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Abstract

Day by day, gradually and steadily, applications in all segments of computing, including embedded
systems, are getting more complex, because of the increased range of functionality they offer. This
complexity requires platforms with increased performance that satis es such growing computa-
tional demands. This need has driven the adoption of multi-core processors in embedded systems,
since they allow performance to be increased at a reasonable energy consumption.

Future real-time embedded systems will increasingly incorporate mixed application models
with timing constraints running on the same multi-core platform. These application models are
data ow applications with timing constraints and traditional real-time applications modelled as in-
dependent arbitrary-deadline tasks. Examples of such mixed embedded systems are Autonomous
Driving Systems and Unmanned Ariel Vehicles. These systems require guarantees that all running
applications execute satisfying their timing constraints. Also, to be cost-ef cient in terms of de-
sign, they require ef cient mapping strategies that maximize the use of system resources to reduce
the overall cost.

This work proposes a complete approach with a main goal to integrate mixed application
models (data ow and traditional real-time applications) with timing requirements on the same
multi-core platform. This approach guarantees that the mapped applications satisfy their timing
constraints and maximize utilization of the platform resources. Three main algorithms to achieve
the main goal. The rstalgorithm is calledack-based mergingvhich is an of ine data ow graph
reduction technique that aims to decrease the complexity of data ow applications, and thereby
their analysis time. The algorithm reduces the run-time of our approach with 82% to 90%, com-
pared to when it is not used. The experimental evaluation with real application models from the
SDF benchmark shows that the reduced grapfrespects the timing constraints, itaroughput
and latency of the original application graph ar) when the throughput constraint is relaxed
with respect to the maximal throughput of the graph, the merging algorithm is able to achieve a
larger reduction in graph size.

The second algorithm is callédming Parameter Extractignwhich extracts timing param-
eters, i.e. offsets periodsand deadlines of data ow applications with timing constraints, i.e.
throughputandlatency converting them into periodic arbitrary-deadline tasks. These tasks exe-
cute in a way that preserve the dependencies of the original data ow application usiotistte
parameter, while satisfying its timing constraints usingpgbedod anddeadlineparameters. This
algorithm is a means toanify the two mixed application modefgo a single real-time task set. The
main advantage of this algorithm is that the extraction of the timing parameters is independent of
the speci ¢ scheduler being used, of other applications running in the system and the details of the
particular platform. In addition, the experimental evaluation shows that the reduced-size data ow
graphs generated by tlstack-based merginglgorithm, in particular for applications that do not
need to execute at maximum throughput, help speeding up the extraction of the timing parameters.

The third algorithm is calledommunication-aware mappinwhich allocates the mixed ap-
plication models on a 2D-Mesh multi-core platform after unifying them. The mapping process is



done considering the timing constraints of the applications and maximizing resource utilization
of the platform, while accounting for the communication cost of the data ow applications. The
algorithm is based on a novel mapping heuristic caedsitive-Path-Firstwhich surpasses the
well-known First Fit bin-packing heuristic in terms of number of allocated applications and run-
time by up to 28% and 22%, respectively. The experimental evaluation reveals a direct relation
between the number of allocated applications and the availability of communication resources,
which demonstrates the importance of considering communication cost. We also show that ignor-
ing communication cost, as frequently done in existing work, allows 76% more applications to be
mapped, although the applications in the system are no longer guaranteed to satisfy their timing
constraints.

Together, these three important algorithms successfully achieve the main goal of this thesis and
play a part in allowing embedded real-time systems to map and schedule mixed application mod-
els. The complete approach and the three algorithms presented in this thesis have been validated
through proofs and experimental evaluation.



Resumo

A semelhanca do que acontece noutros dominios da computacéo, os sistemas embebidos estio
cada vez mais complexos, devido ao aumento e diversidade das funcionalidades que fornecem, o
gue tem levado a necessidade de plataformas com maior desempenho. Esta exigéncia tem levado
a cada vez maior adocao de plataformas multi-ntcleo de processameitttecore) neste tipo de
sistemas, permitindo o aumento de desempenho com custos razoaveis de energia.

Os sistemas embebidos do futuro integrardo na mesma plataforma multi-nicleo aplicacdes
com diferentes modelos de computacdo, e com requisitos temporais. Entre estas é expectavel
a necessidade de integrar aplicacdes tradicionais de tempo-real (modelizadas por tarefas inde-
pendentes) com aplicacdes modelizadas por uxos de datiia ¢w). Exemplos podem ser
encontrados em sistemas de conducao autbnoma ou veiculos aéreos sem piloto, sistemas que re-
guerem a garantia de cumprimentos dos prazos temporais de todas as aplica¢des. Para além disso,
sdo sistemas em que é fundamental a existéncia de estratégias automatizadas de mapeamento da
computagdo que maximizem a utilizacéo dos recursos disponibilizados pela plataforma.

Esta dissertacdo propde uma metodologia completa para a integracdo numa so plataforma
multi-nucleo de aplicagdes com modelos computacionais distintos ( uxo de dados e tradicionais
tempo-real) e com requisitos temporais. Esta metodologia permite garantir que as aplicacfes
cumprem com 0S Seus requisitos temporais, a0 mesmo tempo que maximiza a utilizagéo dos re-
cursos do sistema. Para este efeito, a metodologia inclui trés algoritmos diferentes.

Num primeiro passo, é utilizado um algoritnstack-based mergingara reduzir a complex-
idade dos grafos de uxo de dados com que sdo modelizadas as aplicacdes que utilizam este
modelo computacional, o que permite reduzir o tempo de andlise das mesmas. Este algoritmo
permite reduzir o tempo de processamento do processo de 82% a 90%. A avaliacdo experimental
com modelos de aplicagdes reais, do benchmark®$Bmonstra que o grafo reduzidb:respeita
0s requisites temporais do grafo original, i.e., 0 desempethinaughpu) e a laténcialatency),
e 2) quando se relaxa o requisito de desempenho em relagdo ao maximo permitido pelo grafo, o
algoritmo permite uma maior reducéo do tamanho do grafo.

O segundo algoritmadliming Parameter Extractigrpermite extrair as caracteristicas tempo-
rais tradicionais de uma aplicacao de tempo-real, i.e., periguoiodg, prazos feadline} e
deslocamentosnffset3, a partir dos modelos de uxo de dados com requisitos de desempenho
(throughpuj e laténcia latency), convertendo assim estes uxos em tarefas periddicas indepen-
dentes. Estas tarefas executam de forma a preservar as dependéncias do modelo de uxo de dados
original através do deslocamento da ativacao de tarefas consequentes, satisfazendo os requisitos
de processamento e laténcia através dos periodos de ativagdo e prazos temporais. Este algoritmo
permite assim uni car os dois modelos distintos de computag¢édo, num sé conjunto de tarefas de
tempo-real. A vantagem principal deste algoritmo € que esta extracdo de parametros é indepen-
dente do escalonador utilizado, de outras aplicagfes que executam no sistema, e dos detalhes da
plataforma. A avaliacdo experimental também demonstra que o tempo de processamento desta
extracao é reduzido pela redugéo dos grafos obtida pelo algoritmo anterior, particularmente para



aplicacdes que ndo necessitam executar com o maximo desempenho.

O terceiro algoritmocommunication-aware mappingapeia as tarefas das aplicacdes que
usam os dois modelos de computagdo, apds uni cacdo, em plataforma multi-ntcleo com co-
municacdo em 2 dimensdes entre nucletis-fesh). O mapeamento é efetuado considerando
0s requisites temporais das aplicagfes, e maximiza a utilizagdo dos recursos computacionais da
plataforma, tendo em consideracgéo os potenciais custos de comunicagdo. Este algoritmo € baseado
numa noval heuristicé§ensitive-Path-Firsta qual obtém melhores resultados que a heuristica
First-Fit, tanto em termos de nimero de aplicagbes mapeadas como em tempo de processamento
(28% e 22% melhor, respetivamente). A avaliacdo experimental mostra uma relacéo direta entre o
numero de aplicacdes mapeadas e a disponibilizada de recursos de Comunicacao, o que demonstra
a importancia da consideracao destes custos durante o mapeamento. Também mostramos que, ig-
norando os custos de comunicagéo, como € habitualmente feito em trabalhos semelhantes, permite
mapear até 76% mais aplicacdes, embora sem conseguir garantir a satisfacdo dos seus requisitos
temporais.

Em conjunto, estes trés algoritmos importantes permitem atingir com sucesso o objetivo prin-
cipal desta dissertagéo, potenciando o mapeamento e integracdo em sistemas embebidos de tempo-
real de aplicacdes com modelos computacionais distintos. A metodologia complete e os trés algo-
ritmos apresentados na dissertacéo foram validados por provas e avaliacdo experimental.
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Chapter 1

Introduction

We are living the golden age of ubiquitous computing. If we look around, we will nd ourselves
surrounded by computing devices embedded in systems that help or serve us in our daily life.
These systems ranges from simple portable gadgets, e.g. smartphones, cameras, gaming consoles,
to large complex systems, e.g. airplanes, cars, industrial automation. These systems are called
embedded systems

An embedded system can be broadly de ned as a computing system that performs a dedicated
function within a larger systemlimeénez et a].2014. This dedicated function is not designed to
be programmed by the end user as functions in general purpose comptgiat) [200]. The
concept of computing systems performing dedicated functions is old going back in time preceding
the concept of a general-purpose compuléngnez et al2014. If we look at the earliest forms
of computing devices, they adhere better to the de nition of an embedded system (in terms of
performing a dedicated function) than to that of a general-purpose computer. An example of
these devices is the Colossus compu@ogeland 2009, which refers to a series of computers
developed by British code-breakers in 1943-1945. Colossus dedicated function was to help in the
cryptanalysis of the German teleprinter messages during World War 1.

At early stages, embedded system designs used microcontrollers as a main processing unit,
since the application demands were simple. Following the rise in application demands and growing
complexity, many embedded systems incorporate multi-core processor architectures for satisfying
the increasing demands of its applications, since the need for high processing power at a low
power budget is a great concern for such systeis [et al, 201J. A real life example of this
trend is the cellular phone. At the beginning, the rst generation of cellular phones incorporated
a single core digital signal processor chRrdtapSingh and Kumar Jaig014, since its main
dedicated function was making phone calls. However, the latest generations feature at least a quad-
core multi-processor at least, e.g. Samsung Galaxy S7 smartphone incorporating Qufalcomm
Snapdragon™ 820 process@Ualcomm 2014. This is because the cellular phone has become
a portable computer, multimedia and connectivity device.

The trend of the growing functionality of embedded systems can be demonstrated by the vari-
ous types of applications that run simultaneously on the sysiaméhez et a].2014. These ap-
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plications may have different requirements, such as computational demands or timing constraints.
For example, the cellular phone runs a time-constrained application, which is the phone call, along
with computationally intensive ones, such as multimedia and gaming applications. The fact that
embedded systems run various applications with different requirements can mean different ap-
plications may be represented using different computational models. In such systems running
mixed computational models, guarantees are required to assure stratifying requirements (compu-
tational demands or timing constraints) and the correct execution of the system, especially in case
of safety-critical applications. A current example of such systems is high-end cars, which may run
an advanced multimedia entertainment system (that requires huge computational resources) along
with the autonomous driving function (safety-critical application) that allow self-driving on the
highways, i.e. Tesla Model S, X and BESLA, 2014.

Embedded system running mixed computational models is an increasing futuristic trend, since
embedded systems are included in almost every device. In this thesis, we are concerned with
embedded systems that incorporate mixed computational models with timing constraints running
on the same multi-core platform. These computational models are data ow with timing constraints
and traditional real-time task sets, since they represent a wide range of applications running on top
of embedded systems. The data ow computational model represents Digital Signal Processing
(DSP), Streaming and multimedia applications, while traditional real-time computational model
covers a wide range of time-constrained applications with different levels of criticality. Example
of future embedded systems that run these two computational modes are Autonomous Driving
Systems [Elliott et al, 2014 and Unmanned Air Vehicleszhou and Wy 200§. These kind
of systems require real-time guarantees that all running applications will execute safely without
missing their deadlines. Also, they require ef cient use of system resources to minimize the overall
cost of the system.

We begin this thesis by brie y introducing the two computational models considered in this
thesis. They are the real-time computational model (Sedtitynand the data ow computational
model (Sectiorl.2), where we detail the parameters and the properties of each model. Then we
follow by presenting an overview of processing platforms and architectures in Séc3ioffter
these introductory sections, we introduce our problem statement in Sdctiofollowed by a
detailed proposed solution explaining its functionality in Secfidn Finally, we end this chapter
by summarising our thesis contributions and providing the thesis organisation in Sektions
and1.7, respectively.

1.1 Real-time Computational Model

A real-time computational modelis a computing paradigm used to de ne a certain set of ap-
plications that have to respond to externally generated input stimuli within a nite and speci ed
period of time[Buttazzg 2004 Krishng 199¢. The main characteristic that distinguishes real-
time computing from other types of computation is time, because the correct execution of the
applications of such computational model depends not only on the logical result but also on the
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time it is delivered. The instant when a result must be produced is callieddline Failure to

respond within the speci ed timing interval or a delayed response could be useless or even have
fatal consequences. Based on these consequences, the real-time computational model classi es its
applications into three categorieB|ttazzq 2004 Krishna 1994:

Hard real-time: An application is considereldard real-time if missing its deadline during exe-
cution may cause catastrophic consequences on the system under control, surrounding en-
vironment or people.

