer’s. The project is ended after final customer validation and
teams dissolution. As described some of these activities are automated
by the use of proposed tools that provide not only transformation
processes but they also automate some model generation.

4.3 SUMMARY

In this chapter a design method devoted to the construction of
UAV applications is presented. In this way, a set of phases and activities
are presented aiming to cover the particularities of these application
constructions. By performing the proposed activities the designers
can provide the information required to the UAV’s constructions, as
well as cover some management activities essential to the projects
construction.

Once the propose method was finished, it was possible to observe
that the proposed set of steps and activities may be generalized to other
CPS application. However, to conduct the method generalization some
planning characteristics need to be modified, and a different set of
information is required on the mission plan. For such reasons, and also
to limit the scope of this thesis, any adaptation or generalization of the
current proposal is left for future works.

The proposed approach is applied to the design of a bi-rotor UAV
with the tilt-rotor configuration. Based on this case study, it aims to
detail the project phases and activities applied to a real application. In
this sense, more information related to the performed activities can be
presented, as well as its produced artifacts.

Analyzing the proposed method it is observed that the
implementation phase was not so widely discussed and that some
activities mainly related to the UAV construction could be better
detailed. Besides, characteristics related to the costumers product
validation are also lacking. Another observed point is related to the
application of code generation. Besides this activity is considered
implicit in some project phases, generating the application code to



81

be executed on the embedded platform is not widely discussed on this
method.

Whilst aiming to support the proposed design activities some
tools are also designed. These applications assist the design teams
during the application characteristics representation, and provide the
automated generation of a complementary model. In this way,
the project can be reduced, by automating some representation
constructions, and the project information can be maintained during
the hole project time.

In this sense, a tool was proposed aiming to perform a
transformation process from functional model to the architectural
model. The tool is named ECPS Modeling, have focused on the
specification of the sensor’s and actuator’s properties. The details of
this transformation process are described in the next chapter.



82



83

5 SENSING AND ACTUATION SUBSYSTEMS
DESIGN

The UAV development process involves complex engineering
work. The design of analytical models representing the UAV behavior
and its control solution is an essential step within this process (LEE;
SESHIA, 2015; ALUR, 2015). This step is typically named as functional
design, and involves performing simulations to test both the analytical
model that represents the UAV behavior and its control solution.

The analytical model representing the CPS behavior is mainly
devoted to simulation, so it usually would not be used in the
implementation. Designers, however, should not merely discard this
model in the final implementation but preserve its structure and adapt
it to cope with the sensors and actuators that will be used. While
sensors provide information about the application state, the actuators
allow executing the control actions to change the device state.

Further, the design team must tackle how to correctly implement
the control solution in a typical embedded computing platform. Again,
this is not a trivial task, mainly due to the real-time requirements
imposed by the control algorithms and the limited computing resources
from the embedded platform. This step is typically called architectural
design, and also involves different types of analysis before what is known
as implementation in the target platform.

Regarding the design method presented in Chapter 4, this
process is composed of a set of phases devoted to represent UAV
characteristics. In this sense, as described in the UAV preliminary
project (Step 2.3), the design of architectural modeling (Activity
2.3.2) aims to represent the integration between software and hardware
elements. This activity includes the integration of sensing and
actuation properties in the architectural representation.

The generation of architectural model that integrates the
described characteristics is based on the functional model, where
performing a transformation process the designers can extract a set
of information from the base model. The transition between these two
types of models constitutes the research problem to be addressed in the
present chapter.

In this chapter presents some guidelines related to how designers
should transform the functional model to remove the analytical
representation of the physical device and add the set of sensors and
actuators to be used in the implementation, guiding the designers to



84

perform such transition. The tool named ECPSModeling was developed
both to support the mentioned guidelines and also to link the model
with specific sensors and actuators (selected devices would come from
a pre-defined programming-level repository). The ECPSModeling tool
usage is exemplified using a case study devoted to the design of a UAV.

The proposed transformation process detailed in this chapter
is defined as a specialization of the UAV design method described in
Chapter 4. More specifically the proposed approach describes a set of
activities aiming to guide the designers to represent the architectural
model (Activity 2.3.2 of the proposed method) and integrate the sensing
and actuation characteristics on the designed representation.

5.1 RESEARCH CONTEXTUALIZATION

The proposal presented in this chapter is an extension of a
previous research work presented in (PASSARINI et al., 2015). This
section provides an overview of the model-based development method
for CPS design that was presented in (PASSARINI et al., 2015), and that
is followed in the present work. This method has four suggested design
steps, as follows: (i) system requirements definition; (ii) preliminary
design; (iii) detailed design; and (iv) implementation. Fig. 15 depicts
the relations between these four steps, including the resulting actions
(inside the blocks) and the provided outputs.

Figure 15 – Main activities and artifacts of the method to develop CPS.

define

system

requirements

create

executable

specification

create

detailed

design

generate

code

requirem+

use cases
Simulink
model

AADL
spec

C++
code
✲✲✲ ✲

From Passarini et al. (2015).

This method suggests adopting different modeling languages
to represent systems functionalities and architecture. The reason,
therefore, is related to the tool selected to perform simulations of the
system functionalities. CPS designers usually prefer using tools that
support mathematical modeling and that include simulation capacity,
like for example Simulink (the one used in this approach). For
representing the system architecture, the adopted development method
suggests using a different modeling language, for instance, the AADL.



85

AADL was selected given that it allows conducting severals analysis
in the architectural model before its implementation. Therefore, the
adopted method requires transforming a functional model described
using functional blocks (from Simulink) into an architectural model in
AADL.

The core of the work presented in (PASSARINI et al., 2015)
concerns the model transformation from functional to architectural
specification. More specifically, it presents a transformation engine
called AST, which transforms functional (simulation) models designed
in the Simulink environment (design step 2) into architectural
models represented in AADL (design step 3). While the Simulink
model elements represent the target functionalities, the AADL model
elements detail a suitable software structure and target platforms for
incorporating those functionalities.

An important detail to be highlighted concerning AST is that
it does not comprise the generation of the set of sensors and actuators
needed by the embedded system. In fact, the specification of such
devices should be part of the AADL architectural model. It happens
that there is no information about sensors and actuators in the
Simulink functional specification, as their designers typically create, for
simulation purposes, a mathematical model that represents the system
to be controlled. The approach detailed in the next section guides
designers to properly bind sensors and actuators into the architectural
(AADL) specification.

5.2 PROPOSED APPROACH AND RELATED DESIGN
ACTIVITIES

This section presents the approach designed to help designers
moving from a model that is built for simulation purposes to a model
that is devoted to implementation. While the simulation model requires
an analytical specification of the physical device to be controlled,
the architectural model requires the specification of the sensors and
actuators that will be attached to the physical device.

As discussed in the previous section, the present work is
conducted as an extension of the method presented in (PASSARINI

et al., 2015). Therefore it assumes the use of functional blocks
designed in the Simulink tool for representing the functional model
and the use of AADL to represent the architectural model. The
work described here targets a part of the model transformation



86

that was not covered in (PASSARINI et al., 2015), i.e., the proposed
approach extends the transformation process performed between steps
ii (preliminary design) and iii (detailed design) from (PASSARINI et

al., 2015). The proposed approach provides means to represent the
sensor and actuator characteristics during the transformation process,
generating the architectural (AADL) specification.

An important aspect to be highlighted is that the problem under
consideration here is not restricted to merely selecting sensing and
actuation devices from a repository and attaching them directly to the
control blocks1. It happens that the designer must adequately plan how
the system should interact with these devices to gather information (in
case of sensors), and shape it to provide the required information of
the control system. The same applies to sending information from the
control to the actuators.

The proposed approach aims to provide means for the designers
to specify the application is integrating the software architecture with
the system devices. It is important to highlight that this approach is not
intended to design the sensors and actuators themselves, i.e., represent
their behavior mathematically. The proposed design activities aim to
guide the designers on the representation of a proper structure that
allows the control system to interface with the system devices. Besides,
it also allows representation of some details about how the devices
operate.

The proposed approach consists of a set of activities to be
conducted by the designer during the transformation process to provide
the device’s property specifications. The application of the proposed
activities is illustrated in a case study devoted to designing the control
software of a UAV, as follows.

5.2.1 Case Study

As presented in 4.2 this project it was conducted within the
scope of the ProVant project, whose goal was the construction of
an autonomous UAV. It tackled the design of the electro-mechanical
components and the embedded control system of the UAV, both
hardware, and software. Such a project comprised the design of a
Simulink functional model for the control system to be embedded in
the UAV and is used as the basis for showing the approach presented

1Control blocks refer to the part of the specification in charge of executing the
logic responsible for controlling the physical device.



87

Figure 16 – UAV Simulink model: first hierarchical level.

in this paper.
The top-level view of this model is depicted in Fig. 38.

The left block represents the control strategy. The right block
(UAV Dynamics) contains a description of the aircraft behavior using
a set of mathematical expressions that allows one to extract the
aircraft position, attitude, and velocities (angular and linear). These
characteristics are estimated according to the received control inputs.
The creation of this Simulink functional model allowed the design
team to perform simulations aiming to observe the system behavior
concerning the control strategy.

Based on this UAV Simulink model, design activities are created
to support the specification of the sensing and actuation subsystems.
The proposed activities are supported by a tool named ECPSModeling.
The proposed design activities and the application of these activities
on the UAV case study are presented in the next section.

5.2.2 Design Activities

The proposed approach consists of a set of activities to be
conducted by the designer allowing for provision of the required
additional information regarding the sensors and actuators to be
adopted so that a proper AADL model can be generated. In summary,
the activities allow the designer to select the desired actuators and
sensors from a repository, characterize them, and then correctly make
their binding into the model. A tool named ECPSModeling was
developed to help designers performing the proposed activities. It works



88

Figure 17 – ECPSModeling process workflow.

Define the 
math-block and 
output model

Input
Analysis

Functional
model

Inputs of 
selected 

math-block

Selected 
pre-processing 

signals

Detailed 
system

Model 
transformation

Define 
pre-processing 

functions

Actuator 
specification

Actuation 
software 

specification

Output
Analysis

Define 
post-reading

functions
Sensor 

specification

Sensing 
software

specification

Required 
pre-processing 

signalsActuators and 
actuation 
functions

Outputs of 
selected 

math-block

Selected 
post-reading 

signals Required 
post-reading 

signals

Sensors and 
sensing 
functions

Architectural 
model

as a plugin for the Osate framework.
The workflow from Fig. 17 depicts the design activities covered

by the proposed tool. These design activities are started performing an
analysis on the functional model, defining the mathematical block that
represents the system behavior. It is then followed by an analysis and
further specification of the input and outputs from such model. The
input analysis are covered for the second, third and fourth activities
(green blocks in the Fig. 17), and the output analysis are performed
for the sixth, seventh, eighth, and ninth activities (dark blue blocks in
the Fig. 17). It was the authors’ decision to start the next step with the
actuation subsystem (math-block inputs). However, we do not see any
objection to starting with the sensing subsystem (math-block outputs).

Activity 1 Define the mathematical block or device - In this
activity, the Simulink blocks are listed, and the designer needs to define
which component represents the system dynamics (mathematical block).
The inputs and outputs of the selected block will be used as the basis for
the specification of the sensing and actuation subsystems.

The definition of the mathematical block is depicted in Fig. 18,
by using ECPSModeling tool. Applying the proposed approach to the
UAV design activity 1 is performed selecting the Uav Dynamics block,
which is used on the functional model to represent the system dynamics.

Once the input block is defined, the activity 2 is started. So the



89

Figure 18 – ECPSModeling definition of mathematical block.

designer needs to analyze the inputs of the selected block, as follows.
These inputs regards the control references received from the control
subsystem.

Activity 2 Input analysis - Here the inputs of the selected block
are presented to the designer, which needs to characterize the input
data with information such as the type and size of data, whether
pre-processing is required or not, and the actuator that will consume
the data. But the actuator can only be selected if no pre-processing
is required, because if the selection occurs it means that the selected
input data cannot be directly sent to an actuator, thus requiring some
kind of pre-processing to provide the correct information to the system
actuators. If the input data can be directly sent to the actuator, this
device (the actuator) can be specified at this moment in the column
furthest to the right. The list of available devices are obtained from a
repository that our tool interfaces with.