Firm real-time: An application is consideredm real-time if missing its deadline during exe-
cution is useless for the system, but does not cause any damage.

Soft real-time: An application is consideresbft real-time if missing its deadline during execu-
tion has still some utility for the system, although causing performance degradation.

These are the three basic categories of applications according to the real-time computational
model. There exist other classi cations that branch from these basic categories. Whatever their
category, all the applications in this computational model are calatitime applications In
the following section, we will shed more light on real-time applications and its different criteria
classi cations.

1.1.1 Real-time Applications

Real-time applications are wide-spread in daily life systems, e.g. telecommunications, aviation,
nuclear reactors, autonomous driving systems , industrial automation. A real-time application can
be modelled as a nite set of simple, highly repetitive entities that are recurrent in nature called
real-timetasks[Baruah and Goosser2004. Each instance of a task is a basic unit of work that
executes on the processing platform and is callgbdlLiu, 200J. A real-time task has different
classi cations based on its timing parameters. In the following section we discuss that in details.

Real-time task classi cation:

A real-time task has several classi cations that vary based on the criteria used. In this thesis, we
are concerned with two criteria in real-time task classi cation. First, the frequency of which a task
instantiates its jobs (task periodicity) classi es a real-time task into three categtsoeic[and

Fohler, 200Q:

Periodic tasks: A task that releases its jobs periodically after a xed time interval is de ned as
a periodic task. The xed duration between the two consecutive jobs releases is called the
period of the task.

Sporadic tasks: A task that releases its jobs at some arbitrary time instant but two consecutive
jobs of a task are always separated by at least a prede ned time interval called the minimum
inter-arrival time.
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Aperiodic tasks: Jobs of an aperiodic task are not constrained by a minimum interarrival time or
a period, the task can release jobs at any instant.

Periodic tasks are the most well-known model in real-time systems. Sporadic tasks can be con-
verted into periodic tasks with a prede ned minimum interarrival tilBatfazzq 2004. Aperiodic
tasks can be handled using periodic server-based systems with budget. The server is modelled as
a periodic task. The server can serve aperiodic tasks until the budget expires. The budget can be
replenished every perio&prunt 1990.

Second, real-time tasks are always constrained with a timing requirement. A task should com-
plete its execution within a prede ned time interval called tetative deadline The relative
deadlineof a task depends on the nature of an application. For example, the object recogni-
tion/detection application in an autonomous driving system has a relative deadline in terms of a
few microseconds, while a room temperature monitoring application in an air conditioning sys-
tem can have a relative deadline in terms of a few seconds rélaive deadlineof a real-time
task, whether it is periodic, sporadic or aperiodic, can be categorized into three main categories
[Buttazzg 2004 Krishna 1994:

Implicit-deadline task model: has arelative deadline equal to its period or minimum inter-arrival
time.

Constrained-deadline task model: may have a relative deadline less than or equal to its period
or minimum inter-arrival time.

Arbitrary-deadline task model: has a relative deadline that has no relation with the period or
minimum inter-arrival time of a task. This means that the relative deadline can be set to any
value regardless the value of the task's period.

In this thesis, we are concerned with real-time systems runpenigdic arbitrary-deadlindasks.

1.1.2 Worst-Case Execution Time

The execution time of a real-time task is an important parameter that de nes its temporal be-
haviour. Different jobs of a task exhibit variation in their execution time depending on the hard-
ware characteristics, structure of the software, input data and different behaviour of the environ-
ment with which the jobs are interacting. In order to guarantee the temporal correctness, the upper
bound on the execution time of a task, referred to as the Worst-Case Execution Time (WCET), is
speci ed. The WCET of a task is a safe upper bound greater than or equal to the longest execution
of any job released by the task, under worst-case input conditions without interference from other
tasks. Any miscalculation of WCET may cause a system failure depending on, whether or not,
the system is a hard real-time. There are several methodologies and techniques to determine the
WCET of a task detailed iruschner and Burn200Q Wilhelm et al, 200§ for further reading.
Real-time system designers consider the WCET of tasks while designing a system to guarantee
the timing properties. However, different jobs of a task may execute for less than their WCET
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\actor/ actor/

(@) (b)

Figure 1.1: Data ow application.

leaving behind unused computing resources. This bound is almost always pessimistic to be safe.
Jobs hence typically execute faster.

1.2 Data ow Computational Model

The data ow computational modeChamberlin 1971, Estrin and Turn1963 Rodrigues 1969

Shields 1997 is a well-known, simple, and powerful model of parallel computation. In this
model, there is no notion of a single point or locus of control corresponding to the conventional
sequential computing. However, it models an application as a set of tasks with data dependencies.
It is a very useful speci cation mechanism for signal processing systems since it captures the
intuitive expressiveness of block diagrams, ow charts, and signal ow graphs, while providing
the formal semantics needed for system design and analysis tools.

1.2.1 Data ow Applications

A data ow application is a directed graph, where the vertices represent computation tasks and
edges represent First-In First-Out (FIFO) queues that direct data values from the output port of
one computation task to the input port of another. Hence, a data ow application can be consid-
ered a set of computation tasks with dependencies. The graphs' vertices (computation tasks) are
calledactors while its edges (FIFO queues) are calldthnnels Channels thus represent data
dependencies between actors.

A data ow application executes by performing the functions de ned by its actors. An actor
can be a single instruction, or a sequence of instructions, since the data ow model does notimply a
limit on the size or complexity of actors. Initially, an actor is an idle task. Its execution is triggered
once the required amount of data arrives on its input ports. The amount of input data is speci ed
by each actor according to its functional requirements. Many actors may be ready to execute
simultaneously, and thus represent many asynchronous concurrent computation events. An actor
starts execution by consuming data from its corresponding input ports, performing computations,
and then produce a certain amount of data on its output ports. The execution process of an actor is
called aring , while the data produced or consumed in the ring process are referredabieass

Figurel.1shows an example of a data ow graph, that consists of ac&ty) @nd the channel
between them represented as a FIFO queue that direct tokens from the output port aftactor
the input port of actob. Initially, actorsa andb are idle. Once the required tokens are available



6 Introduction

oL
(a) SDF graph (b) HSDF graph

Figure 1.2: Example of SDF and HSDF graphs.

on the input port of actaa, it consumes them, starting the ring process, then produces tokens on
its output port. The tokens produced are transferred to the input port oftatttosugh the FIFO
channel, triggering its ring process that results in producing tokens on its output port similar to
actora. The functions performed by the actors de ne the overall function of the data ow graph.
For example, Figuré.1could represent a water level control system, where actomeasuring
the current level of water in a tank and send signals to dctbat controls the operation of the
water pump.

A data ow application has three important timing parameters, they are:

Execution time of its actors: an actor may have different values of execution time. This may be
due to different tokens consumed, which triggers different functions to be executed inside
the actor. Also, it may be due to the same reasons a real-time task faces that are mentioned
previously in Sectiornl.1.2 However, for predictable execution behaviour and analysis
purposes, the execution time determined for each actor represents an upper bound (WCET)
to all of its ring modes. The calculation of WCET is mentioned earlier in Sectidn2

Throughput: is an important constraint and crucial indicator of performance for data ow appli-
cations. The throughput of a data ow application refers to how often an actor produces
an output token. To compute throughput, the WCET of the ring of each actor has to be
measured and an execution scheme must be de ned. The execution scheme is the self-
timed execution of actors, where each actor res as soon as all of its input data are available
[Sriram and Legl997.

Latency: is a timing constraint that de nes a time bounded interval between rings of two actors
in the data ow application. It can be realised as a relative deadline for the rings that happen
between these speci ¢ two rings.

There exist several data ow computational models, e.g. Synchronous Data ow (SDF), Homo-
geneous Synchronous Data ow (HSDR)e and Messerschmitt987H, Cyclo-static Data ow
(CSDF) Bilsen et al, 19959, Scenario-Aware Data ow (SADF)Theelen et a).200q9, where
each model have its own speci cations and rules that enable capturing wide range of applications.
However, we focus on those that can be described by SDF and HiS&Fand Messerschmiitt
19874.

SDF: is useful for modelling and analysis of Digital Signal Processing (DSP) and concurrent
multimedia applicationsljee and Messerschmitt987h Poplavko et al.2003 Sriram and
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Bhattacharyya200Q Wiggers et al.2007, where they represent computations on an in-
de nitely long data sequence. This is because of the ability to obtain periodic schedules
for the SDF execution where actors res a determined number of times with a speci ¢ or-
der, in a cyclic manner, where each cycle calledtaration. Every actor in an SDF graph
consumes/produces a xed number of tokens every time it res. The SDF graphs are accom-
panied with several timing analysis techniques, which are used for evaluating performance
metrics of such applications, most importantly throughput. Figu2éa)shows an example

of an SDF graph that consists of two actarandb. Actor a represents a source task that
produces two tokens every time it res (denoted on its output port), while aatepresents

a sink task that consumes a single token every time it res (denoted on its input port). The
periodic schedule for such SDF graphask{b), because acta produces two tokens that
triggers actob to re twice consuming a single token each.

HSDF: is a more restricted model of SDF, where actors consume/produce a single token every
time they re. Each actor in an HSDF graph res once during an iteration of the graph.
This restriction allows HSDF graph to reveal the parallelism hidden in applications repre-
sented using more expressive models, e.g. SDF, CSDF. For example, Eigflrsshows
an HSDF graph representation of the SDF graph shown in Figj@@) As we naotice,
the HSDF graph reveals the parallelism hidden in the SDF graph by showinghaditoy
twice simultaneouslylp, b1). Many data ow graphs expressive models, e.g. SDF, CSDF,
can be converted to an equivalent HSDF graph by using a conversion algorithm, such as
the one presented itsfiram and Bhattacharyya00d. Although transformation to HSDF
allows revealing the parallelism in data ow applications, it can lead to an exponential in-
crease in the size of the original data ow grajleg and Messerschmit987a Sriram and
Bhattacharyya200(, which may result in a signi cant increase in the run-time of many
data ow analysis algorithms, e.g. throughput analysis, as described in the following chap-
ters. Further details on SDF and HSDF are given in Chapter

1.2.2 Streaming Applications

Streaming applications constitute a huge application space for embedded systems. They are be-
coming increasingly important and widespread, since they run on many common devices and
systems that affect our daily life. A common well-known example of this in daily life is the
smartphone, as shown in Figute3(a) It is a multi-purpose (i.e., communication, entertainment,
navigator, etc.) embedded system that runs several streaming applications with different purposes
that ranges from communication to entertainment. Another example considered as safety-critical
is Autonomous driving systems, shown in Figdr8(b) that have started to be integrated in many

car driving systems (e.g. Google, Tesla, Mercedes, etc.). These systems enable cars to sense their
environment, navigate without human input and stay connected to the IntGelati§ and Stein

1999. Both of these example systems process audio and video streams on which streaming ap-
plications perform functions like audio/video encoding and decoding, object recognition, object
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(b) Autonomous driving system®hily Autonomous
(a) Smartphoneddenya Tech New,2015. Car News 2015 .

Figure 1.3: Examples of embedded systems running streaming applications.

detection and image enhancement on the stre&ffistf et al, 2014 Salunkhe et al.2014 Siy-
oum et al, 2011). These kind of streaming applications havgh processing requiremenésnd
timing constraintghat must be satis ed, especially in case of safety-critical applications.

The high processing requirementaises the need for a parallelization model to enable appli-
cations to use massive computational poviRarikratius et 812009, which the data ow model of
computation is able to achieve for streaming applicatide® [and Messerschmitt9874. This
is because data ow model is inherently parallel and can work well in decentralized systems. Fur-
thermore, since these applications are basically a series of transformations that are applied to a
data stream, the data ow model is a natural paradigm for representing them for concurrent imple-
mentation on multi-/many-core processdre¢ and Messerschmitt9873.

The streaming applicationsiming constraintsequire guarantees that they will be satis ed
during applications execution. Recently, several works applied real-time scheduling and analy-
sis techniques on data ow applicatiorBgmakhrama and Stefana®011, 2012 Di Natale and
Stankovi¢ 1994 Kao and Garcia-Molingl997, Lipari and Binj 2011, Liu et al,, 2014 Saifullah
et al, 2011. However, they are limited to data ow applications represented as Directed Acyclic
Graphs (DAG) or implicit-deadline task models, which discards a wide range of data ow applica-
tions.

1.3 Processing Platform

This section aims to discuss different processing platform architectures and features of intercon-
nection network. The main goal is to explain the speci cations of the processing platform assumed
in this thesis.

The processing platform refers to the hardware responsible for running applications in the
real-time embedded system. There is a paradigm shift towards multi-/many-cores in the design
process of processing platforms. Presently, increasing the number of cores is the current way to
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improve the performance for high-end processors rather than increasing the clock speed for single
processors. One of the reasons why the clock rate gains of the past cannot any more be continued
is the unsustainable level of power consumptidajfla 2011].

Architecture:

A multi-/many-core platform has more than one core or processor. These cores can be similar or
completely different in architecture. Consequently, multi-/many-core platforms can be categorised
into two main types based on the relation between the cores on a given platform:

Homogeneous Architecture: in this architecture type all cores in the platform are identical and
have exactly the same properties in terms of computation (e.g. instruction set, frequency
and cache size) and the cores are interchangeable. The execution time and energy con-
sumption of a task remains the same on all cores on such a platform. These platforms are
also sometimes called symmetric multi-processor platforms (SMP). Many platforms man-
ufactured and deployed today in embedded systems fall under this category. For example,
Cortex-Al7 [Cor] from ARM (used in smart phones, tablets, smart TV's, etc.) has four
identical cores on a same die.

Heterogeneous Architecture: this architecture type features at least two different kinds of cores
that may differ in both the instruction set architecture, frequency and cache size. The most
widespread example of a heterogeneous multi-core architecture is the Cell BE architecture,
jointly developed by IBM, Sony and Toshib&§chwind et a].2006 and used in areas such
as gaming devices and computers targeting high performance computing.

Interconnection Networks (IN):

Since increasing the number of cores in multi-/many-core platforms is the current trend to increase
the performance, there should be an ef cient communication network to connect them, called
Interconnection Networks (IN). The IN between multiple cores may be a performance bottleneck,
since it is responsible for transferring and routing of data between different cores. These data are
in the form of packets with headers that contain information about its destination. Data transfer
between distant cores can increase latency and consume extra power. In the following paragraphs,
we look at traditional IN topologies.

2D-Mesh: shown in Figurel.4(a) is a common topology that uses routers that are connected to
other routers as well as a number of cores. Advantages include design simplicity and short
links. Disadvantages include a potentially high number of hops.

Fat Tree: shown in Figurel.4(b) is a tree topology where the cores are located at leaves of a
tree and internal nodes are routers. Data travels upward in the tree until a common ancestor
is found between source and destination. The number of links increases towards the root
of the tree. Advantages include high bandwidth because of the increased number of links
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(a) 2D Mesh (b) Fat Tree (c) Flattened Butter y

Figure 1.4: Examples of Interconnection Networks (ISahchez et g12010Q.

as data moves towards the root. Disadvantages include the need for more complex routers,
again because of the increased number of connections toward the root.

Flattened Butter y: shown in Figurel.4(c) is a modi ed butter y network that is essentially a
mesh network with additional links. Advantages include a small number of hops. Disad-
vantages include complex routers and increased chip area due to the large number of links.

Routing:

In all IN topologies, except fully connected topology, not all the router-pairs are directly con-
nected. Therefore, in such cases, depending on the position of the sender and the receiver, packets
may need to travel across multiple intermediate links and routers. A set of traversed network ele-
ments (routers and links) is called tioite, while the number of traversed links is usually referred
to as thenumber of hops

The process of transferring packets from source to destination is callédg, which is the
responsibility of the routers. Once packets reach the router, it decides in which direction they will
be forwarded. The logic inside the router that is responsible for making this decision is called
therouting algorithm There exist numerous criteria based on which the routing decisions can be
made. For example, thminimal routingclass algorithmsNi and McKinley, 1993 which aim to
minimise the route, and hence derive routing decisions such that the packets always traverses the
minimal possible number of hops. Moreover, theterministic routingclass algorithms, which
always routes packets between the same source and destination on the same path. Alternatively,
the adaptive routingclass algorithmsBolotin et al, 2004 makes routing decisions at runtime
based on the status and load of individual links. Adaptive routing can improve the performance of
the system (the average case behaviour) by reducing the average communication time, however, at
the expense of predictability. Conversely, deterministic routing is predictable and much easier to
implement, but may cause an inef cient utilisation of the NoC resources, where some links may
be heavily congested, and others may be completely idle.

The selection of the routing mechanism depends on the purpose of the system. As already
mentioned, in the real-time embedded domain the predictability of the system is essential, because
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it allows to analyse the temporal behaviour of the system with signi cantly less pessimism. Thus,
in the real-time domain, the deterministic routing techniques are a preferable option.

One class of popular minimal deterministic routing algorithms in 2D-mesh IN @ithension-
ordered routing Assuming these schemes, the packets are rstly routed along one dimension of
the IN, and after reaching the coordinate of the destination, if needed, continue the transfer along
the other dimension. One of the most popular routing algorithms of this classyisouting
where the horizontal axis of the platform is usually denoted with the letter X and the vertical axis
is denoted with the letter Y. Thé-Y routingpolicy is deadlock freeHu and Marculescl2003.

Switching:

Switching de nes how packets are transmitted from source to destination. When the IN resources
are free, packets traverse routers and links on their route towards the destination. However, in the
presence of other traf ¢, it may happen that one of the links on its route is busy transferring other
packets. In such cases, switching mechanisms resolves the situation. One of these mechanisms is
thestore-and-forward switchinffrfanenbaum2002, where the router stores the full packet before
forwarding it to the next router on the route. In this mechanism, one must ensure that the buffer
size at each router is suf cient to store the whole packet, otherwise it will be stalled. Another well-
known mechanism isrormhole switchingNi and McKinley, 1993, where the router makes the
routing decision and forwards the packet as soon as the header arrives. The subsequent payload is
split into smaller containers calleis . These its follow the header as they arrive. This reduces

the latency within the router, but in case of packet stalling, many links risk to be locked at once.

Arbitration:

The main responsibility of IN is to transfer and route communication data between different cores.
During the process of data transfer, signi cant contention may occur due to accessing the IN
shared medium, e.g. links and routers. Several approaches, agiig@tion mechanisms, have

been proposed to manage such contention. These mechanisms are provided by the IN to allow the
multiplexing of several streams of data over the same physical medium (link). Common schemes
are Space Division Multiplexing (SDMBanerjee et al.2009 Lusala and LegaR011, Marchal

et al, 2005 Modarressi et al.2009, Time Division Multiplexing (TDM) [Goossens et al2005

Liu et al, 2004 Wang et al. 2008 Zhang et al.201q either in the conventional slot allocation
approach or in an arbitrated (e.g. round-robin, priority) link time sharing scheme. TDM is a
commonly used arbiter for management of communication resources in multi-core platforms. The
reasons for its popularity is that it is conceptually easy to understand and analyze and has ef cient
implementations both in hardware and softwatédsson et a).2015. Moreover, it provides
temporal isolation between clients when used in a non-work-conserving maoesgens et al.
20134. Several platforms relying extensively on TDM for a variety of resources management are
PRET [Edwards and Le2007 and CompSOCAkesson et a).2015.
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Figure 1.5: Problem to be addressed

In this thesis, we are concerned witlkmogeneous architectuprocessing multi-core plat-
forms that incorporates 2D MeshIN operated usingl-Y routing wormhole switchin@nd using
TDM as arbitration mechanism.

1.4 Problem Statement

In this thesis, we address the problem of real-time embedded systems incorporating mixed ap-
plication models with timing constraints running on the same multi-core platform. These mixed
application models are data ow applications with timing constraints (latency and throughput) and
traditional real-time applications, as shown in Figir& The design of such systems require
guarantees that all running applications mapped on the platform will execute safely satisfying
their timing constraints.

As shown in Figurel.5, the traditional real-time applications are modelled as independent
tasks. Each task is characterised with speci ¢ parameters, e.g. WCET, deadline and period. In
contrast, data ow applications are basically graphs of communicating tasks, which are actors.
These actors are de ned by a different set of parameters, e.g. WCET, Production/Consumption
rate (P/C) of tokens. A data ow application has timing constraints, i.e. latency and throughput
requirements (Sectioh.2.7), that must be satis ed. This leads to the main question of the thesis:
How can future real-time embedded systems safely incorporate mixed application models, data-
ow and traditional real-time tasks, with timing constraints onto multi-core platforms, such that
their timing constraints are satis ed?
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Figure 1.6: Solution outline.

1.5 Solution Overview

In this section, we present an outline of our proposed solution to the stated problem outlined in
Sectionl.4. The main goal of this solution is to provide guarantees for the mixed application
model executing on the multi-core platform, such that timing constraints are satis ed.

To implement this kind of systems, we have to address how to map and schedule such mixed
application model on the multi-core platform. Different solutions in mapping and scheduling have
been proposed for each application model independently. The mapping problem has previously
been tackled in several works from a high-performance point-of-viamdls et a.2005 Evans
and Kessler1992 Liu et al, 2007 Lo, 1988 Ma et al, 1987, where all applications are repre-
sented either as graphs or independent tasks. However, using these approaches in the mapping
of real-time applications does not guarantee satisfying their timing constraints. Another map-
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ping approach uses the First Fit (FF) bin-packing heuristic, since it has been shown to outperform
other bin-packing heuristics in terms of achieved through@uid and Bhuyay200q. However,
applying approaches that satisfy timing constraints and use FF, su@aasmkhrama and Ste-
fanov, 2011, results in over-dimensioned systems, as our experimental evaluation shoWs in [

et al, 2013 and Chapteb. Moreover, such workGuo and Bhuyan200§ does not consider the
communication cost and its effect on the schedulability of the system.

The scheduling problem has been studied extensively for traditional real-time applications
through introducing several real-time scheduling algorithms either onto uniprocessors, e.g. Fixed
Priority (FP) Liu and Laylangd 1973, Earliest Deadline First (EDF)Lju and Layland 1973, or
multi-processor Partitioned EDF (PEDHR)dpez et al. 2004 and Hierarchical schedulindCla-
landrino et al. 2007, Easwaran et 12009 Leontyev and Andersqr2008 Zhu et al, 20117.
However, data ow applications mostly use static scheduling, i.e. TDMA. Static scheduling works
well in case of systems that only run data ow applications. In contrast, in case of systems that run
mixed real-time applications, a dynamic real-time scheduling algorithm may have a higher schedu-
lability success rate than static scheduling, but it is not currently available for mixed systems.
Furthermore, real-time scheduling algorithms can enable ef cient real-time analysis techniques
for such mixed systems. Recently, several works scheduled data ow applications using real-time
scheduling algorithmsHamakhrama and Stefana®011, 2012 Di Natale and Stankovjc1994
Kao and Garcia-Molinal997, Lipari and Bini 2011, Liu et al, 2014 Saifullah et al. 20117].
However, they are either limited to data ow applications represented as Directed Acyclic Graphs
(DAG), or they are represented as implicit-deadline tasks.

The proposed system runs two types of application models, traditional real-time and data ow
applications. The traditional real-time applications are a set of independent periodic arbitrary-
deadline real-time tasks. These tasks are characterised by timing parameters that de ne their
temporal behaviour in execution, e.g. WCET, period and relative deadline. Independent real-time
tasks have a set of well-established real-time scheduling and analysis techniques in the literature
that allow satisfying their timing constraints. The main idea is to use these techniques and methods
and apply them on data ow applications to get the same guarantees. However, these techniques
cannot be applied directly on data ow applications, because they miss the appropriate task model
parameters to allow using them. Thereforeiraed modelfor both types of application models
is needed to apply traditional real-time scheduling and analysis techniques on the system, thereby
guaranteeing that timing constraints are satis ed.

The uni ed modellingis a process that transforms the data ow applications into traditional
real-time tasks. This transformation is done using tiheng parameter extractioralgorithm
shown in Figurel.6 and detailed in Chaptés. However, before sending the data ow graph to
the timing parameter extraction algorithm, it has to go through two processes. Firstgisfine
reductionprocess, discussed in Chapfeilt generates eeduced-size HSDF gragfhom the orig-
inal HSDF graph. This is because transformation to HSDF graphs can result in an exponential
explosion in the graph size, which slows down the timing parameter extraction algorithm when
applied on them. Therefore, the graph reduction process speeds up the overall design process, as
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the experiments show in Chapter Second, is theommunication modellingrocess, where it
models the communication in the reduced-size HSDF graph, generating an extended HSDF graph
that accounts for the communication cost. The extended communication-aware graph is then used
as input to the mapping algorithm, as explained in ChaptEbllowing these two steps, the timing
parameter extraction algorithm takes the HSDF graph with modelled communication as an input,
transforming it into a set of independearbitrary-deadline tasks

Now, we reached the stage where we have a uni ed set of arbitrary-deadline real-time tasks.
This enables applying traditional real-time scheduling and analysis techniques while mapping
them on the platform. The mapping algorithm, shown in Figu& allocates the task set on the
platform guaranteeing that all applications satisfy their timing constraints. Also, the proposed
mapping algorithm icommunication-awarewhich means that it considers the communication
overhead resulting from the token exchange between different actors in the data ow applications.
Thecommunication-aware mappiragorithm, detailed in Chaptéy; is able to do that because of
the communication modelling of the HSDF graph that happened in the early stages in the solution.

1.6 Thesis Contributions

As highlighted in the problem statement (Sectibd), the main goal of this thesis is to allow
future real-time embedded systems to map and schedule mixed application models with timing
constraints on the same multi-core platform guaranteeing that timing constraints are satis ed.
To achieve this goal we proposed the solution outline, discussed in Sdci@nd shown in
Figurel.6, that consists of three main contributions. They are:

1. An of ine data ow graph reduction algorithm , calledslack-based merginghat aims to
speed-up the process of timing parameter extraction and nding a feasible real-time sched-
ule, thereby reducing the overall design time of the real-time system. To achieve this goal,
the algorithm combines two main concepts:

(&) Theslack which is the difference between the WCET of the SDF graph's rings and
its timing constraints.

(b) Thesafe mergewhich is a novel merging concept that we prove cannot cause a live
HSDF graph to deadlock.

The output is a reduced-size HSDF graph that satis es the throughput and latency con-
straints of the original application graph.