The analysis performed on the input port is supported by the
second step of the ECPSModeling tool (Fig. 19). Analyzing the input
ports of the selected UAV mathematical block, two ports are detected:
(ServosRefAngles and ESCsRefVelocity). These ports contain two
vectors of two entries each, representing the control references. More
specifically, they provide the reference angles to the servomotors
and the reference velocities to the motors. This data requires a
pre-processing process before being sent to the respective actuators.

When the inputs need pre-processing, the data is supposed
to be modified by the use of functions that transform the received



90

Figure 19 – ECPSModeling analyzing the block inputs.

information, which can then be sent to the system actuators or other
functions. The design of functions related to actuation is detailed in
activity 3. If for instance no pre-processing is required, this activity
can be skipped.

Activity 3 Define pre-processing functions - The set of inputs
that requires pre-processing is used as input for this activity. Here the
designers must create functions that will receive the selected inputs and
provide the data that will be sent to the system actuators or another
functions. System functions templates can be created at this time and
these structures will allow the functions to be reused in other projects.

The UAV system is composed of a single function called
SignalTransformation() used to perform the data pre-processing. It
an object must be inserted after receives as inputs (ServosRefAngles
and ESCsRefVelocity) and generates four outputs. These outputs
represent the forces to the motors (ForceR, ForceL) and the angles to
the servomotors (AlphaR, AlphaL). The characteristics of this function
are presented in the Fig. 20.

Based on the inputs that do not require pre-preprocessing, and
the outputs from the pre-processing functions, the designers need to
specify the set of required actuators. The actuator’s specification is
detailed in activity 4.

Activity 4 Actuator specification - It must be connected to an
actuator every output of the pre-processing actuation functions and
also the inputs from the math block that do not require pre-processing.
As already mentioned, the list of actuators is obtained from a



91

Figure 20 – ECPSModeling pre=processing functions definition.

repository. At this moment the designer can parameterize actuator
specific information, such as priority and periodicity.

Considering the UAV actuators specification, it has been
observed that four actuators are required: two motors (propellers) and
two servo motors. These actuators are associated with the outputs from
the previously defined SignalTransformation() function. The UAV
actuators definition is depicted in Fig. 21.

Once the actuation functions and devices are specified, its
functionalities need to be associated with software components. The
refinement of the actuation software structures is suggested in the
activity 5.

Activity 5 Actuation software specification - This activity
represents the definition of the actuation software components. Such
structures describe the arrangement of the system actuators and their
related pre-processing functions. Each structure can be defined as
periodic or aperiodic. At this moment characteristics like activation
pattern, period, priority, actuators and functions are specified for each
created structure. Templates can also be created for the actuation
software structures, allowing their reuse in other projects.

The actuation software specification is supported on the
ECPSModeling as presented in the Fig. 22. The UAV actuation
subsystem is defined in a single thread called Actuation that performs



92

Figure 21 – ECPSModeling actuators definition.

the actuation function (SignalTransformation()) and provides the
actuators interface. This structure is defined as periodic, with a 5
millisecond period.

Activity 5 ends the first part of the workflow (the green blocks
presented in Fig. 17). The next part of the workflow is quite similar,
but works in the opposite direction, i.e., analyzing the outputs of the
math component block. Activity 6 starts this part of the workflow,
where the designers analyze the outputs of the selected block, as further
described.

Activity 6 Output analysis - Here the outputs of the selected
mathematical block are presented to the designer, who needs to
define characteristics such as the type and size of the data, whether
post-reading is required or not, and the related sensors (from the
repository). Similarly to actuators, the sensor can only be immediately
selected if no post-reading is required. Details related to the Post-reading
option, which means that the selected output data cannot be directly
obtained from a specific sensor, thus requiring some kind of post-reading
processing to transform the sensor data into the system information
(by the filter application for example) in order to estimate the system



93

Figure 22 – Define the actuation software structure.

behavior. If the output can be directly obtained from a specific sensor,
this device (the sensor) can be specified at this moment in the most right
column of the form. The list of available sensors are obtained from a
repository that maintains the devices characteristics.

The proposed output analysis is supported by ECPSModeling
tool, as can be seen in the Fig. 23. Analyzing the outputs of the
selected mathematical block (see the UAV Dynamics block outputs
from Fig. 38), it is observed that the UAV system has four outputs
that represent, respectively, the position (position estimated), the
attitude (attitude estimated), and the linear and angular velocities
(Linear velocity and Angular velocity). These outputs contain four
vectors with three elements each and cannot be directly obtained by
a specific sensor. In this way, these outputs are defined as requiring a
post-reading processing to estimate the system behavior.

When the outputs need a post-reading processing, the data
from the respective sensor is supposed to be modified by the use of
functions that transform it. Normally the system states cannot be
directly obtained by a unique sensor, and the data from different sensors
needs to be fused in order to provide better accuracy on the estimated
behavior.

The design of functions related to sensing is detailed in activity 7.
If for instance no pre-processing is required, this activity can be
skipped.



94

Figure 23 – ECPSModeling output analysis.

Activity 7 Define post-reading functions - The set of outputs that
requires a post-reading processing are used as input of this activity. Here
the designers must create functions that will receive the sensor data
and forward the data to another function. System function templates
can be created at this time, allowing its reuse in different projects.
After performing the functions design, the designers define the required
structures to perform the behavior estimation.

In the UAV project, given that sensors with different sampling
periods are used, two sensing functions were created. These functions
are depicted in the Fig. 24. One is used to perform the interface
with the sensors that have low sampling periods (BehaviorEst()) and
another to support the sensors that have higher sampling periods
(PositionEst()).

The BehaviorEst() function provides the sensor interface and
executes a complementary filter, responsible for fusing the data from
the different sensors, while PositionEst() provides the interface with
the GPS device. The information required to design the PositionEst
function is presented in Fig. 25

Based on the outputs that do not require post-reading, and on
the inputs of the sensing functions, the designers need to specify the
set system sensors. The definition of these components is based on the
sensor’s characteristics and the project requirements. The specification
of sensors is detailed in activity 8.

Activity 8 Sensor specification - Each input of the post-reading



95

Figure 24 – Define post-reading functions.

Figure 25 – PositionEst function definition.



96

functions and the outputs which no post-reading processing is required
are connected to a sensor. In fact, this activity aims to arrange the
described signals with a set of required components in order to provide
the behavior estimation. The available sensors are obtained from a
repository. The sensors also need to be characterized.

As can be seen in the Fig. 26, the UAV system is composed of
three sensors. These sensors send their data to the sensing functions
that are responsible for fusing the data and providing the UAV behavior
estimation. The required sensors are: (i) an IMU, (ii) a Sonar, and
(iii) a GPS. The IMU and the sonar have smallest sampling period
compared to the GPS, with values of 5 milliseconds and 50 milliseconds
respectively.

Figure 26 – ECPSModeling sensor specification.

Once the sensing devices and functions have been specified, these
components also need to be organized in software structures providing
the behavior estimation. The definition of these structures is detailed
in the activity 9.

Activity 9 Sensing software specification - This activity details
the definition of the sensing software components. Such structures



97

Figure 27 – ECPSModeling sensing threads specification.

describe the arrangements of the system sensors and their related
post-reading functions. Each structure can be defined as periodic
or aperiodic. At this moment characteristics like activation pattern,
period, priority, actuators and functions are specified for each created
structure. Templates can also be created for the actuation software
structures, allowing their reuse in other projects.

Based on the system sensors and the sensing functions, the
software structure of the UAV sensing subsystem is defined. As shown
in Fig. 27 two threads were created to support this subsystem.

The first called BehaviorEstimation is responsible for interfacing
with the IMU and sonar, and for performing the complementary
filter. It has a period of 5 milliseconds. The second thread,
(PositionEstimation), is responsible for interfacing with the GPS and
provides the positional information. It is periodic and has a period of
50 milliseconds.

After having defined the sensing and actuation subsystems
characteristics, the model transformation can be performed, generating
the output model representation. This transformation relates to
activity 10.



98

Activity 10 Model transformation - Based on the original
Simulink model, which now is associated with the specified sensing and
actuation components, the model transformation process is performed
generating the AADL architectural model.

By the use of proposed activities supported by the
ECPSModeling tool, the design process of sensing and actuation
subsystems is systematized, ensuring that the designers will cover
the required steps to specify the set of system devices. In this way,
the proposed approach provides the means to represent both the set
of system sensors and actuators as well as to represent the required
software structure to perform the system actuation and behavior
estimation.

In order to help better understand the application of the
mentioned activities and the proposed tool, a video was created to
illustrate the complete process (see https://youtu.be/hBwQ2tfLx1I).
The next subsection details the characteristics of the AADL model that
is generated after using the proposed tool.

5.2.3 Output Model Generated by the Tool

By the use of ECPSModeling the AADL architectural model is
generated. This model represents the integration between hardware
and software components, including the cooperation between the
system devices, processes, and threads. The initial structure of the
generated AADL model from the UAV case study is presented in
Fig. 28. This structure details the components of the UAV architecture.

As can be observed in lines 4 and 5 of the AADL model, the
system architecture is composed of two processes: pi control system,
and pi sen act. The model also contains seven devices (lines 7 to 13)
(di escR, di escL, di servoR, di servoL, di gps, di sonar, and di imu).
In addition, lines 15 to 35 are used to declare the system connections.

The control approach is composed of one process, which is
responsible for performing the system stabilization and the path
tracking controls. The sensing and actuation subsystems are managed
by the pi sen act process. This representation provides the sensor
and actuator interface and supports the execution of the estimation
algorithms. The AADL structure that details the sensing and actuation
process is presented in Fig. 39.

The p sen act process is composed of three threads
(ti behaviorEst, ti positionEst and ti actuation). The ti behaviorEst



99

Figure 28 – UAV model with sensing and actuation process.
1 SYSTEM IMPLEMENTATION UAV.impl

2 SUBCOMPONENTS

3 --PROCESS

4 pi_control: PROCESS p_control.impl;

5 pi_sen_act: PROCESS p_sen_act.impl;

6 --DEVICE

7 di_esc_r: DEVICE d_esc.impl;

8 di_esc_l: DEVICE d_esc.impl;

9 di_servo_r: DEVICE d_servo.impl;

10 di_servo_l: DEVICE d_servo.impl;

11 di_gps: DEVICE d_gps.impl;

12 di_sonar: DEVICE d_sonar.impl;

13 di_imu: DEVICE d_imu.impl;

14 CONNECTIONS

15 C1: PORT di_gps.position -> pi_sen_act.position;

... Here goes all the connections (lines 16 to 35)

35 END UAV.impl;

Figure 29 – AADL representation of sensing and actuation process.
1 PROCESS IMPLEMENTATION p_est_act.impl

2 SUBCOMPONENTS

3 ti_behaviorEst: THREAD t_behaviorEst.impl;

4 ti_positionEst: THREAD t_positionEst.impl;

5 ti_actuation: THREAD t_actuation.impl;

6 CONNECTIONS

7 C1: PORT distance -> ti_behaviorEst.distance;

... Here goes all the connections (lines 8 to 25)

26 END p_est_act.impl;

and ti positionEst are responsible for the sensor’s interface and the
execution of the estimation algorithms. These threads fuse the
received data and provide the system behavior estimation. The system
actuation is provided by another thread (ti actuation) that supports
the system actuation, i.e., the software interface to a set of actuators
in order to manage the process under control according to the control
references.

5.3 SUMMARY

As presented the ECPSModeling tool was created in support for
the automated design of CPS, especially in the definition of the sensing
and actuation subsystems. The tool supports the application of the



100

design activities promoted by the authors in order to reorganize the
functional model or, more specifically, the mathematical model used
for simulation purposes. In other words, it allows systematizing the
process of designing the sensing and actuation subsystems.

By the use of the ECPSModeling tool, designers can properly
create the required sensing and actuation subsystems in the generated
AADL model and, consequently, in the final application. The generated
AADL model integrates the control algorithms, estimation filters, and
the devices (sensors and actuators) used in the final application.

The proposed tool does not intend to provide specific solutions
to solve particular details related to the design of the sensing and
actuation subsystems. In fact, it guides designers while performing
necessary design decisions, making the process less prone to errors. In
addition, it allows for the reuse of previously defined code for sensors
and actuators, including estimation filters and device drivers. As
previously mentioned, an authors’ decision for starting the process with
the actuation subsystem does not represent a strict design decision.
There would be no problem starting the process with the sensing
subsystem instead.