2. Atiming parameter extraction algorithm that extracts timing parameters of HSDF graphs
with timing constraints, converting them into periodic arbitrary-deadline tasks. This algo-
rithm provides a method to unify mixed application models into a single real-time task set.
A main advantage of our proposal is that the extraction of the timing parameters is indepen-
dent of the speci ¢ scheduler being used, of other applications running in the system and
the details of the particular platform. The proposed algorithm:
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(a) Enables applying traditional real-time schedulers and analysis technigues on cyclic or
acyclic HSDF applications with periodic sources.

(b) Captures overlapping iterations, which is a main characteristic of the execution of
data ow applications, by modelling actors as tasks with arbitrary-deadlines.

A mapping algorithm, called communication-aware mappingledicated for allocating
HSDF graphs on 2D-Mesh multi-core platforms. The algorithm is based on a novel map-
ping heuristic calledensitive-Path-FirstThis heuristic allocates rst, for each HSDF, the
most critical paths (a path consists of a set of tasks) in terms of schedulability, maximizing
path parallelism when possible. The mapping process is done taking into account satisfy-
ing applications time constraints and maximizing resource utilization of the platform, while
accounting for the communication cost.

Together, these three important contributions successfully achieve the main goal of this thesis
and play a part in allowing embedded real-time systems to map and schedule mixed application

models.

1.7

Thesis Organization

This thesis addresses the problem of mapping and scheduling mixed application models with tim-
ing constraints running on the same multi-core platform in real-time embedded systems. The
thesis is organized as follows:

Chapter2 discusses the state of the art in three main topics that represent the three main
contributions of this thesis. These three main topics are data ow graph analysis, timing
parameter extraction techniques and mapping methodologies.

Chapter3 provides a background on topics and terminology essential for understanding the
research problem and the system model.

Chapte# introduces the proposed graph reduction technique for data ow applications called
slack-based merging. It provides a detailed explanation of the algorithm assisted with
proofs, examples and experiments that show its validity and functionality.

Chapters presents the timing parameter extraction algorithm that transforms data ow ap-
plications into independent real-time tasks. The chapter starts by discussing similar mecha-
nisms for timing parameter extraction for pipelines. Then, it shows how these mechanisms
are incorporated in the proposed algorithm to extended its functionality to cover data ow
graphs. We present proofs, examples and experiments that shows the validity and function-
ality of our proposed algorithm. Moreover, the experiments show the speed-up effect of the
graph reduction technique on the timing parameter extraction process.

Chaptes6 describes the proposed mapping algorithm called communication-aware mapping.
It begins by presenting the mechanism for communication modelling in data ow graphs.
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Then, it lists and describes the components of the communication-aware mapping algorithm.
Especially, its main mapping heuristic called Sensitive-Path-First, which is inspired from the
Critical-Path-First (CPF) mapping heuristic proposedAi gt al., 2013. In addition, the
chapter provides a full view of our proposed solution by integrating the three algorithms
together. This allows experimenting both communication-aware mapping algorithm and the
whole system.

» Chapter7 nishes the thesis with conclusions and future directions of research.
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Chapter 2

State of the Art

This chapter gives an overview on the state of the art related to this thesis. It positions our work
with respect to the state of the art in three aspects that comprise our proposed solution (previ-
ously shown in Figurd..6). These three aspects aB:graph reduction techniques explained in

the context of data ow analysis (Secti@l), 2) extraction of timing parameters that transforms
actors of data ow graphs into traditional real-time tasks that enable applying traditional real-time
scheduling and analysis techniques (Sec8d®) and3) mapping of data ow graphs onto multi-
/many-core platforms (Sectidh3).

2.1 Data ow Graph Analysis

The data ow model of computation is popular for modelling the timing behaviour of real-time
embedded hardware and software systems and applications. It is an essential ingredient of several
automated design- ows and design-space exploration tools. In this section, we will present the
state of the art in data ow graph analysis techniques concerning certain properties essential for
our work, throughput, latency and graph size.

Various analysis techniques have been proposed to determine throughput and latency proper-
ties of this computational model. For throughput analysis, there are several methods and tools, e.g.
[Damavandpeyma et aR012 Ghamarian et al2008 Stuijk et al, 2004. In [Ghamarian et a|.

2008, the authors propose three methods to compute throughput of an SDF graph where actor
execution times can be parameters. The throughput of these graphs is obtained in the form of a
function of these parameters, which can be evaluated for speci ¢ parameter values. The three pro-
posed methods are based on different algorithms. The rst two algorithms, called HSDF graph and
State-Space methods, are variants of the standard throughput analysis algorithms for SDF graphs
for parametric actor execution times. The third algorithm, called Divide-and-Conquer Method, is
based on a divide-and-conquer strategy. Experimental results show that the divide-and-conquer
algorithm performs best. Ilamavandpeyma et ak013, the authors propose a new method

to determine a tighter throughput bound for applications modelled as Scenario-Aware Data ow
(SADF) Graphs Theelen et a).200G. This method is based on Max-Plus automata that nds

19
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throughput expressions for a parametrized SADF graph. The approach extracts a Max-Plus Au-
tomaton Graph (MPAG) from an SADF graph and then uses a maximum cycle mean algorithm to
determine the critical timing cycle of the extracted MPAG. The timing behaviour of an application
depends on several dynamic aspects, e.g. its scheduling, Dynamic Voltage and Frequency Scaling
(DVFS), etc. The new technique is able to capture this dynamic timing behaviour by generating
throughput expressions for dynamic applications. Experimental results show that the proposed
technique outperforms others in terms of run-time, é@hdmarian et g12008§.

Throughput analysis can also be obtained through the HSDF graph method by getting the in-
verse of the Maximum Cycle Mean (MCM) of the equivalent HSDF gragdrp and Miller, 1966
Sriram and Bhattacharyy200(Q. The cycle mean of a cycle of an HSDF graph is de ned as the
total execution time of the cycle over the number of initial tokens in that cycle. There are ef cient
algorithms for calculating the MCM of an HSDF grapbdsdan and Guptd 999. However,
the HSDF conversion process may lead to an exponential growth in the size of the HSDF graph,
which leads to longer throughput analysis time. Another method for throughput analysis called
state-space analysis based on the periodic phase of execution of self-timed execution of an SDF,
CSDF, etc. graph, where a sequence of actor rings occur in a periodic pattern. The throughput
of an actor can be calculated by dividing the length of the period by the number of rings of the
actor in one period. An experimental comparison @hfmarian et al.200§ showed that the
state-space method outperforms the HSDF graph method in terms of analysis time.

Similar to throughput analysis methods, there are several works on latency anBlgsis [
makhrama and Stefanp2012 Ghamarian et al2007. In [Ghamarian et al2007, the authors
propose an algorithm to determine the minimal achievable latency between the execution of any
two actors in an SDF graph. Also, they present a heuristic that de nes a class of static order sched-
ules that provide minimal latency, while satisfying the throughput constraint. Experimental results
show that latency computations are ef cient despite the theoretical complexity of the problem.
In [Bamakhrama and Stefand®017, the authors proposed an algorithm that transforms acyclic
CSDF graphs into constrained-deadline periodic tasks to achieve both minimum application la-
tency and maximum throughput.

Away from methods for throughput and latency analys#uijk et al, 2004 presents a tool,
inspired by Task Graphs For Free (TGFB)dk et al, 1999, called SDF For Free (SO¥. SDF®
is a tool that implements an SDF graph generation algorithm that constructs graphs that are con-
nected, consistent, and deadlock-free, with support for analysing and visualising these graphs and
calculating their throughput. Also, it can take data ow applications as an input in the form of
eXtensible Markup Language (XML) les and perform analysis and conversion to HSDF graphs.

The data ow computational model can be used to analyse and derive different parameters that
de ne a data ow application. Examples of these parameters are throughput and latency. More-
over, it can be used to derive real-time parameters, e.g. offsets, deadlines and periods, as presented
in [Ali et al., 2015 Bamakhrama and Stefand®011, Bekooij et al, 2005 Hausmans et gl2013
Liu et al, 2014 Saifullah et al. 2017. These works are the main concern of this thesis and de-
tailed in Sectior2.2 Some of these analysis algorithms operate directly on SDF graphs, while
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many others require transformation to Homogeneous Synchronous Data ow (HSDF) graphs prior
to the analysis, using conversion algorithms proposed for such kind of transformationkeee. [
and Messerschmitl987a Sriram and Bhattacharyy200(. This transformation can lead to an
exponential increase in the size of the original SDF graph, which signi cantly increases the run-
time of the analysis algorithm.

To avoid the increase in graph size problem, data ow graph reduction technigues are needed
to decrease the size of HSDF graphs, and hence speed-up the analysis run-time. The following is
a quick review to the state of the art related to reduction techniques for data ow graphs.

In [Geilen 2009, the authors propose a SDF graph reduction technique based on Max-Plus
algebra. It transforms an SDF graph into a smaller HSDF graph with equivalent maximal through-
put and latency, which is faster to analyse. Each actor in the smaller HSDF graph may comprise of
single or multiple rings of different SDF actors. Due to this reason, the output HSDF graph of this
technique hides the actual execution behaviour of the original SDF graph, because a single ring
of an SDF actor can exist in multiple actors of the output HSDF graph. This means that a single

ring in the SDF graph is executed multiple times in the output HSDF graph, which complicates
extracting timing parameters and nding a feasible schedule. In contrast, we propose a reduction
algorithm that generates a reduced-size HSDF graph csléstit-based mergings detailed in
Chapterd. This reduction algorithm speeds up, at relaxed throughput and latency constraints, the
processes of extracting timing parameters and nding a feasible mapping and schedule for the
application, as the experimental results show in Chaptersd6, respectively. This is due to the
generated reduced-size graph have a small number of tasks compared to the original HSDF graph.
Also, the generated graph represents the actual execution behaviour of the original graph, avoiding
the problem with the approach iGEilen 2009. It also ensures that the throughput and latency
constraints are met, although with a possibility of having a lower maximum throughput compared
to the original graph. However, this is not a problem, because the main goal for real-time systems
is satisfying timing constraints.

2.2 Timing Parameter Extraction

There is a trend towards embedded systems allowing mixed application models with timing con-
straints (data ow and traditional real-time tasks) to run on the same multi-core platform. There-
fore, a uni ed model is needed to represent data ow with timing constraints and traditional
real-time applications. This section reviews techniques for extracting timing parameieesl (
mode) of task graphs to enable applying real-time schedulers and analysis techniques.

In [Bamakhrama and Stefan®011, 2012 Liu et al,, 2014, the authors provide an analytical
framework for computing timing parameters for actors of acyclic Cyclo-Static Data ow (CSDF)
applications with a single input. The actors are considered as implicit-deadline and constrained-
deadline periodic tasks irBarmakhrama and Stefano2011 and Bamakhrama and Stefanov
2012 Liu et al,, 2014, respectively. In contrast, this work is more general and can deal with any
HSDF graph (CSDF can be converted to an HSDF), single/multiple input, and actors are modelled
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as arbitrary-deadline tasks. Modelling the application actors as arbitrary-deadline tasks allows
capturing overlapping iterations, a main characteristic of data ow applications that increases the
throughput.

Another solution is presented ihipari and Bini 2011. The authors presented a deadline
assignment approach called ORDER for dependent tasks composing real-time pipeline applica-
tions executing on a multi-core system. The proposed approach was considering the problem of
scheduling a pipeline such that the end-to-end deadline is met and the amount of required resource
capacity was minimal. Contrarily, this work considers the general problem of deadline assignment
for dependent tasks comprising real-time application graphs, such as DAG and Directed Cyclic
Graphs (DCG), which are not supported [iyi Natale and Stankovjcl994 Kao and Garcia-

Molina, 1997, Lipari and Bini 2011].

In [Saifullah et al. 2011], the authors also address the problem of scheduling periodic DAG
tasks, each consisting of subtasks. They extract their timing parameters, i.e., individual deadlines,
and scheduled using global Earliest Deadline First (EDF) and partitioned deadline monotonic
scheduling. Another approach presenteddainhieh et a).2013 extracts timing parameters for
subtasks in a DAG task based on computing the interference between each subtask and the higher-
priority subtasks of all DAG tasks running on the system. In contrast, we consider a more general
problem where applications are represented as DCG and the extraction of the timing parameters is
independent of the scheduling algorithm being used.

Another technique is presented Buri and Stankovicl994. The authors propose an exact
characterization of EDF-like schedulers that can be used to correctly schedule dependent tasks,
and show how preemptive algorithms, even those that deal with shared resources, can be easily
extended to deal with dependencies. This was done by modifying deadlines in a consistent manner
so that a run-time algorithm, such as EDF, could be used without violating the dependencies. Also,
[Chetto et al.199Q propose a similar approach by modifying the timing parameters of the tasks.
This parameter modi cation is not only for the deadline of the tasks, but also include modi cation
of the task start time. However, both works consider task parameters as already de ned, which is
not the case in our problem. Moreover, they are only concerned with uniprocessor platforms.

Also in [Moreira et al, 2007, the authors present a method to calculate individual deadlines of
HSDF actors. The method is based on an Integer Linear Programming (ILP) optimization problem
that nds the amount of slack for each actor that makes it able to extend its execution without vio-
lating the HSDF throughput and timing constraints. However, their proposed method is restricted
to strongly connected HSDF graphs and the actor's offsets (release times) are calculated based on
the static-order schedule of the application. In contrast, this work is neither restricted to strongly
connected graphs nor does the offset calculation require static-order scheduling.