Besides the automation of the sensors and actuators integration,
supported by the ECPSModeling tool, another activity proposed in
the CPS design method described in the Chapter 4 was automated
by the tool’s usage. This activity is related to the integration of
formal verification methods, more specifically MC in the design method.
Details related to the proposed integration are described in the next
chapter.



101

6 INTEGRATING FORMAL VERIFICATION INTO
THE UAV DESIGN

CPS’s are typically complex systems and their design
process requires strong guarantees that the specified functional and
non-functional properties are satisfied for the designed application.
Adequate tools and methods are of utmost importance to support and
guide the teams in order to increase the potential of the project success
(DERLER; LEE; VINCENTELLI, 2012). To ensure requirement fulfillment
along the design process, strong system analysis is needed (HUTH; RYAN,
2004).

Considering the typical high complexity of UAV systems and
the need for a strong analysis to ensure the design correctness, formal
verification becomes a natural candidate to become part of the overall
CPS design process (YU et al., 2011). Different approaches exist,
for example Model Checking (MC), Theorem Proving, and Runtime
Verification (RV). Each method has its pros and cons, namely: MC
suffers from the state explosion problem; Theorem Proving requires
highly technical knowledge and despite its latest developments it still
faces many automation problems (due to foundational limitations on
the supporting logical theories); and RV brings overhead to the CPS
since monitors have to be coupled with system components and process
extra information from events.

Aiming to avoid the state space explosion in Model Checking,
different design techniques can be applied. Examples of these
techniques include: abstractions and reduction of unnecessary states;
the use of symbolic model checking, applying binary decision diagrams
and symbolic algorithms; the partial order reduction that concerns the
identification of interleaving sequences, eliminating redundancy thus
reducing the state space.

Given this scenario, MC seems to be the more natural approach
for our work since it conforms to MDE practices and can be fully
automated. Well-known MC tools are UPPAAL (BEHRMANN; DAVID;

LARSEN, 2004b), HyTech (HENZINGER; HO; WONG-TOI, 1995), Kronos
(BOZGA et al., 1997), among others. Given that UPPAAL performance
is much better than other tools such as HyTech, and Kronos in time
and space (BENGTSSON et al., 1995). In this context, on the present
work we adopt MC by using the UPPAAL tool (BEHRMANN; DAVID;

LARSEN, 2004b).
However, when looking at the existing MDE tool-support, it is



102

observed that there is still little support for the automated integration
of formal verification techniques in these tools. Given that formal
verification is necessary to ensure the levels of reliability required by
safety critical UAV. The integration of formal verification methods
on the UAV design process is also covered by the method proposed
in the Chapter 4. In the proposed method it was represented in
the UAV detailed project (Step 2.4), the formal verification process
(Activity 2.4.3) that regards the evaluation and validation of the system
properties by using formal methods.

In order to support the formal verification based on MC, a timed
automata should be created to express the system behavior, supporting
the evaluation of different properties such as safety, reachability,
liveness, and deadlock. However, generating these representations is
not a simple task and requires sufficient knowledge of the design team
to correctly express the system properties. To automate the timed
automata construction, it is our claim that a model transformation can
be performed using as input the architectural representation.

In this chapter an approach to applying an MC technique to
the UAV design is made, allowing the timing and error properties
evaluation to be presented. The proposed approach includes a model
transformation process that based on the architectural model in
AADL (FEILER; GLUCH; HUDAK, 2006), generates a Timed Automata
representation that conforms the UPPAAL tool (BEHRMANN; DAVID;

LARSEN, 2004b). The tool named ECPS Verifier was created in the
context of this proposal to support such model transformation.

The proposed transformation process can be defined as a
specialization of the UAV design method described in Chapter 4. More
specifically the proposed approach describes a set of activities aiming
to guide the designers to extract the system behavior (represented by
timed automatas), based on architectural representation (Activity 2.4.3
of the proposed method). The proposed method is illustrated by means
of the design of a UAV, from where we derive the timed automata
models to be analyzed in the UPPAAL tool.

6.1 FORMAL VERIFICATION OF AADL ARCHITECTURAL
MODELS

Aiming to provide the evaluation of the CPS properties by using
the MC a design method was created to help designers to integrate
this technique into the UAV design process. In this sense, different



103

properties can be evaluated from the system under designs such as
liveness, reachability, deadlock freeness, and others. To support this
integration a tool named ECPS Verifier was designed to provide the
model construction.

ECPS Verifier consists of the tool support to allow performing
a model transformation, moving from an architectural model in AADL
to a network of timed automata devoted to be analyzed via MC. The
use of AADL components designed in the OSATE tool is assumed to
represent the architectural model and the use of timed automata suited
to the UPPAAL tool to represent the system behavior.

An important aspect to be highlighted is that the problem
under consideration is not restricted to simply representing the UAV
behavior and analyzing its properties. It happens that the designer
must properly plan how to express the system properties according
to the proposed architecture and the set of system devices, evaluating
how correctly it expresses the system properties in order to provide
guarantees that the system fulfills its restrictions.

A set of design activities are proposed to integrate MC into the
UAV design process, allowing the formal system verification according
to predefined properties and restrictions. The overall process is
composed of two main phases, the evaluation of tasks behavior and
interferences and the schedulability analysis (see Fig. 30). These phases
are proposed to be performed at independent moments, providing a
means for the design team to work in tandem to evaluate different
system characteristics, ensuring property validation.

Figure 30 – ECPS Verifier Top View.

Evaluation of tasks 
behavior and 
interferences

Schedulability 
Analysis

Architectural 
Model 

+
System 

Requirements

Validated 
Architectural 

Model
+

Refined Timed 
Automata



104

6.1.1 Phase 1: Evaluation of Tasks and Interferences

In this phase the designer individually analyzes the set of UAV
task characteristics, in order to validate the relationship between the
system tasks and the associated set of devices. At this time, the
interference caused by the other tasks is not considered. As the
output of this phase, a set of timed automatas and a refined AADL
architectural model are provided.

The first proposed phase defines a sequence of activities applied
to each defined task, in order to allow its formal property evaluation.
These activities are presented in Fig. 31, aiming to properly guide the
design teams to represent the task behavior and the possible device
faults. This information is integrated into the architectural model (by
the use of AADL annexes) to support the MC evaluation.

Figure 31 – ECPS Verifier Tasks Behavior and Interferences evaluation.

Fault-trees 
desgin

Fault properties 
integration on 

Architectural model

Architectural 
Model 

+
System

Requirements

Possible 
System 
Failures

Refined 
Architectural 

Model Behavior 
properties 
refinement

Model 
transformation

Formal 
properties 

specification

Complete 
Architectural 

ModelTimed 
Automata 

Representation

Refined 
UPPAAL 

Model

...

...

System 
Tasks 
and 

Devices

System 
Analysis

Validated 
System 
Tasks

Validated 
Architectural 

Model
+

Refined Timed 
Automata

This phase receives the AADL architectural model as input
coupled with the set of system requirements. To provide the system
analysis each system task is isolated and its behavior evaluated
individually, by performing the proposed activities.

Activity 1 Definition of fault-trees - In this activity, the designer
analyzes the UAV task characteristics aiming to specify the possible
failure events. This information includes the proposed mission/task for
the UAV, its configuration, the set of required devices, and restrictions.
The output of this activity is a fault-tree to be used by the designers.

Based on the fault-tree it we are able to evaluate the implications
of the related events to the task behavior and define alternatives to
mitigate their effects. These representations aims to provide a top



105

view of the possible system failures that should be considered during
the design process.

Activity 2 Integration of fault properties in the architectural

model - By using the AADL Error Annex (EA) (SAE, 2011a) the
fault-tree is added to the architectural model, representing the possible
failures, and the associated probability for each error event occurrence.
This information is used to evaluate the failure impact in the designed
system, as well as to define alternatives to mitigate their effects. The
output of this activity is a refined architectural model, integrating the
error properties.

To provide the automata generation the defined behavioral UAV
properties needs to be refined.

Activity 3 Refinement of behavior properties in the

architectural model - The behavioral properties are refined in
this activity. In this way, based on the system characteristics, and
by using the AADL threads and the AADL Behavioral Annex (BA)
(SAE, 2011b) properties, the system characteristics are specified as
execution states, system variables, system transitions, and subprograms
access. The output of this activity is a refined architectural model, that
integrates error and behavioral properties.

Regarding the usual AADL model design, it is observed that
these models typically contain behavioral information that allow
designers to evaluate system properties. However, to the timed
automata extraction, some properties need to be refined, adding
information related to the automata guard and variable declaration.
Such complete AADL model is suitable to be submitted to the
transformation process.

Activity 4 Formal verification - In this activity the designers
perform the system evaluation based on the generated architectural
model. This activity is split into three sub-activities (three last blocks
from Fig. 31), that address each part of the formal verification process.

The verification process is based on the timed automata
(UPPAAL model) that is generated by performing a model
transformation, whose input is an AADL model.

Subactivity 4.1 Model transformation - A UPPAAL model is
created for each designed task by means of a model transformation



106

process from the AADL specification. Such a UPPAAL model is
composed of a set of templates that describe the AADL task behavior
and device characteristics. The transformation is based on a set of rules
that map the source and target models, as detailed in Section 6.2.

Subactivity 4.2 Formal properties specification - In this activity,
the designers create formal expressions that represent model properties
that must be evaluated. These properties represent the characteristics
and restrictions that the system needs to meet to fulfill its objective.
In this sense, properties like liveness, reachability, safety, and deadlock
occurrence can be evaluated.

However, formally representing the system properties - in this
case using the UPPAAL syntax (and the UPPAAL-SMC syntax for
those properties that have probabilities associated) - is not a simple
task. This comes from the fact that these expressions are dependent
on the adopted formal language and, in addition, describing the
system restrictions using a formal language is not trivial and requires
considerable knowledge.

Subactivity 4.3 System analysis - The system analysis is
performed by checking the validity of the formally specified properties
carried out in Activity 4.2, against the models derived in Activity
4.1. Depending on the results, system changes may be required (which
implies regenerating of, at least, some of the existing automata),
therefore adjusting the system to satisfy its intended behaviors.

Performing the property evaluation it is possible to observe
whether or not the system meets its requirements. This implies that the
safety properties are satisfied and that no deadlocks are found except if
an error occurs. The performed analysis on the UAV system is detailed
in Section 6.4.

Coupled with the task behavior evaluation, the system
schedulability needs to be validated. This validation process is
proposed on the second phase (Schedulability Analysis), that proposes
a set of activities to validate these properties.

6.1.2 Phase 2: Schedulability Analysis

The schedulability analysis relates to the evaluation and
validation of the set of system tasks according to a defined scheduling
police. At this time, characteristics such as tasks interferences, and



107

defined priorities are considered to validate system characteristics. The
set of schedulable tasks and a refined architectural model is provided
as output.

This phase defines a sequence of activities that is applied to
the set of tasks validating its integration and the system execution.
These activities are presented in Fig. 32, that aims to properly guide
the design teams to evaluate the tasks set properties, integrating this
information into the architectural model to support the MC evaluation.

Figure 32 – ECPS Verifier Schedulability Analysis.

Behavioral 
properties 
refinement

Architectural 
Model

+
System 

Requirements

Refined 
Architectural 

Model
Model 

transformation

Formal 
properties 

specification

System 
Analysis

Validated 
Architectural 

Model
+

Refined Timed 
Automata

Timed 
Automata 

RepresentationRefined 
UPPAAL 

Model

Activity 1 Behavioral Properties Refinement - The behavioral
properties refinement regards the improvement of the UAV system
characteristics, including information such as tasks periods, priorities,
execution time among others. Based on the AADL threads and the BA
properties the designers detail the task characteristics that will support
the schedulability analysis.

Once the tasks temporal characteristics are refined, the system is
able to be submitted for formal verification. Regarding the scheduling
police, as will be described in Section 6.2.3, at this time only the
Rate-Monotonic scheduling algorithm is implemented.

Activity 2 Formal verification - In this activity the designers
perform the system evaluation based on the generated architectural
model. This activity is split into three sub-activities (three last blocks
from Fig. 32), that address each part of the formal verification process.

The verification process is based on the timed automata
(UPPAAL model) that is generated by performing a model
transformation, whose input is an AADL model.