In [Hausmans et gl2013, the authors propose a temporal analysis for data ow applications
modelled as cyclic HSDF graphs under a non-starvation-free scheduler i.e. Static-Priority Pre-
emptive scheduler (SPP). To apply the analysis they extract timing properties like jitter (difference
between best-case and worst-case offsets), periods, and execution times, but not deadlines, since
SPP schedulers depend on periods not deadlines. The calculated jitter is based on the interference
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from the set of high-priority tasks with the task being analysed running on the same platform. This
means that the timing parameters calculated are dependent on the set of applications running on
the platform. Contrarily, this work is independent of the scheduler being used and other appli-
cations running on the same platform, since our proposed algorithm transforms the HSDF actors
into a set of independent tasks that enables any bin-packing heuristic to be applied for mapping
them on the platform.

In [Bouakaz et a).2013, the authors present a new data ow computational model that is
a superset of SDF/CSDF application graphs called Af ne Data ow (ADF). The ADF is a time-
triggered data ow model that explicitly represents each ring of each actor in a complete iteration
of the graph as a so-called clock tick. These clock ticks are related to each other using ring
relations called af ne relations. These relations maintain precedence constraints between differ-
ent rings of actors in the graph, since it ensures the correct execution order of different clock
ticks. Based on this framework, they present an algorithm that computes af ne schedules for these
clock ticks, which enables applying real-time scheduling algorithms, e.g. earliest-deadline rst or
rate-monotonic. However, the use of clock tick representation and af ne relations to represent the
ring behaviour of actors does not speed up the process of nding a feasible schedule, because it
indirectly transforms the ADF to an HSDF graph (using the clock tick representation) to be able to
nd a feasible schedule. In addition, the presented algorithm does not support end-to-end latency
constraints, since it assumes an implicit-deadline task model. In contrast, this thesis work sup-
ports end-to-end latency constraints and uses the arbitrary-deadline task model, which adds more
generality to the work.

2.3 Ef cient Mapping

The problem of task mapping in data ow applications and task graphs has been the subject of
quite some previous research.

In [Ramamritham199Y, the author discusses a static algorithm for allocating and scheduling
components of periodic tasks (SDF graphs) that consist of subtasks (actors) with precedence con-
strains across sites in distributed systems and multi-processor systems. This algorithm consists of
two parts; the rst part decides whether a group of communicating subtasks of a task should be
assigned to the same site as a cluster, while the second part allocates the clusters of subtasks to the
sites in a system (or cores of multiprocessor) based on the ability to nd a feasible schedule for
the subtasks as well as the communication between them. Compared to the work we propose in
this thesis, the approach iRgmamritham1999 tries to nd a feasible static schedule for tasks
inside the cluster. In contrast, we are aiming to use existing real-time scheduling methods, i.e.
EDF, inside the clusters. Furthermore, this thesis takes into account the communication cost while
satisfying the timing constraints.

In [Peng and Shin1989, the authors propose a similar approachRafnamritham1993.

They propose an optimal solution for the allocation of periodic tasks onto a heterogeneous dis-
tributed real-time system using a Branch and Bound (BB) algorithm. The periodic tasks are mod-



24 State of the Art

elled as a graph, which describes computation and communication modules as well as the prece-
dence constraints among them. However, they do not allow subtasks (nodes) of a task (graph) to
execute on different sites (cores) and they use BB search for nding a feasible schedule, while in
[Ramamritham1999 it is a heuristics-directed search.

The work presented irLju et al, 2007 proposes a task-allocation model for multi-core pro-
cessors. Applications are represented as Task Interaction Graphs (TIG), where an iteration-based
heuristic tries to allocate the graph's nodes based on a set of rules that includes: reducing commu-
nication overhead, reducing context switching and maintaining load balancing among cores. Eval-
uation results show that the algorithm can nd near-optimal solutions in reasonable time compared
to genetic algorithms when the number of threads increases (it can nd solutions in much less time
than Genetic Algorithm (GA) and Ant Colony Optimization (ACQ) gt al., 2003). Also [Ennals
et al, 2005 Evans and Kesslgt992 Lo, 1988 Ma et al, 1987 address the problem of tasks allo-
cation to multi-processors, taking into account the sizes of the tasks, the communication between
them and load balancing. However, these works does not take into account the timing constraints
required by real-time applications, which is the main focus of the work presented in this thesis.

Stuijk et. al Btuijk et al, 2007 presented a resource allocation strategy that can allocate mul-
tiple SDF graphs onto a heterogeneous multi-core platform with throughput guarantees to each
individual application. The proposed method can deal with multi-rate graphs and cyclic depen-
dencies without conversion to HSDF graphs. The allocation strategy consists of three main steps:
1) an actor binding, where every actor from the SDF graph is assigned to a core on the multi-
core platform to achieve the application throughput constraint. This is done by considering rst
the actors whose execution times have large impact on the application throughput. Then, 2) a
static order schedule for each core containing actors of the SDF graph is done. Finally, 3) time
slices are allocated for cores based on a binary search algorithm which guarantees satisfying the
throughput constraint. The experiments show that this enables a balanced resource allocation of
time-constrained applications bound to a heterogeneous multi-core platform. Despite this alloca-
tion strategy being similar to the mapping technique in this work, explained in Chaptethe
sense of giving priority to allocation of actors whose execution have a large impact on application
throughput (in our solution priority is given to actors in the sensitive path of the application), the
use of static scheduling may not be able to satisfy the timing constraints of traditional real-time
applications in the addressed research problem. Furthermore, the proposed mapping algorithm is
restricted to SDF graphs only and cannot be applied on other types of data ow graphs, e.g. CSDF.

In [Bamakhrama and Stefand011], the authors provide an approach where actors (nodes)
of streaming applications are considered as implicit-deadline periodic tasks. They provide results
of tests on real streaming applications from the 3BEnchmark $tuijk et al, 2004, and also use
PEDF as the scheduling algorithm for periodic tasks. They use the FF algorithm for the allocation
of nodes on the cores, and show that in more than 80% of the cases the throughput resulting from
the approach is equal to the maximum achievable throughput.

In summary, the mapping problem has been tackled in several works either from a high-
performance point-of-view ignoring timing constraingnjpals et al.2005 Evans and Kessler
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1992 Liu et al, 2007, Lo, 1988 Ma et al, 1987 or, applying FF taking into account timing
constraints Bamakhrama and Stefana®011]. Applying the rst approaches on the allocation

of real-time applications will not guarantee satisfying its timing constraints, while applying the
second approach will likely result in over-dimensioned systems.
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Chapter 3

Background

In this chapter, we present relevant background information and mathematical formulation that
is essential for understanding the computational model, the system model and the proposed so-
lution. The presented background consists of three main sectigngal-time systems?) the

data ow computational model arg) multi-’/many-core platforms. For real-time systems, detailed

in Section3.1, we discuss basic concepts and de nitions, followed by multi-core scheduling al-
gorithms, and feasibility tests. For the data ow computational model, detailed in S&c#omwe
formalize the Synchronous Data ow (SDF) and the Homogeneous Synchronous Data ow (HSDF)
models. In multi-/many-core platforms, detailed in Sec8d®) we give a quick overview on multi-
/many-core platform architectures. After this detailed background, we present our system model
in Section3.4.

3.1 Real-time Systems

A real-time system is one in which the correctness of the computations not only depends on their
logical correctness, but also on the time at which the result is produced. In other words, a late
answer is a wrong answer. As we mentioned before, a real-time system runs several real-time
processes called tasks. A real-time taskienerates periodic instances, called J@bsA real-

time taskt; is de ned by several parameters. A jdbinherits the same parameters of the tgsk

that generates it. These parameters are the period of exedutite WCETC;, the arrival time
(offset) &, the start timeg§, the nishing timeF, and the deadlin®;, as illustrated in Figur8.1

The periodT; determines the rate of execution of a tagkwhich speci es the frequency of jobs

Ji generation. The WCET; is the time necessary for the processor to execute & joba taskt

without interruption. The arrival time (offsed) is the time at which a jolj; of a taskt; becomes

ready for execution, relative to its peridd The start time§ is the time at which a jolj; of a task

t; starts its execution. The nishing tirfg is the time at which a jol; of a taskt; nishes its exe-
cution. The deadlin®; is the time before which a joly of a taskt; should be completed, relative

to g, to avoid damage to the system or degradation in its performance according to its real-time
system category classi cation. In this thesis, we refebDtaas the relative deadline. THg is

27
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Figure 3.1: Real-time task parameters.

called the absolute deadline, which represents the absolute value of a deadline gt drjahis
research, our system model de nes the real-time tabl (a;;C; Ti; D;) parameters, neglectirtgy
andF; since they are not signi cant to our model.

A given set of jobs]; must be ordered for the jobs to be executed such that the deadline
constraints are satis ed. The execution of a jhlmmay or may not be interrupted (preemptive or
non-preemptive scheduling) by other jobs. Over the set of jobs, there is a precedence relation, in
case of dependent tasks, which constrains the order of execution. The platform on which the jobs
are to be executed is characterized by the amounts of resources avaiaide g 2004 Joseph
1996 Krishng 1996 Stankovic and Ramamrithgrhi989. A real-time scheduling algorithm must
achieve a main goal which is meeting the timing constraints of the sysieseph1996 Krishna
1994. There are also other goals that a real-time scheduling algorithm should achieve, however,
they are not a primary driver for the algorithm. Example of these side goals are:

1. Attaining a high degree of utilization.

2. Preventing simultaneous access to shared resources and devices.

3. Reducing the cost of context switches caused by preemption.

4. Reducing the communication cost in real-time distributed and multi-’/many-core systems.

Basically, the scheduling problem is to determine a schedule for the execution of the jobs so
that they are all completed before their deadliBaetfazzqg 2004 Joseph1996 Krishng 1996
Stankovic and Ramamrithgrh989. Given a set of real-time tasks, the appropriate scheduling ap-
proach should be designed based on the properties and category of the tasks, previously discussed
in Sectionl.1.1 In this work, we are consideringard real-time task sets

Theresponse time Rf the jobJ; is the difference between the time the job nishes executing
that invocatiorF and the time it arrived;, which is the time it takes the job to complete its execu-
tion, as shown in Figur8.1 A critical instantof a task, under a given scheduling algorithm, is a
release that yields the longest possible response time of that task for the given task set. A schedule
is said to be valid iff all deadlines of all tasks are met. The processor is said to be fully utilized,
under a given scheduling algorithm and task set, if the algorithm produces a valid schedule for
the given task set, but an increase in the execution time of any task in the task set would yield an
over ow. A scheduling algorithm is considerexgbtimalif it produces a valid schedule for every
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task set that is schedulable.

Scheduling can be classi ed according to the type of the platform that tasks runs on, which are
uniprocessor or multi-core. Uniprocessor scheduling may be considered as priority driven in the
sense that the task with the highest priority that has execution remaining should be scheduled. In
that regard, there are two main types of priority-based scheduling algorithms:

1. Fixed priorities, where static priorities are assigned to tasks. These priorities are inherited
by the instances of the tasks (jobs). The priority of a job remains static throughout the ex-
ecution time. There are various xed-priority assignment algorithms, e.g. Rate Monotonic
(RM) [Lehoczky et al.1989 Liu and Layland 1973, and Deadline Monotonic (DM)Le-
ung and Whitehegad 989. Usually, the priority is assigned based on certain properties of
a task. In case of the DM priority assignment algorithm, the task with the shortest deadline
is assigned the highest priority. Similarly, in the RM priority assignment algorithm, the task
with smallest period is assigned the highest priority.

2. Dynamic priorities, where priorities are calculated and assigned to tasks during the run-
time of the system. A task can carry more than one priority during its execution, because
priorities are assigned to jobs rather than their tasks. It means that different jobs of the
same task may execute on a processor with different priorities. There are many scheduling
algorithms that falls in this category , e.g. Earliest Deadline First (EBE)Jah et a].199Q
1993 Leung and Merril) 198Q Liu and Layland 1973, and Modi ed Least Laxity First
(MLLF) [Oh and Yang1999. The priority of a job in this class of algorithms is usually
assigned based on the xed property of a job. For example, in case of EDF, the absolute
deadline of a job is the xed property that does not change throughout its active time.

3.1.1 Multi-core Scheduling

Multi-core scheduling can be classi ed into two categories: partitioned and global scheduling
[Davis and Burns201]. Partitioned scheduling statically assigns each task to a single processor,
where uniprocessor scheduling algorithms can be applied afterwards to schedule tasks, e.g. Parti-
tioned Earliest Deadline First (PEDH)dpez et al. 2004. In contrast, global scheduling allows

tasks to migrate across cores of a multi-core platform and algorithms that simultaneously schedule
on all the processors are used, e.g. Global Earliest Deadline First (GB2aR)gh and Baker
2008ah]. Many partitioning algorithms and their analysi&druah and FisheR00§ Fisher et al.