108

Subactivity 2.1 Model transformation - An UPPAAL model is
created to represent the set of system tasks by means of a model
transformation process from the AADL specification. Such a UPPAAL
model is composed of a set of templates that describe the AADL task
characteristics. In this evaluation process the set of system devices
are not directly considered, and its interferences characteristics are
integrated into the task models. The transformation is based on a set
of rules that map the source and target models, as further detailed in
Section 6.2.

Subactivity 2.2 Formal properties specification - In this activity,
the designers create formal expressions that represent model properties
that must be evaluated. These properties represent the characteristics
and restrictions that the system needs to meet in order to fulfill its
objective. In this sense properties such as liveness, reachability, safety,
and deadlock occurrence can be evaluated.

Subactivity 2.3 System analysis - The system analysis is
performed by checking the validity of the properties specified in
Activity 4.2 against the models derived in Activity 4.1. Depending on
the results, system changes may be required (which implies regenerating
of, at least, some of the existing automata), therefore adjusting the
system to satisfy its intended behavior.

Applying the schedulability analysis designers can evaluate not
only if the tasks meet their deadlines or not, but also if the defined
priorities are adequate and if no deadlocks are found - except in the
event of errors occurring.

6.1.3 Final Remarks

As described in this section the proposed formal verification of
AADL architectural models is composed by two phases. They include,
respectively, the tasks behavior evaluation and the schedulability
analysis. By performing the set of proposed activities different
properties are evaluated and validated, ensuring the analysis of
characteristics such as reachability, safety, liveness, deadlock freeness,
schedulability, among others.

The first phase (Evaluation of tasks behavior and interferences)
supports the task characteristics analysis, i.e. evaluating each task
individually. This phase is started with an activity that targets



109

analyzing the possible UAV faults (Fault-trees design), having as output
a fault-tree definition. Based on the defined faults, a refinement is
performed in the architectural model (Fault properties integration on
architectural model) by integrating the fault’s characteristics. This
activity is supported by using the AADL EA. In addition, the
threads behavior is also evaluated, refining its properties by using the
AADL BA (Behavior properties refinement). The refined architectural
model is used as input to the model transformation process (Model
transformation), performed by the ECPS Verifier tool, generating
the UPPAAL automatas. Then the system requirements are encoded
as temporal formulas in the UPPAAL syntax (Formal properties
specification), generating a complete UPPAAL model. Finally, the
system is evaluated (System analysis).

On the other hand, the Schedulability analysis aims to validate
the execution of the set of proposed tasks. The method starts
with an activity that targets the refinement of the threads behavior
properties on the AADL architectural model, by using the AADL
BA (Behavioral properties refinement). The refined architectural
model is used as input to the model transformation process (Model
transformation), performed by the ECPS Verifier tool, generating
the UPPAAL automatas. Then the scheduling system requirements
are encoded as temporal formulas in the UPPAAL syntax (Formal
properties specification), generating a refined UPPAAL model. Finally,
the system schedulability is evaluated (System analysis), providing
the validated system timed automata representation and the refined
architectural model.

The proposed phases were designed to be performed either in
parallel or sequentially. If any characteristic were to be adjusted in a
model, the generated subsystems need to be updated in order to provide
the complete application evaluation and validation.

To support the related design activities, especially the
transformation process, the ECPS Verifier tool was designed. It
receives the AADL model as input and performs a transformational
process to provide the generation of the timed automatas
representation. A detailed description of this tool is presented in the
following section.



110

6.2 MODEL TRANSFORMATION TOOL ECPS VERIFIER

To automate the UPPAAL model (automata) generation from
the AADL model, and to make this process less error prone, we
have developed a tool named ECPS Verifier. This tool follows the
MDE principles, which state that a mapping between the source
(AADL) and the target (UPPAAL) model is defined by means of
transformation rules. Auxiliary structures are required to provide the
automata execution management. The transformation rules make use
of metamodels from both source and target models, as further detailed.

6.2.1 Related Metamodels

The AADL (source) metamodel is composed of a root System
that contains a set of subcomponents representing the other AADL
components, such as Processes, Threads, Ports, and Connections. It
is important to highlight that the Thread component encapsulates the
system behavior, so it can contain subcomponents that may represent
software calls (black-block component) or it can detail the behavior
by means of state machines using the BA. Given that our approach is
more focused on the AADL software components, the single hardware
element under consideration is the Device. A representation of AADL
meta-model is presented in Fig. 33.

Overall, the target metamodel is composed of a set of templates
that encapsulate the timed automata, and by a set of queries used for
the model evaluation. UPPAAL models are composed of at least one
template containing a timed automata, which is decomposed into a set
of states and transitions. These transitions can incorporate restrictions
(guards and synchronizations points), and can also incorporate actions
expressed as in an imperative programming language - it allows us to
declare variables and make function calls. Such actions are defined in
the update definitions. Finally, a set of queries describing the properties
to be evaluated can also be attached to the model, this meta-model is
presented in the Fig. 34.

6.2.2 Transformation Process

To perform the transformation process, both a parser and a
transformation engine were created, all developed in Java as a plug-in



111

Figure 33 – AADL meta-model.



112

Figure 34 – UPPAAL meta-model.

from Osate tool. The parser is responsible for mapping the source
(AADL) textual model to memory in accordance with its related
metamodel elements.

When the transformation process is started, a parser is applied to
the selected AADL input file. This parser is composed of a set of rules
that identify the AADL structures and create Java objects mapping
the system characteristics, such as process organization, threads
information (period, deadline, execution time, behavior), devices
characteristics (priority, execution time, error properties), among
others. The set of AADL ports and connections are also represented,
describing the relationship between the system components and their
information exchange.

The transformation engine is responsible for performing the
automata generation based on the AADL source model. This engine is
composed of the following rules:



113

• AADL Thread components are mapped to UPPAAL templates
representing its behavior and characteristic like states, guards,
invariants, periodicity, priority and others.

• AADL Devices are also mapped as UPPAAL templates, detailing
its behavior coupled with its possible failures.

• The set of input and output ports from the AADL model are
used as basis to the variables and UPPAAL channels declarations,
representing the system communication.

The devices model are composed essentially by a set of five states,
the idle state and the execution state (Sensing or Actuate) represent
the regular operation of these systems. Three other states define the
atypical operation of this component, representing its partial operation,
the system emergency mode, and an irreversible failure occurrence.
Attached with this set of states are the transitions, which aim to express
the system behavior. Probabilities are associated to each error state,
representing the occurrence distribution of the considered errors.

To provide more complete automata representations auxiliary
components are required coupled with the threads and devices
templates. In this sense, UPPAAL templates are proposed, as well as
some design conventions, in order to details the model representation.

6.2.3 Auxiliary Components

To manage the UPPAAL templates execution a scheduler
structure was proposed, providing the tasks activations according to
their periods. Currently, only a Rate-Monotonic (RM) (LIU; LAYLAND,
1973) scheduling algorithm - applied to a single-core processor - is
used to provide the tasks activation according to their priorities. The
scheduler model is presented in Fig. 35.

This scheduler is composed by an initial function (initialize) that
performs the threads inclusion on the scheduling queue, according its
priorities going to the Free state. Then the thread with the highest
priority is selected (Select) and its execution is started (Run). If a new
task is available during a task execution (NewRequest), the scheduler
stops the active thread and evaluate the priorities of the running and
the new activated thread. If the running task has the highest priority
it is resumed, but if the new task has a higher priority, the running
thread is blocked and the new thread is executed.



114

Figure 35 – Scheduler model.

The ECPS Verifier scheduler model was designed to
be automatically included into the UPPAAL model along the
transformation process. Thereby, designers only need to include a
device named scheduler in the AADL model.

Regarding the UAV behavior and its set of operational modes,
a behavioral representation was proposed aiming to detail the system
operation. It is our concern that the defined behavior can be described
as some kind of generalization, in order to represent a typical UAV
operation. This representation is illustrated in Fig. 36.

The UAV behavior model is composed of an initial model (Idle)
that is activated when the system is turned on. Then an function
(initSystem()) is invoked to ensure the system initialization. At this
state (Load Mission), the UAV waits for a new mission, flagged by
the missionLoaded() function. As the mission is loaded, the UAV
takes off and starts to perform the mission (In Flight). During the
flight four different scenarios are defined. The first scenario is the
regular UAV operation, when the UAV finishes the proposed flight
(flightCompleted()), it performs a regular landing (Regular Landing),
and ends the proposed mission (Mission Completed). Completed, the
mission the UAV can be turned off (Shutdown), or the system can be
put into standby waiting for a new mission (Idle). The second scenario
describes the activation of the limited operation during the mission
execution (Limited Operation), this can be caused by some unusual
behavior or some system components (devices), in this way, according
the failure level the UAV can perform a regular or emergency landing



115

Figure 36 – UAV Behavior model.

(Regular Landing or Emergency Landing), if the regular landing is
performed the UAV finishes its operation as described in the first
scenario. However if the emergency landing is performed, according the
UAV damage level and the mission status, the UAV can signal the ended
mission (Mission Completed) or shutdown the system (Shutdown).
According the UAV damage level an emergency mode can be activated
(third scenario), in this way, the UAV performs an emergency landing
(Emergency Landing) and, according to its damage level, the system
can be turned off, or the ended mission flagged. Finally if irreversible
damage is identified, the system activates the irreversible failure mode
(Irreversible Failure), where according to its damage level the system
can be turned off or an emergency landing can be performed.

The UAV behavior model was designed to be automatically
included during the transformation process on the ECPS Verifier.
Thereby, designers only need to include a device named behavior in
the target AADL model.

Regarding the AADL model design, in order to support the
required UPPAAL properties representation in the AADL model some
design conventions were established, ensuring the mapping between



116

UPPAL properties and the AADL model. These characteristics
require the AADL subprograms declaration to represent the UPPAAL
invariants, the rate expressions, the transition guards, and functions of
the designed scheduling approach, as well as data types are defined to
represent the UPPAAL channels (chan) and the clock variables (clock).

In Fig. 37, from lines 2 to 5, the structure of the designed AADL
subprogram to represent the UPPAAL location invariants is detailed.
This subprogram provides the representation of the states invariant
defined by its name and the invariant expression. A subprogram that
details the UPPAAL transition guards is presented in lines 7 to 11. This
subprogram is needed due to the fact that guards of the AADL BA do
not support the use of functions in the guards expression. Thereby,
this subprogram is composed of three inputs describing the UPPAAL
function that should be declared as a subprogram, the guard operator,
and the value used in the expression. Another subprogram structure
that details the UPPAAL initial values definition is defined from lines
13 to 16. This subprogram supports the definition of initial values to
the created variables, this functionality is not natively supported on
AADL. This subprogram is composed of the variable name (var) and
its initial value.

As described, a scheduler model can be added to the UPPAAL
model, performing an RM algorithm. When inserted, this model
includes a set of functions that describes: the addition of a new task in
the scheduler queue (Fig. 37, lines 19 to 21); removal of the task from
the top of the queue, i.e., the running task (Fig. 37, lines 231to 2419 a
function that returns the running task (Fig. 37, lines 261 to272).

Two data types are declared in the AADL model. These
data types represent the UPPAL channels (Fig. 37, line 30), and by
convention all channels are defined as broadcast, and the clock type
(Fig. 37, line 32) describes the UPPAAL clock variables.

Due to the fact that the AADL model can be composed of
multiple systems and implementations, in our approach we define that
the first translated system is defined as the root of the translated
system. In this sense the designer needs to first declare the root system
in the AADL file. Once the transformation is ended, the system is able
to be formally verified.

Although AADL allows the system design using multiple files, on
our approach the use of multiple files is not supported, the architectural
model needs to be coded in one single file.

It is important to highlight that besides some design conventions
being adopted, in order to provide model mapping, its verified that



117

Figure 37 – AADL design conventions.
1 -- ** SUBPROGRAMS **
2 SUBPROGRAM sp_invariant
3 FEATURES
4 state: IN PARAMETER String; inv: IN PARAMETER String;
5 END sp_invariant;
6
7 SUBPROGRAM sp_guard
8 FEATURES
9 function: in PARAMETER String; operator: in parameter String;
10 value: in parameter String;
11 END sp_guard;
12
13 SUBPROGRAM sp_init
14 FEATURES var: IN PARAMETER String;
15 value: IN PARAMETER String;
16 END sp_init;
17
18 -- ** SCHEDULER FUNCTION **
19 SUBPROGRAM sp_add
20 FEATURES id: IN PARAMETER;
21 END sp_add;
22
23 SUBPROGRAM sp_remove
24 END sp_remove;
25
26 SUBPROGRAM sp_head
27 END sp_head;
28
29 -- ** DATA TYPES ***
30 DATA chan END chan;
31
32 DATA clock EXTENDS Base_Types::Integer END clock;

the AADL model supports the representation of required structures
to provide automata generation. In this sense, regarding that during
the architectural model construction the threads behavior is specified
using the BA, and that the model has a high information refinement,
its possible to say that only the design conventions needs to be included
on the AADL base model to enable the transformation process.