2006 Oh and Baker1999, and global scheduling algorithms and their analyAisdersson et al.

2001, Baruah et al.1996 Davis and Burns2011]], have been proposed. In this thesis, we use a
partitioned scheduling technique call@drtitioned Earliest Deadline First (PEDF)

3.1.2 Feasibility Tests

Real-time scheduling is the theoretical basis of real-time systems engineering. Feasibility tests can
be suf cient or exact (necessary and suf cient). Suf cient tests are usually ef cient but they are
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not powerful; many schedulable task sets are not judged to be schedulable. The simplest suf cient
tests for real-time systems are utilization-based and they have polynomial complexity. However,
they are not suitable for all types of task sets. In the following sections, we give an overview of
two feasibility tests for EDF scheduling algorithm that are used in this work. They adethend

bound functiorandQuick convergence Processor-demand Analysis

3.1.2.1 The Demand Bound Function

The demand bound function (dbB&ruah et al.199( represents the computational requirement

for the system resources of a set of taskslt is mainly used as a feasibility test to check the
schedulability ot within a certain interval by checking its demand against the available computa-
tional resources. If the demand exceeds the available computational resbusces,schedulable

in this speci c interval and vice versa. The dbf is the summation of computation time of all the
instances of a set of tasks having their release and deadline within a certain ifitetMal The

dbf calculation differs according to the scheduling algorithm and the task model used. In case of
the asynchronougy 0) constrained-deadline task modBl ( T;) under an EDF scheduler, the

dbf is de ned as follows Baruah et a].199Q:

dbf(to;t;)) = § max O;
8t;2t

G (3.1)

However, to check that is schedulable at any point in time, an exact, necessary and suf cient
feasibility test is to calculate the demand adver the hyperperiod interval of all tasks' periods,
because it forms the cycle over which the system repeats its behaviour. The hyperperiod interval
H is denoted by Leung and Merrill incpung and Merril] 1987 as :

H=[0;2 lemg 2 Tig+ max aig] (3.2)

where,tg = 0 andt; = 2 lcmg;,2¢ f Tig+ maxgt;21 f ;9. Therefore, by substitution @f in Equa-
tion (3.1) the dbf becomes as follows :

t1 D - &
T Ti

dbf(0;t)) = & max O
8ti2t

G (3.3)

3.1.2.2 Quick Convergence Processor-Demand Analysis

Quick convergence Processor-demand Analysis (QBAafig and Burn2009ab] is a necessary

and suf cient feasibility test for the schedulability of synchronous arbitrary-deadline model task
sets scheduled using EDF. This means that anyttesiives at time zero& = 0) and its relative
deadlineD; could be larger than its periol. The QPA builds on the traditional processor de-
mand analysis (dbf), previously detailed in Sect®h.2.1 However, it provides fast and simple
schedulability test, because QPA has a tight intejtga;] compared to dbf. This decreases the
number of absolute deadlines that need to be checked in the inftgri|d] and hence reduces the
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Algorithm 1. Quick convergence Processor-demand Analysis (QEApfig and Burns

20094.
t: Task set.
h(t): Processor demand.
1 begin
2 t max fDijD; < t1g
3 while (h(t) t)~ (h(t) > ming2¢ f Dig) do
4 if (h(t) < t) then
5 |t h()
6 else
7 ‘ t  max fDijD; < tg
8 end
9 end

=
o

if (h(t) ming;2¢ fDig) then
\ — The task set is schedulable.

[N
[N

12 else

13 \ — The task set is not schedulable.
14 end

15 end

calculation effort exponentially in most situations.

The QPA checking interval starts liy= 0 and ends by;, which is the minimum value of
the upper bound for the schedulability tgsand the synchronous busy period of a proceggsor
Considering that the upper bountgdis not well de ned (divide by 0) when the utilization of the
task setJ is equal to 1, let; be de ned as followsZhang and Burn20093:

8

< : .
min(tg; U<1
= (taito) (3.4)
" 1p u=1

The upper bound for the schedulability tests de ned as follows Zhang and Burn20094:

an - . .
ta = max D1;:::;Dn:a'=1(1-I Llj).) Y

(3.5)

The synchronous busy period of a procedgds the period in which all tasks are released simul-
taneously at the beginning of the processor busy period at their maximum rate, and ended by the
rst processor idle period (the length of such a period can be zero). The length of the synchronous
busy period;, can be computed by the following proce&Sgoll et al, 1996 Spuri 1994:

Mzgq (3.6)

i=1

wr

Wm+1=
1 i

G (3.7)

- Qou
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(a) SDF graph. (b) HSDF graph.

Figure 3.2: An SDF graph and its HSDF representation.

where the recurrence stops whefi*1 = w™, and thert, = w™ 1,

The QPA is an iterative algorithm that starts with a value@bse td1, and then, iterates back
through a simple expression toward 0. The value of tlisquence converges for an unschedu-
lable system to mig,»: f Dig, and converges for a schedulable system to 0. A general task set is
schedulable ify 1 and the result of the iterative Algorithfhis h(t)  ming;2¢ f Djg, where
h(t) is the processor demand de ned as follows:

ht)= § max 0, 1+ Di

8t;2t i

G (3.8)

3.2 Data ow Computational Model

Data ow is a natural paradigm for describing DSP and streaming applications for concurrent im-
plementation on parallel hardware. Data ow programs are directed graphs where each node repre-
sents a function and each edge represents a signal path with a dependency. In this section, we give
a quick overview of Synchronous Data oviL.¢e and Messerschmitt9874 and Homogeneous
Synchronous Data ow models of computation, which are widely used in modelling and analysis

of streaming applications.

3.2.1 Synchronous Data ow

The Synchronous Data ow (SDF)L.ge and Messerschmift9874 model of computation is widely

used in modeling and analyzing streaming and concurrent multimedia applic&luaisdcharyya

et al, 1999 Sriram and Bhattacharyya00(. Its use has been increasingly considered for design-

ing applications for multi-/many-core platformBdplavko et aJ.2003. Synchronous Data ow

(SDF) is a special case of data ow; an actor is considered synchronous if the number of input to-
kens that are consumed on each input (consumption rate) and the number of output tokens that are
produced on each output (production rate) can be speci ed a priori. An SDF application is a set
of synchronous nodes connected to each other with channels, where the same behaviour repeats
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in each actor every time it is red. These channels can have initial tokens. Every initial token
represents a delay between the token produced and the token consumed at the other end of the
channel. Tokens are always consumed in a First In First Out (FIFO) order.

From this de nition, any SDF application can be formally represented by a Directed Cyclic
Graph (DCG)G = W, E;di, whereV is the set of node% is the edges connecting them aths
the set of delays (initial tokens) on the edges of the graph. Each node in this graph is an actor
and each edge is a communication channel. Fi§u2é)shows an example of an SDF graph that
represents a streaming application. It consists of four actmded (Va, Vb, Ve, Vg) connected to
each other by channeledge$. Each actor's production and consumption rate is written next to
its ports. However, in case not indicated it is equal to 1. For example,\adias input and output
ports with production and consumption rates of (1, 1), respectively. Initial tokens are indicated
on the channel by a black dot and a number indicating the amount of initial tokens, as shown in
Figure3.2(a)

An SDF graphG can be described by a topology mat@xwhere the elemert; is de ned as
the number of tokens produced on iHechannel €dgé by the j" actor fiode [Lee and Messer-
schmitt 1987H. There is one row in this matrix for each channel in the graph, with a positive
element for the actor that produces tokens on the channel and a negative element for the actor that
consumes. All the other elements in the row are zero. Equadi@nghows the topology matrits
of the SDF graph in Figurgd.2(a)

(3.9)

® &Cw

O O w

0

An SDF graph has two main properties, theylarenessandconsistencyFor an SDF graph to be
live, all its actors must be ring inde nitely. If its actors have a maximal execution ( ring) of nite
length, the SDF graph hasdeadlock For an SDF graph to beonsistenta shortest non-empty
sequence of actor rings should exist calledegetition vectorg. Therepetition vectorg must
satisfy the balance equations

Gg="1 (3.10)

, Where each elememf; of the repetition vector speci es the number of rings of tHe actor.
Applying Equation 8.10 on the example of Figurg.2(a) the repetition vectog will be:
h iT
= 1 3 3 1 (3.11)
When each actor is red the number of times speci ed dpythe distribution of tokens on all
channels return to their initial state. This is referred to a®mplete cycler graph iteration
Each actow; 2 V has a computation time denoted ®y The ji" ring of an SDF actory; in V is

denoted by(/ij and executes fdt; time units.
Every SDF application has a throughput requirement and a latency constraint that must be
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satis ed for correct execution of the application. The throughput requiremént performance
measure that determines the minimum output data rate of the application (iterations per time unit).
In contrast, the latency requiremdntis an end-to-end timing constraint that de nes the latest
possible time a complete graph iteration@fcould nish its execution relative to the iteration

start time. In this work, the end-to-end deadline constfimalue must be greater than or equal

to the execution time of the critical path (CP)@ de ned as follows:

D & G (3.12)

8Vij2CP

Intuitively, the CP is the longest path of ringg,, in terms of execution tim€;, from the input to
the output ofG.

3.2.2 Homogenous Synchronous Data ow

Homogeneous Synchronous Data ow (HSDEEE and Messerschmitt9874 is a special case
of SDF graphs in which all production and consumption rates associated with actor ports are equal
to one. Therefore, when each actor is red once, the distribution of tokens on all channels return
to their initial state completing a graph iteration. Applying this de nition, the repetition vector
for an HSDF graph is one for all actors. Just like SDF, any HSDF application can be formally
represented by a Directed Cyclic Graph (DQ&)= hy; Ep;di , whereV; is the set of nodess,
is the edges connecting them ahs the set of delays (initial tokens) on the edges of the graph.

Similarly to SDF, an HSDF application has a throughput requirement and a latency constraint
that must be satis ed for correct execution of the application. The throughput requirenieat
performance measure that determines the minimum output data rate of the application (iterations
per time unit). In contrast, the latency requiremiris an end-to-end timing constraint that de nes
the latest possible time a complete graph iteratioafould nish its execution, as de ned in
Equation 8.12. The end-to-end timing constraibtis a deadline between the rings of the input
and output actor(s) in the same iteration. The input and output actor(s) of an HSDF graph may have
multiple route(s) between them, each referred to@®me-constrained path FFundamentally, the
requiremenD must be greater than or equal to the sum of execution tne$all actors on the
critical path (CP) for the application to be schedulable. Formally, a time-constrainedp psith
de ned as follows:

P=fhvwg:iiiwi tv Vg (3.13)

where vy refers to the input actoyy, refers to the output actor, and its end-to-end latency constraint

D é’yl G (3.14)
8\i/i:2)é;:P
If Pis cyclic, it terminates in the last node before reaching an already visited node. This means,
in case of cyclic pathyy refers to the rst visited actor and, refers to the last visited actor
before reaching an already visited one. For example, in the HSDF graph shown in Eigfre
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(a) SDF graph (b) HSDF graph

Figure 3.3: An SDF graph and its HSDF representation with nite-size buffers.

(Vao; Ving; Vieos V) IS NOL cyclic, because it starts at actgy and ends at actag,, while (Vg ; Vi, ; Vb,)

is cyclic because it terminates at actgy before repeating itself again. Each time-constrained path
P starts at one of the input actors and ends at one of the output actors and its latency conBtraint is
For example, assume the HSDF application in Figuig&b) has an end-to-end latency constraint
D. Then, all time-constrained paths must start with agtgrand end with actovy,, unlessP is
cyclic.

3.2.3 Buffer Modelling in Data ow Graphs

In theory, SDF channels have in nite buffer sizes. However, in practice SDF channel buffer sizes
must be nite. Finite buffer sizes for channels can be modelled by adding back-edges carry-
ing a number of initial tokens. These initial tokens on each back-edge represent the buffer size
(in tokens) available to the corresponding channel. Figuséa)shows the example application
from Figure 3.2(a) considering nite buffer sizes. As we can see, the channals &,; €.q)

have buffer sizes of (3;3) tokens, respectively. These buffer sizes are modelled as back-edges
(ena; Ecb; €4c) carrying initial tokens equivalent to the corresponding channel buffer size, as shown
in Figure3.3(a) Modelling buffers in an SDF graph affects its execution behaviour, because it
adds extra dependencies between rings of different actors, limiting the set of possible ring se-
guences of the graph. Figude3(b)shows an HSDF graph representation of the SDF graph shown
in Figure3.3(a) As we can see, ring/, is dependent on the three ringg,, Vb, andvg,. How-

ever, in the in nite buffer case shown in FiguBe2(b)the same ringw, is only dependent on
rngs Vg, andvy,, which gives the application the freedom to vg andv, in parallel.

3.3 Multi-/Many-Core Platforms

Multi-core platforms increasingly provide higher performance by increasing the number of cores
in a chip, as a result of the consequences of Moore's Law and power dissipation. This widespread
trend, usually referred as the "the multi-core revolution", is how even more challenging, as chips
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Figure 3.4: TILE64" block diagram Bell et al, 2009.

start to become many-core, that is multi-core chips with an even higher number of cores (tens
to hundreds), interconnected by Networks-on-Chip (NoC). Examples of this trend include the
Tilera Tile CPUs Wentzlaff et al, 2007 (TILE64™ features 64 cores), Intel's Single-Chip Cloud
Computer (SCC)Mattson et al.201Q (an experimental processor with 48 cores), Intel Many In-
tegrated Core (MIC)$eiler et al.200g (Xeon Phi features 60 cores), STMicroelectronics P2012
[Benini et al, 2017 (prototypes are available with 69 cores), Kalray's Multi Purpose Processing
Array (MPPA) [de Dinechin et a).2013 (up to 1024 cores — current version is 256 cores) or the
Adapteva Epiphany with up to 4096 cores (available now with 1024 cofeks [

These many-core architectures allow both to concentrate multiple applications into the same
processor, maximizing the hardware utilization, and reducing cost, size, weight, and power re-
quirements, and to improve application performance by exploiting parallelism at the application
level.

This thesis considers multi-core platforms with identical cores (Homogeneous architecture),
such as TILE6Z' [Wentzlaff et al, 2007. The processor mod@ incorporates a number of iden-

processor that includes a non-blocking switch that connects the tile to the 2D mesh IN. The IN
uses X-Y routing algorithm accompanied by wormhole switching and TDM arbitration for trans-
ferring data and managing traf c between different cqogsThe speed of transferring data on the

IN is determined by the link capacity of the IN, which is measured in bits per second (bps). Itis
de ned as in Nikoli€ et al, 2013 Shi and Burns2009:

L = f

= 3.15
o I (3.15)

wheref represents the it size in bitdg, andl; represent the switch latency and transfer latency
of one it in seconds, respectively. An applicatidg running on the platfornP can reserve a
dedicated bandwidth on the IN to assure a required performance called reservation baRdidth
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which is a fraction ofL. According to this speci cation, the time required for a packeatf an
applicationA; traversing the IN from source to destinatiGr, is de ned as:

Ciip= Clip+ IOV (3.16)

whereCi‘;Sg is the isolation time that represents the time required by the packet to reach its des-
tination without suffering interference, and® is the interference caused by the TDM arbiter.
The isolation timeCii;Sr‘)’, also known in the literature as basic network latency, is equal to the delay
of the rst it ( heade) to reach the destination router, augmented by the processing delay of all
remaining its (payload at the destination router.

The isolation timeﬁ:i‘?g of packetp from an applicatio; is de ned as:

CisoL

Cv= R~ (317)
1

whereCi‘;Sg'- is the packet isolation time assuming full link capa¢ityTheCi‘;S§:'- is de ned as in
[Nikoli€ et al, 2013 Shi and Burns2009:

Ciot = rp_(| £V+_I‘§+ Tj l¢ (3.18)
header |—{Z—}
payload

whereh, represents the number of hops of the pagketndp; represents the packet size in bits.
The rst it ( heade) establishes the path, which means it experiences the switch ldtgnaly

the routers and the transfer laterigyof the communication links on its path to destination, as
demonstrated in the rst term of Equatio8.(8. However, the restp@yload follows the header

in a pipelined manner, i.e. when the rst it progresses from one router to the next, the rest of the
its follow, each separated by the transfer latency. This means, the payload only experiences the
transfer latency; of the communication links, since the path has been already established by the
header. As we are using X-Y routing algorithm for directing traf c on the IN, the number of hops
hp of a packetp is de ned as:

hp=jx1 X+ jyr Yo (3.19)

where &1,y1) and &o,y»2) are the locations of the source and destination cores in the plaBorm
respectively. Substituting EquatioB.(5 in Equation 8.18 results in:

CBot = hy L % { lsw (3.20)
|z | {z }
header

payload



38 Background
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Figure 3.5: A TDM frame with frame sizé of 6 where 2 allocated slofs; to applicationA; for
continous slot assignment policgkesson et a).2015.

By substituting Equation3(20 in Equation 8.17)

. f o} f lsw
Ci=hp + -1 - (3.21)
’ R; f LR, R;
—£21 AR
header payload

Before de ning the equation that computes the TDM interference, we have to understand
the mechanism of a TDM arbiter. A TDM arbiter operates by periodically repeating a schedule,
referred to as a frame, that determines which application(s) that may be injected into the IN at a
particular time to as a frame. The frame comprises a number offslotach corresponding to a
single IN access with bounded execution timés@ft+ |;. Every application is allocated a number
of slots{ ; in the frame at design time. The percentage of bandwidth allocated to an applisation
(reservation bandwidtR;) is determined by the number of allocated slptsn the frame and is
computed according to EquatioB.22), de ned in [Akesson et a).2015.

R = (3.22)

{i
F
The TDM interferencdrpym, on the other hand, depends on the slot assignment policy that
determines how the allocated slots are distributed in the frame. A commonly used slot assignment
policy is to use aontinuous allocatiorfForoutan et aJ.2013 Gomony et al. 2013 Goossens
et al, 2013Rhc, Vink et al, 2009, where slots allocated to an application appear consecutively in
the frame, as shown in Figu@5. For this policy, the TDM interference of an application (in
slots) can simply be computed according to Equat®d), as de ned in Pkesson et a).2019.

|TOMeo= F (3.23)

For example, the TDM interference of an applicatin(in slots) that has been assigned two slots

({ 1= 2)in a TDM frame of size sixK = 6) using continuous slot assignment policy is equal to
four (I1PMc0 = 4), as shown in Figurd.5. The advantage of the continuous slot assignment policy

is that it is simple to understand and implement, and that both the interference and the bandwidth
are straight-forward to compute. By substitution Equati8i23 in Equation 8.23, I;7PM:c0 js

equal to:
I_TDM:co -
|

{i ,
R—i {i (3.24)
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In this thesis, we adopt the continuous slot assignment policy. Theréfdt¥, (in seconds) is
de ned as: .

vovs Lo (3.25)
wherel_iRi represents the duration of a single interfering slot in seconds. Equatizi) 4ssumes
that TDM slots are atomic, which means that the worst-case arrival of a ppékétist after its
own slot has nished. However, the real worst-case arrival of a pagkeone clock cycle after
its own slot has started, because TDM slots are not atomic, while clock cycles are atomic though.
This means the packethas missed the start of its own slot and it will either be empty, or used by
the packets of another application depending on, whether or not, the resource is work-conserving.
In this case, th&"PM (in seconds) is de ned as:

f f 1

{i
. + = L0 .+1
b LRi LR INfreq Ri b

|TPM = (3.26)

{i 1
Ri LR, G

whereG is the IN frequency anc% is the duration of one cycle in seconds. By substituting
Equations 8.21) and (3.26) in Equation 8.16), the WCET of a packet is de ned as:

f Pp f Isw { i f 1
R f LRi Rj Ri L R
i Ao B R, AR B AT RAR
header payload interference

Equation 8.27) shows that execution time of a packet comprises three terms. The rst term is the
time spent by the packet's header (a single it) to traverse the IN. The second term is the time taken
by the packet's payload to traverse the IN, following the header's established path in a pipelined
manner. The third term is the interference suffered by the packet during traversing the IN.

3.4 System Model

Formally, we consider a systei = hP;Ai based on a homogeneous symmetrical multi-core
platformP of sizen n. Each corep, is a full-featured processor that includes a non-blocking
switch that connects the tile to the 2D-mesh IN. The IN uses X-Y routing algorithm accompanied
by wormhole switching and TDM arbitration for transferring data and managing traf ¢ between
different coreg,. The speed of transferring data on the IN is determined by the link cagacity

of the IN, which is measured in bits per second (bps). The platlermns the set of periodic
applicationsA that comprises independent real-time tasks and equivalent HSDF representation of
SDF applications. Any SDF grapgh can be converted to an equivalent HSDF gr&ptby using

a conversion algorithm, such as the one presente&iinam and Bhattacharyy200(. Each
HSDF graphGy, running on the platforrP has a dedicated percentage of the link capalcity
called reservation bandwidfR. This reserved bandwidth (R ;) per applicatiord guarantees a
dedicated link capacity for the tokens exchanged by the HSDF dggplcross the IN, preventing
racing between applications on the medium. The actors ofstheepresents the rings of the
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actors of the SDF grapB. Therefore, the set of actors of the HSDF gr&pihepresents the rings
of the set of actors of the SDF graphand the number of initial tokend for both of them is
exactly the same. In this model, we assume that all the SDF applicatiéniseme periodic input
sources. Therefore, each actpin the HSDF grapl@, can be considered a periodic task. Sl
actors can be scheduled Brusing traditional real-time schedulers.

A periodic taskt; 2 V is represented by the 4-tugle= ( &;C;; Ti; Di), whereg; is the relative
offset that speci es the start instant of an ac@ris the worst-case execution tingjs the relative
period andD; is the relative deadline of the task. Thglization of taskt; is denoted byJ; and is
de ned asU; = Gi=T;, whereU; 2 (0; 1]. Additionally, thedensityof taskt; is denoted by ; and is
de ned asrj = Ci=Dj, wherer; 2 (0;1]. All tasks are modelled as arbitrary-deadline tasks.

In this model, we assume that all actors computation @nare equal to the Worst Case
Execution Time (WCET), which can be determined using methods and tools detail&dhglm
et al, 2008. Therefore, each ringy;; of an actory; in any SDF application can be considered
a periodic task with an execution tin@ equal to WCET. The choice of WCET is safe, because
the data ow model of computation is monotonic, which means faster execution of actors does not
result in a worse performance.



Chapter 4

Reducing Complexity of Data ow
Graphs

As explained Chaptet, future real-time embedded systems integrate mixed application models
with timing constraints on the same multi-core platform. Extraction of timing parameters (offsets,
deadlines, periods) from these applications enables the use of real-time scheduling and analysis
techniques, allowing to provide guarantees on satisfying timing constraints. However, existing ex-
traction techniques require the transformation of the data ow application from highly expressive
data ow computational models, e.g., Synchronous Data ow (SDF) and Cyclo-Static Data ow
(CSDF) to Homogeneous Synchronous Data ow (HSDF). This transformation can lead to an ex-
ponential increase in the size of the application graph that signi cantly increases the run-time of
the analysisGeilen 2009.

In this chapter, we address this problem by proposing an of ine heuristic algorithm called
slack-based merginfAli et al., 2017. The algorithm is a novel graph reduction technique that
helps speeding up the process of timing parameter extraction and nding a feasible real-time
schedule, thereby reducing the overall design time of the real-time system, as we later show in
Chapterss and6. It uses two main concepts) the difference between the timing constraints of
the SDF graph and the WCET of its ringslack to merge rings and generate a reduced-size
HSDF graph, ant) the novel concept of merging callecgafe mergewhich is a merge operation
that we prove cannot cause a live HSDF graph to deadlock.

We begin our journey through this chapter by de ning parameters and concepts that help in
understanding the slack-based merging algorithm in Sedtibrirhen, we explain the novel safe
merge concept in Sectich2 After this essential overview, we present the slack-based merging
algorithm in Sectior.3, followed by the experimental evaluation of the proposed algorithm in
Section4.4. Finally, we conclude the chapter with a summary in Secfién

41



42 Reducing Complexity of Data ow Graphs

Cdo 2
(a) SDF graph (b) HSDF graph

Figure 4.1: An SDF graph and its HSDF representation.

4.1 De nitions

In this section, we de ne parameters and concepts essential to the speci cation of our algorithm.
They are:1) the set of predecessor ring¥{v;;), 2) the set of successor ring§ (vi;), 3) the
earliest start time of a ringJ;, 4) thelatest nish time of a ringgq;;, 5) the topologically ordered

set of actord/ and6) the concept oflependent/independent rings

First, the set of predecessor rind¥(v;;), is de ned as follows:

De nition 4.1 (Set of predecessor ringdMv;;)). In an SDF application G, a set of predeces-
sor rings Wv;;) de nes the collection of rings that must execute to enable ring WMv;))
represents the set of precedence constraints that must be satis ed before; ring v

Second, the set of successor ringgv;;), is de ned as follows:

De nition 4.2 (Set of successor rings=(vj;)). In an SDF application G, a set of successor
rings F(vi;) de nes the collection of rings that cannot execute befare ¥ (vj;) represents the
set of rings dependent on ringy.

Third, the earliest start time of a ring de nes the earliest possible time instance a ving
can start its execution. It is de ned as follows:

De nition 4.3 (Earliest start time of a ring). In an SDF application G, the earliest start time of
the " ringv i, of an actor y occurs once all of its input ports have the required input tokens. The
required input tokens are available when the latest ring in the set of predecessor Mgs)
occur. Therefore, the earliest start tindg of a ring vj; is expressed as follows:
8
< ; Y —
=0 if Wvi;) = ?

3, = _ (4.1)
) ma)%V|k2V\(Vij) (J|k+ Cl) If V\(Vlj) 6 9

where ¢ is the WCET of actorpand? is the empty set.
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(a) SDF graph (b) HSDF graph

Figure 4.2: An SDF graph and its HSDF representation with nite-size buffers.

Fourth, the latest nish time of a ring parameter de nes the latest possible time instance a
ring vj; can nish its execution. It is de ned as follows:

De nition 4.4 (Latest nish time of a ring). The latest nish time of the'] ring vi, of an
actor \j in an SDF graph G de nes the latest possible time it nishes its execution such that the
latency constrainD of the graph G is satis ed. Therefore, the latest nish tiggof a ring vj,

is expressed as follows:

8
G = <D if F(v,)=? “2)
i = . . . .
" mingy or ) (G ) IFF(v) 6 ?

Fifth, a topologically ordered set of actors de nes the order in which rings are selected for a
merge. It is de ned as follows:

De nition 4.5 (Topologically ordered set of actoys The topologically ordered set of actovsis

a setin which the actor setV is sorted in a breadth- rst traversal sequence, where the input actors
(parents) are in the beginning of the set followed by their successor actors (children). In case a
group of actors are on the same level in the graph, they are list¥diimarbitrary order. The only

order considered itV is parents followed by children. In case of cyclic graphs, all back edges
with initial tokens are ignored.