The application of the proposed activities is illustrated by means
of the design of a UAV control system. More specifically, such system
are devoted to representing the sensing and actuation subsystems of
the UAV. The details of these activities are presented in the following
section.



118

6.3 DESIGN OF SENSING AND ACTUATION SUBSYSTEMS OF
AN UAV

The application of the set of activities presented in the previous
section is illustrated here by means of the design - and verification
- of the sensing and actuation subsystems of an UAV. Such a UAV
was conceived in a related project named ProVant1, whose goal is
the construction of an autonomous UAV. It tackled the design of the
electro-mechanical components and the embedded control system of the
UAV, both at the hardware and software levels.

Overall, the aircraft design is conducted by the use of the design
method proposed in Chapter 4. Such design comprised the creation
of a Simulink functional model for the control system, and of an
AADL architectural model to represent the UAV embedded system.
The designed architectural model is used as a basis for the approach
presented in this chapter.

The top-level view of the AADL model for the UAV system is
depicted in Fig. 38. This model integrates the control system (process
pi control system, line 4) with the sensing and actuation subsystems
(process pi est act, line 5). Coupled with these processes are the set of
system devices (lines 7 to 13) that represent the required UAV sensors
and actuators.

Figure 38 – UAV model with sensing and actuation process.
1 SYSTEM IMPLEMENTATION UAV.impl
2 SUBCOMPONENTS
3 --PROCESS
4 pi_control: PROCESS p_control.impl;
5 pi_sen_act: PROCESS p_sen_act.impl;
6 --DEVICE
7 di_esc_r: DEVICE d_esc.impl;
8 di_esc_l: DEVICE d_esc.impl;
9 di_servo_r: DEVICE d_servo.impl;
10 di_servo_l: DEVICE d_servo.impl;
11 di_gps: DEVICE d_gps.impl;
12 di_sonar: DEVICE d_sonar.impl;
13 di_imu: DEVICE d_imu.impl;
14 CONNECTIONS
15 C1: PORT di_gps.position -> pi_sen_act.position;
... Here goes all others connections
(lines 16 to 35)
35 END UAV.impl;

Fig. 39 contains the expansion of the sensing and actuation
process (pi sen act line 5 in the Fig. 38). It is possible to observe the set

1http://provant.paginas.ufsc.br



119

of threads that is responsible for interfacing with these devices, sending
the control references to actuators (thread ti signalTrans formation line
5) and providing the system behavior estimation (threads ti sensing
and ti positionEst lines 3 and 4).

Figure 39 – AADL representation of sensing and actuation
process.

1 PROCESS IMPLEMENTATION p_est_act.impl
2 SUBCOMPONENTS
3 ti_sensing: THREAD t_sensing.impl;
4 ti_positionEst: THREAD t_positionEst.impl;
5 ti_signalTransformation: THREAD t_signalTransformation.impl;
6 CONNECTIONS
7 C1: PORT distance -> ti_sensing.distance;
... Here goes all others connections (lines 8 to 25)
26 END p_est_act.impl;

The designed architectural model allows the design team to
evaluate some system properties such as, schedulability, inversion of
priorities, and information flow. Physical characteristics could also be
validated in this model such as weight, power consumption, and others.

Regarding the proposed method, two different phases are
described, defining the evaluation of task properties and system
schedulability respectively. Details related to the application of these
phases on the UAV design process are described next.

6.3.1 Evaluation of tasks behavior and interferences

Initially, the set of system tasks need to be split into a set of
sub-representations that will be individually evaluated and validated.
Each representation preserves the system and task-related process, as
well as the set of devices related to the task. Figures 40 and 41 describe
a subset of architectural representation, defining the required structures
to estimate the UAV altitude based on the GPS information.

Based on this information, the set of possible failures associated
with the system devices is defined as a fault-tree (Activity 1).
With regard to the UAV devices, the fault-trees were defined
for the servomotors, Electronic Speed Controllers (ESCs), Inertial
Measurement Unit (IMU), Global Positioning System (GPS), and
Sonar. Fig. 42 presents the designed fault-tree for the GPS sensor,
containing the information extracted from its datasheet (NOVATEL,
2014).

Considering our focus on the design of UAV software



120

Figure 40 – Split of UAV model with a subset of devices.
1 SYSTEM IMPLEMENTATION UAV.impl
2 SUBCOMPONENTS
3 --PROCESS
4 pi_sen_act: PROCESS p_sen_act.impl;
5 --DEVICE
6 di_gps: DEVICE d_gps.impl;
7 CONNECTIONS
8 C1: PORT di_gps.position -> pi_sen_act.position;
9 C2: PORT pi_sen_act.requisition -> di_gps.requisition;
10 END UAV.impl;

Figure 41 – AADL representation of position estimation
components.

1 PROCESS IMPLEMENTATION p_est_act.impl
2 SUBCOMPONENTS
3 ti_positionEst: THREAD t_positionEst.impl;
4 CONNECTIONS
5 C1: PORT position -> ti_positionEst.position;
... Here goes all others connections (lines 6 to 8)
9 END p_est_act.impl;

components, at this time only the logical failures are considered (dark
blue blocks of Fig. 42). These failures are flagged by the device, sending
in the message package into each type of reported error. The designed
faults-trees are also based on the works related to UAV faults described
in (CASWELL; DODD, 2014; FUGGETTI; GHETTI; ZANZI, 2015).

Based on the set of defined sub-representations, the specified
fault properties are integrated into each sub-model by the use of AADL
EA, increasing the model detail (Activity 2). Fig. 43 shows the GPS
failures according to the fault-tree.

Regarding the behavior specification coupled with the devices
error properties, the threads behavior properties are analyzed and
extended if required (Activity 3). In this activity the designers detail
various properties such as threads states, transitions, guards, the
subprograms access, among others. The proposed design conventions
can be used at this time, in order to provide a proper mapping model.

The behavioral characteristics are presented in Fig. 44, detailing:
the thread variables (line 6); the set of execution states (lines 8 to 10);
and the set of system transitions (lines 12 to 27).

Detailing the base model the formal verification process can be
started (Activity 4). In this way, based on the UAV AADL model the
UPPAAL timed automata is generated (Activity 4.1). This process is
performed on each generated sub-representation, representing details of



121

Figure 42 – GPS fault tree representation.

GPS

Electrical Logical

Slow ADC 
status

Supply voltage 
status

Incorrect 
data

Delayed 
data Data lossProcessor status

Partial 
operation

Irreversible 
failure

Emergency 
mode

ROM Error Invalid 
firmware

Figure 43 – AADL GPS error representation.
1 ERROR BEHAVIOR gpsError
2 EVENTS
3 processorError : error event; delayedData : error event;
4 incorrectData : error event; dataLoss : error event;
5 romError : error event; invalidFirmware : error event;
6 STATES
7 operational : initial state; partialOperation: state;
8 emergencyMode : state; irreversibleFailure : state;
9 TRANSITIONS
10 T1 : operational -[ delayedData ]-> partialOperation;
11 T2 : operational -[ incorrectData ]-> partialOperation;
12 T3 : operational -[ dataLoss ]-> partialOperation;
13 T4 : operational -[ romError ]-> emergencyMode;
14 T5 : operational -[ processorError ]-> irreversibleFailure;
15 T6 : operational -[ invalidFirmware ]-> irreversibleFailure;
16 END BEHAVIOR;

the UAV set of threads (actuation, sensing, and position estimation),
and the set of system devices.

Applying the transformation process, the UAV system is mapped
into a set of templates. Fig. 45 depicts a template structure
representing the UAV’s position thread that is responsible for providing
the GPS interface and estimating the system position.

The set of predefined properties detailed in the AADL model can
be observed in this template. Such characteristics describe the devices
interface, among others. Regarding the UAV devices, the GPS sensor
has an interface with the presented thread. In this sense, the generated
template is shown in Fig. 46.

Regarding the GPS model the set of main execution states is
observed (Idle, Processing), PartialOperation, EmergencyMode, and
IrreversibleFailure, as well as being coupled with these states the
predefined set of possible failures and their probabilities of occurrence



122

Figure 44 – AADL position thread behavior.
1 THREAD IMPLEMENTATION t_positionEst.impl
2 PROPERTIES
4 ANNEX BEHAVIOR_SPECIFICATION {**
5 VARIABLES
6 saProcessed : integer; processing : integer;
7 STATES
8 readyState : initial state; error : complete final state;
9 regularOperation : state; partialOperation : state;
10 emergencyOperation : state;
11 TRANSITIONS
12 T1 : readyState -[!isPartial() && !isError() && !isEmergency()]->
regularOperation {saProcessed := 0; processing := 1)};
... here goes others thread transition lines 13 to 27.
28 END t_positionEst.impl

Figure 45 – Position estimation task.

are presented.
Once the automata representations are generated, the designer

needs to formally define the set of properties that will be evaluated
(Activity 4.2), thus they need to define them as UPPAAL queries.
These queries are written in TCTL and detail properties such as
reachability, safety, and deadlock freeness for example. Examples of
queries are presented in Section 6.4.

In terms of the system analysis, the UPPAAL tool performs a
state space exploration to validate the designed queries. The system
evaluation also includes queries related to defined probabilities, by the
use of UPPAAL-SMC. Coupled with the task individual validation of
the scheduling analysis is performed to validate the set of proposed



123

Figure 46 – GPS template.

tasks, these characteristics are detailed in the following section.

6.3.2 Schedulability Analysis

Based on the top-level representation from Fig. 38, the designers
need to prepare the AADL model to be analyzed. Initially the defined
tasks of this model need to be refined integrating some behavioral
properties, such as period, deadline, execution time, priority, among
others (Activity 1). The behavioral characteristics are presented in
Fig. 44, detailing: the thread periodicity; the execution time; its period;
the thread priority; its deadline (lines 3 and 5); the thread variables
(line 8); the set of execution states (lines 10 to 11); and the set of
system transitions (lines 13 to 31).

Aiming to support the scheduling analysis two additional
structures need to be included, describing the system scheduler and
the UAV behavior representation. These structures are automatically
included during the transformation process, the designers just need to
include two devices on the AADL model then name them scheduler and



124

Figure 47 – AADL position thread behavior.
1 THREAD IMPLEMENTATION t_positionEst.impl
2 PROPERTIES
3 dispatch_protocol => periodic;
4 compute_execution_time => 9000 us .. 10000 us;
5 period => 100000 us; Priority => 3; deadline => 100000 us;
6 ANNEX BEHAVIOR_SPECIFICATION {**
7 VARIABLES
8 t : clock; ax : clock;
9 STATES
10 readyState : initial state; error : complete final state; idle : state;
11 blocked : state; processing : state; partial : state; emergency : state;
12 TRANSITIONS
13 T1 : readyState -[]-> processing {ax := 0; run?;
guard!("head()","==","id")};
14 T2 : processing -[ax>=C[id]]-> idle {done!; remove();
guard("head()","==","id")};
... here goes others thread transition lines 15 to 31.
32 END t_positionEst.impl

behavior.
Detailing the base model the formal verification process can be

started (Activity 2). In this way, based on the UAV AADL model, the
UPPAAL timed automata is generated (Activity 2.1). The generated
representation details the UAV structure, the set of threads (actuation,
sensing, and position estimation), and the set of system devices.

Applying the transformation process, the UAV system is mapped
into a set of templates. Fig. 48 depicts a task template structure, that
is used as a basis for the schedulability analysis.

The set of properties detailed in the AADL model can be
observed in this template, including the thread’s period, the devices
interface, the scheduler functions, among others.

Once the automata representations are generated, the designer
needs to formally define the set of properties that will be evaluated
(Activity 2.2), thus they need to define them as UPPAAL queries.
These queries are written in TCTL and can specify properties such as
reachability, safety, and deadlock freeness for example. Examples of
such queries are also presented in Section 6.4.