For example, in case of the graph shown in Figliga) the topological ordered set of actors
V is (Va; Vi; Ve; V).

Last, thedependent / independent rings a term that describes the connectivity relation
between two rings, which helps in deciding whether a merge is safe or not. It is de ned as
follows:

De nition 4.6 (Dependent/independent rings Two rings aredependerniff there is a sequence
of edges (not a single edge) connecting them carrying zero initial tokens. Otherwise, they are
independentings.
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Figure 4.3: Asafe merg@peration of twdndependentrings (v, V) into a new clustew.

For example, the ringsy, andwvy,, of actorv, in the cases with in nite and nite buffers shown
in Figures4.1(b)and4.2(b) respectively. In case of in nite buffers, these rings are independent,
since there is no path between them other than the direct egge)( as shown in Figurd.1(b)
However, in case of nite buffers, they are considered dependent rings due to the existence of
a path between the ringsy,, andvy, that consists of the rings\,; Vc,; Vb,) connected by the
sequence of edgesy.c,; €,:b,) that have zero initial tokens, as shown in Figdr2(b)

4.2 Safe Merge

In this section, we present the concept of safe merge, which is a cornerstone of the slack-based
merging algorithm presented in Sectidr8. First, we begin by de ning a safe merge operation

and its function in Sectiod.2.1 Then, we discuss the safety of such operation and its effect on
the liveness of HSDF graphs in Sectié2.2

4.2.1 De nition and Function

The safe merge concept is a novel idea for merging HSDF graphs. It is basically a merging
operation of any two rings that is de ned as follows:

De nition 4.7 (Safe merge A safe merge operation is an act of combining two independent
rings (vi;, Vi) creating a new clustey with an execution time equal to the sum of execution time

of both rings. The new clustev has the union of input/output ports and channels of both rings
except the ports and channels carrying zero initial tokens between both ringsiy. A safe
merge operation keeps all the initial tokens in the graph distributed on the same edges without
change.

Figure 4.3 shows a merging operation between two independent rings ) into a new
clusterV. The two rings areindependenaccording to the De nitiord.6, because the only path
connecting them (other than the direct edge that carries the initial thje@onsists of a sequence
of edges that carry the initial tokeh. As we can see, the safe merge operation kept the distribution
of the initial tokens dp; d1; d>) the same after the merge.
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Figure 4.4: HSDF graph after addisgndt.

4.2.2 A Safe Merge is Deadlock-Free

Applying safe merge operations on the graph ensures that the resulting graph is deadlock free.
However, before going into the proof details of this statement, we provide necessary preliminaries
(de nitions and theorems) that helps in understanding and constructing our proof.

Assume thaGy = hv,; Ep;di is a consistent and live (Secti@i2.1) HSDF graph, wher¥},
is the set of rings of the SDF actorg, is the set of edges connecting them ahid the set of
initial tokens. Also, assume all the inputs/outputsSpfare connected to dummy nodes sousce
and sinkt, respectively. Accordingly, in case of the HSDF graghshown in Figured.2(b) the
dummy nodes andt will be connected to,, andvy,, respectively, as shown in Figuded. First,
we would like to de ne some terms:

De nition 4.8 (End-to-end patf). An end-to-end path is a path P that consists of distinctive rings
that traverses the graph from source s to sink t. It is de ned as follows:

P= hs;vij;:::;ti (4.3)

De nition 4.9 (Path cover for a DAG. Given a Directed Acyclic Graph (DAG), a path cover
is a set of end-to-end paths such that every ring in the DAG belongs to at least one end-to-end
path P2 P .

De nition 4.10 (Minimal feedback edge sit Given a DCG, a minimal feedback edge set is the
minimum set of edges which, when removed from the DCG, leave a DAG. In other words, it is a
set containing one back-edge of every cycle in the DCG.

De nition 4.11 (Strongly Connected DC{ A DCG is strongly connected iff there exists a di-
rected path between each pair of rings.
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De nition 4.12 (Strongly Connected ComponentA Strongly Connected Component (SCC) is
any strongly connected DCG or a subgraph of it that is strongly connected.

De nition 4.13 (Consistency in data ow graph$Lee 1991])). A data ow graph is consistent iff
on each edge, in the long run, the same number of tokens are consumed as produced.

From De nition 4.9, every DAG can be represented as a set of end-to-end paths, referred to as
the path coveP . From De nition 4.10, every DCG consists of a DAG and a set of back-edges
that creates the cycles. Therefore, from De nitigh8and4.10, a DCG can be de ned as follows:

Gh=hP ;O;di (4.4)

whereP is the path cover that represents the DAG compone@,iandO is the set of cycles in
Gh.

An essential theory regarding the liveness of an HSDF graph that has been proved and pre-
sented in Ghamarian et 812004 (Theorem 24) states the following :

Theorem 4.1. An HSDF graph is live and bounded iff it is consistent and all its SCCs are
deadlock-free.

Theoremd4.1along with Equation4.4) construct the base for proving our theory that states:

Theorem 4.2. A safe merge operation on a consistent and live HSDF graph results in a new
consistent and live HSDF graph.

Proof. Let us assume th&?, is the output graph after applying a singiafe mergeperation on
Gy,. Itis de ned as follows:
G =P 2:02:di (4.5)

This single safe merge operation results in a consistent g&lpby De nition 4.7 and 4.13
because alGY, ports have production/consumption rates equal to one and its initial tokens distri-
bution is the same &5y,.

The single safe merge operation creates a new path cover and cyck §easdO?, respec-
tively. The new path coveP $ does not affect the liveness &2, This is due to its elements
(end-to-end paths) by De nitioné.8and4.12are not SCC. Therefore, according to Theorerh
liveness is not affected.

Contrary toP 9, the cycles seD?, consists of elements that are SCC by De nitié12 This
means that the elements of t&d impact the liveness d&%,. We proceed by distinguishirtgvo
mutually exclusive and jointly exhaustive caseor the cycles in02 :

Case 1 The subset of cycles thdbes not sharethe two merged rings. This subset belongs to
the original grapts, before the merge. Also, the safe merge does not affect the distribution
of the initial tokens in the graph by De nitiod.7. This means that every edge that carries
initial tokens inGp, remains as it is in the graph after the me@fs. Therefore, this subset
is live because no change occurred on its elements.
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Case 2 The subset of cycles thahare the two merged rings (newly created cluste). This
subset is live as well, because all the rings, as welhasn G2, have ports with produc-
tion/consumption rates equal to one. Also, from De nitibi7 a safe merge is only applied
to independent rings. This means that a cycle can only be created iff there is a path, be-
tween the two rings to be merged, and at least one of its edges carries at least one initial
token. This means that the newly created cycles have at least a single token on the back
edge that keep them live. Therefore, a safe merge does not create a dea@®fck in

Therefore G0, is consistent and live. O

From the proof of Theoremt.2, applying several safe merge operations@nresults in a
consistent and live grapBn,.

4.3 Slack-Based Merging Algorithm

In this section, we present the slack-based merging algorithm intended to reduce the size of an
HSDF graph with timing constraints. In the following sections, we introduce the merging strategy
of our algorithm (Sectior.3.7), as well as the conditions for guaranteeing a valid merge (Sec-
tion 4.3.2. Finally, we present the slack-based merging algorithm (Sedti®:d followed by its
complexity analysis (Sectiof.3.4 and an example illustrating how it works (Secti®i3.5.

4.3.1 Merging Strategy

The proposed algorithm combines two ided$:slack-based merging ar®) merging rings of
the same actor. Before introducing the complete algorithm, we will rst discuss the idea of slack-
based merging. For this purpose, we formalize the de nition of slack.

De nition 4.14 (SlacK. Theslackof a ring j of actor i, vj;, is the difference between its latest
nish time g;; and its earliest start timd;; minus its computation time At is de ned as follows:
si;=a; Ji; G (4.6)

]

For example, consider two ringg; andv; of an actow;. If vj; hassj; greater than or equal
to the computation time of; (si; GCj) and the reverses{  Cj), the algorithm can merge both
rings together in one cluster. This strategy allows having a reduced-size graph without elongating
the critical path (CP), de ned in Sectio®2.2 larger thanD, satisfying the graphs end-to-end
latency constraint. However, this is not the only condition to have a valid merge. Sdc3i@n
lists all the conditions in details.

The second strategy aims to merge the ringsof the same actoy; together in the minimum
number of clusters. This helps in generating a reduced-size graph that is suitable for mapping
on a message-passing multi-core architectures, because the \jngsthe same actov; will
be mapped on the minimum number of cores. This results in a smaller memory footprint on the
platform and less communication overhead.
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However, safe merge operation may cause timing constraints to be violated. Therefore, the
slack-based merging algorithm has an additional method to ensure that timing constraints are
satis ed called avalid merge which is detailed in Sectiof.3.2

4.3.2 Valid Merge

In this section, we present the concept ofadid mergethat is used by thslack-based merging
algorithm (Sectior.3.3 to decide whether to accept or reject a merging operation. It is de ned
as follows:

De nition 4.15 (Valid mergg. A valid merge is a safe merge operation between two rings v
and v, of the same actor;\2 G, resulting in a new graph § that satis es the following two
constraints:

(1) the throughput constrairgt such that,

Zm Z 4.7)

(2) the end-to-end latency constradtsuch that,

o

D 4 G (4.8)
8VijZCPZGm

To satisfy the throughput constrai@;, must ful | two conditions:

(a) Gm must be live, i.e. deadlock-free, de ned as follows:

Z;n6 0 (4.9)

(b) the execution time of each cyd® 2 G, and each merged clustey 2 G, must not exceed
the period constraink. which is equal to the inverse of the throughput constrajnt= 1=z.
This is de ned as follows:

(8G2Gm)" (8V2Gy); T & G;T & G (4.10)
8vi; 2G 8vi;2Vo

The rst condition is satis ed by theafe merg@peration (Theorem.?2). It ensures that the merge
operation does not create a cycle without an initial token in the generated Graddeadlock
situation). Therefore, we implemented a function that searches for a path between the two rings
about to be merged, other than the direct edge connecting them. The function searches for a path
that consists of rings connected by edges carrying zero initial tokens (dependent rings). If such

a path is found, then the merge is not valid, because the merging process will create an extra illegal
cycle that does not have an initial token and leads to deadlock in the application graph. Otherwise,
the graphGy, is live. Consider as an example the scenarios in which we would like to merge the
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rings vy, andvy, of actory, in the cases with in nite and nite buffers shown in Figurésl(b)
and4.2(b) respectively. In case of in nite buffers, merging the rings, andw,, satis es the
rst condition (independent rings), since there is no path between them other than the direct edge
(€,:0,), @s shown in Figurd.1(b) Contrarily, in case of nite buffers, this merge does not sat-
isfy the rst condition (dependent rings), because it will create an illegal cycle without an initial
token. This is due to the existence of a path between the ripggndw,, that consists of the
rngs (i, ; Ve, ; Vb,) cONNected by the edges,(, ; &:,:n,) that have zero initial tokens, as shown in
Figure4.2(b) In this case, the merge betweeap, (v,) into a single clustevy, ., creates an illegal
cycle without an initial token between the clustgy.,, and the ringvc,, which would result in
deadlock.

The second condition is ensured by implementing a function that checks that both the execu-
tion time of each cycl& and each merged clusteé (in case ofV, does not have self-cycles) is
not exceeding the application period constrdinThe algorithm identi es all cycles in the appli-
cation graph and saves them in a lookup table. Each entry in the lookup table contains the cycle
and its total execution time. When merging any actor involved in a cycle, the cycle is updated
by replacing the actors with the new cluster and calculating the new execution time of the cycle.
If the execution time of the cycle exceeds the period of the application the merge is not valid.
Otherwise, the merge is approved. In case of merged clusters, the algorithm checks the execution
time of every merged cluster and guarantees that it does not exceed the application period.

The slack-based merging algorithm merges as long as each vijngf every actory; 2 G
has non-negative slacki( 0). This means that the execution time of the critical path of the
application cannot exceed the application end-to-end latency condiraifihis guarantees that
the second constraint is satis ed.

4.3.3 The Algorithm

The slack-based merging algorithm, shown in Algoritraims to generate a simpler, smaller size
graphGy, that reduces the run-time of its analysis. The proposed algorithm starts by calculating
the earliest start timg;; and the latest nish timeg;; for each ring vj; in the SDF graphG

using Equations4.1) and @.2), respectively. Then, it computes the slagkfor each ring using
Equation £.6). If all the rings vj; in G have slacks;; greater than or equal to zer@; 2 G;s;;

0), a merging operation can possibly be applied. Otherwise, the merging algorithm terminates.
When all rings have non-negative slack, the algorithm needs to determine which rings to merge.
An optimal algorithm would try all possible combinations of rings from the same actor, for
each actor, although this approach does not scale to applications of realistic complexity. Instead,
our heuristic algorithm picks the actovsin sequence from the topologically ordered ¥eto

begin merging different rings. This particular way of selection of rings to be merged is not
formally proven to be better than others, but we have experimentally determined that it works
rather well. For each actar, the algorithm tries each possible combination of two rings, ()

for merging, such tha;, Cjands; G, and generates a new graBh. After merging them,

the algorithm checks the validity of the merging operation\gf, () using thevalid_merge()
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