In terms of the system analysis, the UPPAAL tool performs
a state space exploration to validate the designed queries (Activity
2.3). The system evaluation also includes queries related to defined
probabilities, by the use of UPPAAL-SMC. The details related to the
performed system analysis on the UAV system are detailed in the
following section.



125

Figure 48 – Tasks template.

6.4 UAV PROPERTIES EVALUATION

In this section we present preliminary experiments that were
carried out in the UAV system while formulating the design method
described in this paper. These experiments involved mostly two efforts:
i) the construction of the various timed automata which we presented
in Fig. 45, Fig. 46, and Fig. 48, capturing respectively the GPS
properties and the task characteristics on the two proposed scenarios;
ii) the specification of the relevant properties of the UAVmodel covering
safety, liveness, respect of deadlines, and causes for deadlocks.

In the rest of this section some examples of such UPPAAL
specifications that were developed and checked are presented.

Example-Spec 1 If a task is running, then all the other tasks have
to be either blocked, idle, ready, or in an error state, that is, only one
task can be running at a time. This property was checked by specifying
the following formula scheme:

A[ ] (forall (i : int[0,N]) forall (j : int[0,N]) not (ψi and ψj imply (i ! = j)), (6.1)

where N is the set of system tasks, and ψi = Ti.Running and
ψj = Tj .Running where Ti and Tj are tasks and Running denotes
its executing states.



126

Example-Spec 2 All tasks run at least once, and therefore reach a
state where they are idle. This liveness property is, as expected, only
partially fulfilled since a task can reach an error state (e.g., due to a
device or a function failure) during its execution. It is expressed by the
following UPPAAL formula, where T1 . . . Tk denote all the model tasks.

E <> (T1.Idle and . . . and Tk.Idle), (6.2)

Example-Spec 3 Whatever the task we consider, that task is executed
only if the scheduler is either running or processing a new request. This
safety condition ensures therefore that it does not exit tasks running out
of the scheduler control, and is expressed as:

A[ ] not (φ and not (Scheduler.Run or Scheduler.NewRequest)), (6.3)

such that φ specifies all possible task states that correspond to its
execution. The way to state this for a specific Ti is through the term

φ = (Ti.State1 or . . . or Ti.Statek) , (6.4)

where Ti represents a system thread, i represents a task in [0, N ] and N
define the number of tasks. The State k denotes their execution states
(which are a subset of task execution states).

Example-Spec 4 Considering the set of system tasks, a task is
running only if its execution time is smaller than its deadline. This
is expressed by the following formula:

A[ ] not (forall (i : int[0, N ])((Ti.State1 or . . . or Ti.Statek) and

(Ti.ax > D[i]))) (6.5)

where Ti represents system threads, D[i] is the prescribed deadline, the
ax field is the current total execution time, and each State1, . . . , Statek
represents task execution states.

Example-Spec 5 A system deadlock is possible only if one of the
system threads is on error state. This property was checked by specifying
the formula scheme:

A[ ] deadlock imply (T1.Error or · · · or Ti.Error) (6.6)

with T1 . . . Ti denoting the tasks of the system, and deadlock is
UPPAAL’s keyword that denotes that there is a deadlock in the model.



127

Example-Spec 6 As a final example we define a specification that
brings statistical analysis of the model. For this, we used the Statistical
Model Checking (SMC) facilities whose version of UPPAAL we have
adopted.

This specification refers to the probability of the system to reach
an actuator error state due to its execution. This probability condition
is expressed by the formula:

Pr [ ≤ 12000] (<> Actuator(i).EmergencyMode), (6.7)

where the bound defined (≤ 12000) represents the thread period that
interfaces with this actuator and Actuator(i) denotes the ith system
actuator. For instance, when considering Actuator(0) (named ESC
right in the UAV model), this property is satisfied with a probability
in [0.107051, 0.206887] with 0.95 certainty.

Regarding the UAV properties evaluation, overall, one hundred
and forty-six (146) properties were analyzed in different categories
including, reachability, safety, liveness, and deadlock freeness. This
set of properties are split in the two proposed phases (Tasks evaluation
and schedulability analysis), being seventy seven applied to evaluate the
first phase and sixty nine defined to evaluate the second analysis phase.
The properties are arranged into the defined categories as depicted in
Fig. 49. As it can be observed, in the second phase of analysis the use
of probabilities is not applied.

Figure 49 – Evaluated UAV properties.
(a) Phase 1 - defined properties. (b) Phase 2 - defined properties.

Defined the set properties the UAV system its evaluated by
performing formal verification. The obtained results of these analysis
is presented in Fig. 50.



128

Figure 50 – Obtained results of evaluated UAV properties.
(a) Phase 1 results. (b) Phase 2 results.

Analyzing the Phase 1 obtained results it is observed that
83,12% of the evaluated properties are satisfied, 10,39% are not
satisfied, and 6,49% are not verified. Another aspect regards the
probabilities evaluation where twenty four properties are defined
providing estimations with 95% certainty.

Observing Phase 2 results it is verified that 37,68% of the
evaluated properties are satisfied, 37,68% may be satisfied, and 24,64%
are not satisfied. These results are according to our expectations due
to the specifications nature, which may not be satisfied is related to
fact that the models also represent the error occurrence on the system
execution.

The obtained results with the UAV model showed that the
system meets its requirements. This implies that the system threads
meet their deadlines, the safety properties are satisfied, and no
deadlocks are found except in the event of an error occurring.

6.5 SUMMARY

In this chapter a method devoted to integrate formal verification
in the UAV design process (proposed in Chapter 4) is presented. It
consists of performing a model transformation of AADL models to a
timed automata representation that is suitable for analysis using MC.
The transformation process is supported by a developed tool named
ECPS Verifier and MC can be performed using the UPPAAL tool.
The tool supports the application of the design activities promoted
by the authors, improving the architectural model characteristics, and



129

providing a means by which to extract the components behavior, that
is evaluate by performing the MC formal method.

In comparison to the related works, the partial compliance of
their transformation process in respect to the designed architectural
models is observed. Most of the time these models require manual
intervention from the designers in order to integrate additional features
such as thread behavior and error properties. In this sense, the
present proposal provides a means by which to represent the system
characteristics to support the complete timed automata extraction and
its evaluation.



130



131

7 CONCLUSIONS

In this PhD thesis contributions were presented to improve the
CPS design processes, especially applied to design UAV applications.
The proposed contributions are designed after extensive analysis of
different CPS design methods, taking into account the required UAV
characteristics and activities suitability for its design. Studies were also
performed to evaluate the characteristics related to the integration of
the system devices on the design process of these applications. The
integration of formal verification methods applied to these process was
also evaluated. Based on the performed studies it was observed that
there is not a definitive solution that can cover the UAV design specifics,
integrating the system devices, and validating its behavior.

In this context three main contributions were proposed including:
i) the proposal of a design method, applied to systematize the UAV
design activities; ii) an extension of a transformation process from
functional model to architectural model, integrating an intermediary
step that provides the representation of system devices characteristics;
iii) a transformation process from architectural model to timed
automata representations, to allow the system formal evaluation.

Initially a design method devoted to UAV built was proposed,
this process aims to fill some gaps that were observed in others
existing design methods. This method highlights the particularities
related to UAV design, such as the mission design. Based on the
proposed method, activities are also suggested to represent some system
characteristics which are not so widely discussed by other authors, such
as the specifications of the system sensors and actuator properties, and
the integration of formal method directly on the design method.

Once the propose method was finished, it was possible to observe
that this method may be extended and generalized to cover the
design of different CPS applications. However, additional work is
need therefore. For such reason, and also to limit the scope of this
thesis, any adaptation or generalization of the current proposal is left
for future works. Another observed point regards the implementation
phase, which was not so widely discussed. In this sense, some activities
mainly related to the UAV construction were not properly detailed, as
well as characteristics related to the costumers product validation are
not presented. In addition it is observed that the process to generate
the application code is considered implicit in some project phases, and
due to this fact it is not widely discussed on this method.



132

In this way, aiming to specialize the proposed design process,
and providing the representation and integration of the set of device
characteristics on the project, a transformation process was proposed.
This process is based on the functional representation (Simulink model)
and provides an architectural model (AADL model). The proposed
transformation process extends the work from (PASSARINI, 2014).
However, as discussed in Chapter 5 Passarini’s proposal did not cover
some design steps like the integration of system devices. In this way,
an intermediary step was created to ensure the specification of devices
information before performing the transformation process. The ECPS
Modeling tool was designed to support this transformation process,
providing the generation of architectural models including the device’s
characteristics.

The second improvement applied to the proposed design method
is with regard to the integration of formal verification techniques on
the UAV design process. The selected technique was model checking,
based on its expressiveness and its utilization in different environments,
providing a means to validate the applications properties. To support
this technique application the UPPAAL tool was chosen, and a tool
named ECPS Verifier was design to support the transformation process
from AADL language to UPPAAL timed automata.

In nutshell this thesis provide an integrated solution representing
the UAV design process phases and activities, that is complemented
by two transformation processes that aim to enable the system device
characteristics integration, and the formal evaluation of the system
properties. The proposed tools are designed as plug-ins to the
OSATE tool, a framework that supports the design of AADL models.
The plug-ins can be obtained respectively on https://github.

com/fernandosgoncalves/ECPSModeling, and https://github.com/

fernandosgoncalves/ECPSVerifier.
The proposed method and tools were applied to the design of

a tilt-rotor UAV. The results showed that by applying the proposed
steps complementary representations are generated, ensuring more
information in the project. By performing the transformation processes
we intend to reduce the project design time, as well as the process being
considered less prone to errors.



133

7.1 FUTURE WORKS

In the following a list of possible future works related to this
dissertation, is proposed:

• Review the proposed UAV design method, improving the
method characteristics to support the design of different CPS
applications. A V-model should be applied to the proposed
method, increasing the relationship between the system design,
the verification, and tests.

• Extend the ECPS Modeling tool to integrate more information
during the transformation process, providing functionalities
such storage of device characteristics and importation of this
information from a specific file.

• Improve the designed transformation engine from ECPS Verifier
tool, in order to increase the AADL language components
coverage. In the same way, evaluate the use of different sources
to the transformation engine for example an XML file generated
after instantiate the system for example.

• Working in the direction of integrating dynamic verification
methods to complement the model checking activities, as there
might be cases of properties that cannot be verified statically,
so it may be possible to enforce upon run-time. Thereby it
is necessary to enrich the target model with new components
that assume the form of runtime monitors (generated from
some formal specifications). The resulting enriched model will
still be subject to the same automata generation principles of
the presented work, making sure that the model together with
the monitors still satisfies the original specifications. In this
sense, system properties can be evaluated during the applications
execution, by the use of techniques like Runtime Monitoring.



134



135

BIBLIOGRAPHY

AHMED, S. H.; KIM, G.; KIM, D. Cyber Physical System:
Architecture, applications and research challenges. 2013 IFIP
Wireless Days (WD), p. 1–5, 2013.

ALANEN, M. et al. Model driven engineering: A position paper. In:
FERNANDES, J. a. M. et al. (Ed.). Proceedings of the 1st
International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software (MOMPES’04). [S.l.]:
Turku Centre for Computer Science, 2004. p. 25–29.

ALMENARA, A. SAMU Maringá Recebe Nova Viatura Para
Suporte Médico Avançado. 2017. Available from Internet:
<http://www.andrealmenara.com.br/noticia/ler/samu-de-maringa-
recebe-nova-viatura-para-suporte-medico-avancado>.

ALUR, R. Principles of Cyber-Physical Systems. [S.l.]: MIT
Press, 2015. ISBN 9780262029117.

ALUR, R.; COURCOUBETIS, C.; DILL, D. Model-checking for
real-time systems. In: [1990] Proceedings. Fifth Annual IEEE
Symposium on Logic in Computer Science. [S.l.: s.n.], 1990. p.
414–425.

BACK, N. et al. Projeto integrado de produtos: Planejamento,
Concepção e Modelagem. Barueri: Manole, 2008. 601 p. ISBN
9788520422083.

BAIER, C.; KATOEN, J.-P. Principles Of Model Checking. [s.n.],
2008. I–XVII, 1–975 p. ISSN 00155713. ISBN 9780262026499.
Available from Internet:
<http://mitpress.mit.edu/books/principles-model-checking>.

BAO, Y. et al. Quantitative Performance Evaluation of
Uncertainty-Aware Hybrid AADL Designs Using Statistical Model
Checking. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 0070, n. c, p. 1–1, 2017.
ISSN 0278-0070. Available from Internet:
<http://ieeexplore.ieee.org/document/7875425/>.

BAUDRY, B. et al. Model transformation testing challenges. In:
Proceedings of the IMDDMDT workshop at ECMDA’06.



136

Bilbao, Spain: [s.n.], 2006. Available from Internet:
<http://www.irisa.fr/triskell/publis/2006/baudry06b.pdf>.

BECKER, L. B. et al. Development process for critical embedded
systems. In: WSE 2010, Gramado. Anais. Porto Alegre: SBC.
[S.l.: s.n.], 2010. p. 95–108.

BEHRMANN, G.; DAVID, A.; LARSEN, K. G. A Tutorial on
Uppaal. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004. p. 200–236. ISBN 978-3-540-23068-7. Available from
Internet: <http://link.springer.com/10.1007/978-3-540-30080-9 7>.

BEHRMANN, G.; DAVID, A.; LARSEN, K. G. Formal methods for
the design of real-time systems: International school on formal
methods for the design of computer, communication, and software
systems. In: . Berlin, Heidelberg: Springer Berlin Heidelberg,
2004. cap. A Tutorial on Uppaal, p. 200–236. ISBN 978-3-540-30080-9.

BENGTSSON, J. et al. Uppaal — a Tool Suite for Automatic
Verification of Real–Time Systems. Workshop on Verification and
Control of Hybrid Systems III, n. 1066, p. 232–243, 1995.

BERKELEY, U. Ptolemy Project. 1999.
http://ptolemy.eecs.berkeley.edu/.

BERTHOMIEU, B. et al. Real-Time Model Checking Support for
AADL. mar 2015. Available from Internet:
<http://arxiv.org/abs/1503.00493>.

BERTHOMIEU, B.; RIBET, P. O.; VERNADAT, F. The tool tina ?
construction of abstract state spaces for petri nets and time petri
nets. International Journal of Production Research, vol. 42,
n. 14, p. 2741–2756, 2004. Available from Internet:
<http://dx.doi.org/10.1080/00207540412331312688>.

BOHEM, B. W. Software Engineering; R & D trends and defense
needs. In: WEGNER, P. (Ed.). Research Directions in Software
Technology (Ch. 22). Cambridge, MA: MIT Press, 1979. p. 1–9.

BOZGA, M. et al. Kronos : A Model-Checking Tool for Real-Time
Systems *. Springer International Journal of Software Tools
for Technology Transfer, vol. 1, 1997.

BOZZANO, M. et al. The COMPASS approach: Correctness,
modelling and performability of aerospace systems. LNCS, p.
173–186, 2009. ISSN 03029743.



137

BRADE, T. et al. Model-Driven Development of Embedded Systems.
12th Brazilian Workshop on Real-Time and Embedded
Systems, p. 12, 2010. Available from Internet:
<http://www.wseas.us/e-library/conferences/2010/Cambridge/
SEPADS/SEPADS-17.pdf>.

CAI, G. et al. Design and implementation of a hardware-in-the-loop
simulation system for small-scale uav helicopters. In: Automation
and Logistics, 2008. ICAL 2008. IEEE International
Conference on. [S.l.: s.n.], 2008. p. 29–34.

CAI, G. et al. Systematic design methodology and construction of
{UAV} helicopters. Mechatronics, vol. 18, n. 10, p. 545 – 558,
2008b. ISSN 0957-4158.

CASWELL, G.; DODD, E. Improving UAV Reliability. n. 301, p. 7,
2014.

CHANDHOKE, S. et al. A model-based methodology of programming
cyber-physical systems. In: 2011 7th International Wireless
Communications and Mobile Computing Conference. [S.l.:
s.n.], 2011. p. 1654–1659. ISSN 2376-6492.

CHEN, W. L. et al. Researches on robot system architecture in CPS.
2015 IEEE International Conference on Cyber Technology in
Automation, Control and Intelligent Systems, IEEE-CYBER
2015, n. 2013921069, p. 603–607, 2015.

CLARKE, E.; GRUMBERG, O.; PELED, D. Model Checking.
MIT Press, 1999. ISBN 9780262032704. Available from Internet:
<https://books.google.com.br/books?id=Nmc4wEaLXFEC>.

CONQUET, E. et al. The TASTE Toolset: turning human designed
heterogeneous systems into computer built homogeneous software. In:
European Congress on Embedded Real-Time Software
(ERTS 2010). Toulouse, France: [s.n.], 2010. p. 1–10.

CORREA, T. et al. Supporting the Design of Safety Critical Systems
Using AADL. Proceedings of the IEEE International
Conference on Engineering of Complex Computer Systems,
ICECCS, p. 53–62, 2010.

COSTA, F. et al. The use of unmanned aerial vehicles and wireless
sensor network in agricultural applications. In: Geoscience and



138

Remote Sensing Symposium (IGARSS), 2012 IEEE
International. [S.l.: s.n.], 2012. p. 5045 –5048. ISSN 2153-6996.

DAVID, A. et al. UPPAAL SMC tutorial. International Journal
on Software Tools for Technology Transfer, vol. 17, n. 4, p.
397–415, 2015. ISSN 14332787.

DELANGE, J. et al. An MDE-based Process for the Design,
Implementation and Validation of Safety-Critical Systems. In:
Proceedings of the IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS. [S.l.:
s.n.], 2010. p. 215–223. ISBN 9780769540153.

DERLER, P.; LEE, E. A.; VINCENTELLI, A. S. Modeling
cyber-physical systems. Proceedings of the IEEE, n. 1, p. 13–28,
Jan 2012. ISSN 0018-9219.

DI NATALE, M. et al. An MDA Approach for the Generation of
Communication Adapters Integrating SW and FW Components from
Simulink. Model-Driven Engineering Languages and Systems,
vol. 8767, p. 353–369, 2014. ISSN 16113349. Available from Internet:
<http://link.springer.com/chapter/10.1007/978-3-319-11653-2 22%5
Cnhttp://link.springer.com/10.1007/978-3-319-11653-2>.

DOERING, D. A Model Driven Engineering Methodology for
Embedded System Designs-HIPAO2. 2014 12Th Ieee
International Conference on Industrial Informatics (Indin),
p. 787–790, 2014. ISSN 1935-4576.

ECLIPSE. Eclipse. 2000. https://eclipse.org/.

ECLIPSE. Eclipse Modeling Framework. 2004.
http://www.eclipse.org/emf.

ECLIPSE. Linguagem ATL. 2006.
https://wiki.eclipse.org/ATL/Concepts.

FARAIL, P.; GAUFILLET, P. Topcased: un environnement de
développement open source pour les systèmes embarqués. Génie
logiciel, GL & IS, Meudon, France, p. 16–20, 5 2005.

FARAIL, P. et al. The topcased project: a toolkit in open source for
critical aeronautic systems design. European Congress on
Embedded Real-Time Software (ERTS 2006), p. 8, 1 2006.



139

FEILER, P. H.; GLUCH, D. P. Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis
& Design Language. 1st. ed. [S.l.]: Addison-Wesley Professional,
2012. ISBN 0321888944, 9780321888945.

FEILER, P. H.; GLUCH, D. P.; HUDAK, J. J. The Architecture
Analysis & Design Language (AADL): An Introduction. [S.l.],
2006.

FUGGETTI, G.; GHETTI, A.; ZANZI, M. Based on Handy FDI
Current Sensor and a Fail- Safe Configuration of Control Surface
Actuators. p. 356–361, 2015.

GAAEVIC, D. et al. Model Driven Architecture and Ontology
Development. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006. ISBN 3540321802.

GARAVEL, F. L. H.; MATEESCU, R. An overview of CADP
2001. ago. 2001. 13–24 p.

GONÇALVES, F. S. et al. Vant autônomo capaz de comunicar com
uma rede de sensores sem fio. In: X Congresso Brasileiro de
Agroinformática (SBIAGRO 2015). Ponta Grossa - PR: [s.n.],
2015.

GONÇALVES, F. S.; BECKER, L. B. Preparing cyber-physical
systems functional models for implementation. In: V Brasilian
Symposium on Computing System Engineering (SBESC
2015). Foz do Iguaçu - PR: [s.n.], 2015.

GONÇALVES, F. S.; BECKER, L. B. Model driven engineering
approach to design sensing and actuation subsystems. In: 2016 IEEE
21st International Conference on Emerging Technologies and
Factory Automation (ETFA). [S.l.: s.n.], 2016. p. 1–8.

GONÇALVES, F. S.; BECKER, L. B.; RAFFO, G. V. Managing CPS
complexity: Design method for Unmanned Aerial Vehicles. In: 2016
1st IFAC Conference on Cyber-Physical & Human-Systems.
[S.l.: s.n.], 2016.

GONÇALVES, F. S. et al. Formal verification of aadl models using
uppaal. In: VII Brazilian Symposium on Computing Systems
Engineering (SBESC 2017). Curitiba - PR: [s.n.], 2017.



140

GONCALVES, F. S. et al. Assessing the use of simulink on the
development process of an unmanned aerial vehicle. In: 3rd
Workshop on Cyber-Physical Systems (CyPhy 2013). [S.l.:
s.n.], 2013b.

HALBWACHS, N. A synchronous language at work: the story of
lustre. In: Formal Methods and Models for Co-Design, 2005.
MEMOCODE ’05. Proceedings. Third ACM and IEEE
International Conference on. [S.l.: s.n.], 2005. p. 3–11.

HALBWACHS, N. et al. The synchronous data flow programming
language lustre. Proceedings of the IEEE, vol. 79, n. 9, p.
1305–1320, Sep 1991. ISSN 0018-9219.

HALBWACHS, N.; RAYMOND, P. A Tutorial Of Lustre. 2001.

HAMDANE, M. E.; CHAOUI, A.; STRECKER, M. From AADL to
timed automaton-A verification approach. International Journal of
Software Engineering and its Applications, vol. 7, n. 4, p.
115–126, 2013. ISSN 17389984.

HARRISON, W. L. et al. Model-driven engineering from modular
monadic semantics: Implementation techniques targeting hardware
and software. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 5658 LNCS, p. 20–44, 2009. ISSN
03029743.

HARTMANN, P. A. et al. A framework for generic HW/SW
communication using remote method invocation. In: 2011
Electronic System Level Synthesis Conference (ESLsyn).
[S.l.]: IEEE, 2011. p. 1–6. ISBN 978-1-4577-0634-9.

HENDERSON-SELLERS, B. On the Mathematics of Modelling,
Metamodelling, Ontologies and Modelling Languages.
Springer, 2012. (SpringerBriefs in Computer Science,). Available from
Internet: <http://dx.doi.org/10.1007/978-3-642-29825-7>.

HENZINGER, T. A.; HO, P.-h.; WONG-TOI, H. HyTech: The Next
Generation*. In: Real-Time Systems Symp. [S.l.: s.n.], 1995.

HESSE, W. More matters on (meta-)modelling: remarks on Thomas
Kühne’s “matters”. Software & Systems Modeling, Springer,
vol. 5, n. 4, p. 387–394, 2006. ISSN 1619-1366. Available from
Internet: <http://dx.doi.org/10.1007/s10270-006-0033-9>.



141

HU, K. et al. Exploring AADL verification tool through model
transformation. Journal of Systems Architecture, vol. 61, n. 3-4,
p. 141–156, 2015. ISSN 13837621.

HUTH, M.; RYAN, M. Logic in Computer Science. [s.n.], 2004.
440 p. ISSN 1098-6596. ISBN 9783540425540. Available from Internet:
<http://bilder.buecher.de/zusatz/12/12609/12609080 lese 1.pdf>.

INRIA. AADL to Signal/SSME Transformation. [S.l.], 05 2012.

ISMAIL, H. I. et al. DSVerifier: A bounded model checking tool for
digital systems. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9232, p. 126–131, 2015. ISSN
16113349.

JENSEN, J. C.; CHANG, D. H.; LEE, E. A. A model-based design
methodology for cyber-physical systems. In: Wireless
Communications and Mobile Computing Conference
(IWCMC), 2011 7th International. [S.l.: s.n.], 2011. p. 1666
–1671.

JENSEN, J. C.; CHANG, D. H.; LEE, E. A. A model-based design
methodology for cyber-physical systems. In: IWCMC 2011. [S.l.:
s.n.], 2011. p. 1666 –1671.

KATOEN, J.-P. et al. The ins and outs of the probabilistic model
checker {MRMC}. Performance Evaluation,
vol. 68, n. 2, p. 90 – 104, 2011. ISSN 0166-5316. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S0166531610000660>.

KEANE, J. F.; CARR, S. S. A brief history of early unmanned
aircraft. The Johns Hopkins APL Technical Digest, vol. 32,
n. 3, p. 558–571, 2013.

KENT, S. Model driven engineering. In: Proceedings of the Third
International Conference on Integrated Formal Methods.
London, UK, UK: Springer-Verlag, 2002. (IFM ’02), p. 286–298.

KLEPPE, A. G.; WARMER, J.; BAST, W. MDA Explained: The
Model Driven Architecture: Practice and Promise. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.
ISBN 032119442X.



142

KÜHNE, T. Clarifying matters of (meta-) modeling: an authors reply.
Software and Systems Modeling (SoSyM), Springer, vol. 5, n. 4,
p. 395–401, December 2006. ISSN 1619-1366. Available from Internet:
<http://dx.doi.org/10.1007/s10270-006-0034-8>.

LEE, E. Cyber physical systems: Design challenges. In: Object
Oriented Real-Time Distributed Computing (ISORC), 2008
11th IEEE International Symposium on. [S.l.: s.n.], 2008. p. 363
–369.

LEE, E. A.; SESHIA, S. A. Introduction to Embedded Systems
- A Cyber-Physical Systems Approach. 2. ed. [S.l.]: Lee and
Seshia, 2015. http://leeseshia.org/. ISBN 978-1-312-42740-2.

LIU, C. L.; LAYLAND, J. W. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM, ACM,
New York, NY, USA, vol. 20, n. 1, p. 46–61, jan. 1973. ISSN
0004-5411. Available from Internet:
<http://doi.acm.org/10.1145/321738.321743>.

LOPES, D. et al. Interoperability of enterprise software and
applications. In: . London: Springer London, 2006. cap.
Mapping Specification in MDA: From Theory to Practice, p. 253–264.
ISBN 978-1-84628-152-5. Available from Internet:
<http://dx.doi.org/10.1007/1-84628-152-0 23>.

LOPES, D. et al. Metamodel matching: Experiments and comparison.
In: Software Engineering Advances, International Conference
on. [S.l.: s.n.], 2006. p. 2–2.

MAIA, N. E. N. Odyssey-MDA: Uma Abordagem Para a
Transformação de Modelos. 105 p. Thesis (Ph.D.) — Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Rj - Brasil, 3 2006.

MALCOLM, G. Behavioural equivalence, bisimulation, and minimal
realisation. In: Selected Papers from the 11th Workshop on
Specification of Abstract Data Types Joint with the 8th
COMPASS Workshop on Recent Trends in Data Type
Specification. London, UK, UK: Springer-Verlag, 1996. p. 359–378.
ISBN 3-540-61629-2. Available from Internet:
<http://dl.acm.org/citation.cfm?id=645978.675845>.

MARWEDEL, P. Embedded System Design: Embedded
Systems Foundations of Cyber-Physical Systems. Springer



143

Netherlands, 2010. (Embedded Systems). ISBN 9789400702578.
Available from Internet:
<https://books.google.com.br/books?id=EXboa4sXlRsC>.

MASIN, M. et al. Cross-layer design of reconfigurable cyber-physical
systems. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. Lausanne: IEEE, 2017.
p. 740–745. ISBN 978-3-9815370-8-6. Available from Internet:
<http://ieeexplore.ieee.org/document/7927088/>.

MATHWORKS. MATLAB. 1994. http://www.mathworks.com.

MATHWORKS. Mathworks MATLAB Simulink. 2018.
http://www.mathworks.com/products/simulink/.

MELLOR, S.; CLARK, A.; FUTAGAMI, T. Model-driven
development - guest editor’s introduction. Software, IEEE, vol. 20,
n. 5, p. 14–18, Sept 2003. ISSN 0740-7459.

MELLOR, S. J. et al. MDA Distilled. Redwood City, CA, USA:
Addison Wesley Longman Publishing Co., Inc., 2004. ISBN
0201788918.

MIRABILIS. VisualSim Architect. 2018.
http://mirabilisdesign.com/new/visualsim/.

MOON, I. Modeling programmable logic controllers for logic
verification. Control Systems, IEEE, vol. 14, n. 2, p. 53–59, April
1994. ISSN 1066-033X.

MORELLI, M.; DI NATALE, M. An MDE approach for the design of
platform-aware controls in performance-sensitive applications. 19th
IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA 2014, 2014. ISSN 1946-0740.

NAIDOO, Y.; STOPFORTH, R.; BRIGHT, G. Development of an
uav for search amp; rescue applications. In: AFRICON, 2011. [S.l.:
s.n.], 2011. p. 1–6. ISSN 2153-0025.

NAVET, N. et al. Lean Model-Driven Development through
Model-Interpretation: the CPAL design flow. [S.l.], Out 2015.
10 p. Available from Internet: <http://hdl.handle.net/10993/22279>.

NOVATEL. OEMStar Receiver - Firmware Reference Manual.
6. ed. [S.l.], 2 2014. Available from Internet:
<https://www.novatel.com/assets/Documents/Manuals/om-20000127.pdf>.



144

OMG. MDA Guide Version 1.0.1. jun. 2003.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf. Available
from Internet:
<http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf>.

ONEM, E.; GURDAG, A. B.; CAGLAYAN, M. U. Secure routing in
ad hoc networks and model checkingâ<†. In: TRAFFORD
PUBLISHING. Security of Information and Networks:
Proceedings of the First International Conference on
Security of Information and Networks (SIN 2007). [S.l.], 2008.
p. 346.

PAMPAGNIN, P. et al. Model driven hardware design: One step
forward to cope with the aerospace industry needs. 2008 Forum on
Specification, Verification and Design Languages, FDL’08, p.
179–184, 2008. Available from Internet:
<http://www.scopus.com/inward/record.url?eid=2-s2.0-67650458333&
partnerID=40&md5=94dd06e3ded8e3ba28ec6fb3337e7421>.

PAPACHRISTOS, C. et al. Model predictive attitude control of an
unmanned tilt-rotor aircraft. Industrial Electronics (ISIE), 2011
IEEE International Symposium on, p. 922–927, June 2011.

PASSARINI, R. et al. Cyber-physical systems design: transition from
functional to architectural models. Design Automation for
Embedded Systems, Springer US, p. 1–22, 2015. ISSN 0929-5585.
Available from Internet:
<http://dx.doi.org/10.1007/s10617-015-9164-y>.

PASSARINI, R. F. Transformação assistida de modelos. Thesis
(Ph.D.) — Universidade Federal de Santa Catarina, Florianópolis, SC
- Brasil, 8 2014.

PING, J. et al. Generic unmanned aerial vehicle (uav) for civilian
application-a feasibility assessment and market survey on civilian
application for aerial imaging. In: Sustainable Utilization and
Development in Engineering and Technology (STUDENT),
2012 IEEE Conference on. [S.l.: s.n.], 2012. p. 289–294. ISSN
1985-5753.

PTOLEMAEUS, C. (Ed.). System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014. Available from
Internet: <http://ptolemy.org/books/Systems>.



145

RAHM, E.; BERNSTEIN, P. A. A survey of approaches to automatic
schema matching. The VLDB Journal, Springer-Verlag New York,
Inc., Secaucus, NJ, USA, vol. 10, n. 4, p. 334–350, dez. 2001. ISSN
1066-8888. Available from Internet:
<http://dx.doi.org/10.1007/s007780100057>.

RENAULT, X.; KORDON, F.; HUGUES, J. From AADL
architectural models to petri nets : Checking model viability.
Proceedings of the 2009 IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC 2009, p. 313–320, 2009. ISSN 1555-0885.

ROUSSEL, J.-M.; LESAGE, J.-J. Validation and verification of
grafcets using state machine. In: IMACS-IEEE ”CESA’96”. Lille,
France: [s.n.], 1996. p. pp. 758–764. Available from Internet:
<https://hal.archives-ouvertes.fr/hal-00353188>.

SAE. SAE, SAE Architecture Analysis and Design Language
(AADL) Annex Volume 1: Annex A: Graphical AADL
Notation, Annex C: AADL Meta-Model and Interchange
Formats, Annex D: Language Compliance and Application
Program Interface Annex E: Error Model Annex. 2011.
http://standards.sae.org/as5506/1.

SAE. SAE, SAE Architecture Analysis and Design Language
(AADL) Annex Volume 2. 2011.
http://standards.sae.org/as5506/2.

SAE. International Society of Automotive Engineers. 2015.
http://www.sae.org/.

SCHMIDT, D. C. Guest editor’s introduction: Model- driven
engineering. Computer, vol. 39, n. 2, p. 25–31, Feb 2006.

SEI. Osate 2. 2005.
https://wiki.sei.cmu.edu/aadl/index.php/Osate 2.

SEIDEWITZ, E. What models mean. IEEE Software, vol. 20, n. 5,
p. 26–32, 2003.

SELIC, B. The pragmatics of model-driven development. IEEE
Softw., IEEE Computer Society Press, Los Alamitos, CA, USA,
vol. 20, n. 5, p. 19–25, set. 2003. ISSN 0740-7459. Available from
Internet: <http://dx.doi.org/10.1109/MS.2003.1231146>.



146

SENSEFLY. EBee the professional mapping drone. 2018.
https://www.sensefly.com/drone/ebee-mapping-drone/.

STEINBERG, D.; BUDINSKY, F.; MERKS, E. EMF: Eclipse
Modeling Framework. Addison-Wesley, 2009. (Eclipse
(Addison-Wesley)). ISBN 9780321331885. Available from Internet:
<https://books.google.com.br/books?id=oAYcAAAACAAJ>.

SUN, Z.; ZHOU, X. Extending and recompiling AADL for CPS
modeling. Proceedings - 2013 IEEE International Conference
on Green Computing and Communications and IEEE
Internet of Things and IEEE Cyber, Physical and Social
Computing, GreenCom-iThings-CPSCom 2013, p. 1225–1230,
2013.

UAVGLOBAL. Bell Eagle Eye. 2008. Available from Internet:
<http://www.uavglobal.com/bell-eagle-eye/>.

WANG, G. et al. Studying on aadl-based architecture abstraction of
embedded software. In: Scalable Computing and
Communications; Eighth International Conference on
Embedded Computing, 2009.
SCALCOM-EMBEDDEDCOM’09. International Conference
on. [S.l.: s.n.], 2009. p. 14–19.

WANG, Y. et al. An AADL-Based Modeling Method for
ARINC653-Based Avionics Software. In: Computer Software and
Applications Conference (COMPSAC), 2011 IEEE 35th
Annual. [S.l.: s.n.], 2011. p. 224–229. ISSN 0730-3157.

XU, S. et al. Quantitative Analysis of Variation-Aware Internet of
Things Designs Using Statistical Model Checking. In: 2016 IEEE
International Conference on Software Quality, Reliability
and Security (QRS). IEEE, 2016. p. 274–285. ISBN
978-1-5090-4127-5. Available from Internet:
<http://ieeexplore.ieee.org/document/7589807/>.

YAN, Z. et al. From AADL to Timed Abstract State Machine: A
Certified Model Transformation. Journal of Systems and
Software, p. 42–68, 2014. ISSN 01641212.

YU, H. et al. Polychronous modeling, analysis, verification and
simulation for timed software architectures. Journal of Systems
Architecture - Embedded Systems Design, vol. 59, n. 10-D, p.
1157–1170, 2013.



147

YU, Z. et al. Research on Modeling and Analysis of CPS. In:
CALERO, J. M. A. et al. (Ed.). Autonomic and Trusted
Computing: 8th International Conference, ATC 2011, Banff,
Canada, September 2-4, 2011. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011. p. 92–105. ISBN 978-3-642-23496-5.
Available from Internet:
<https://doi.org/10.1007/978-3-642-23496-5 7>.

ZHAO, Y.; MA, D. Embedded real-time system modeling and
analysis using aadl. In: Networking and Information
Technology (ICNIT), 2010 International Conference on. [S.l.:
s.n.], 2010. p. 247–251.


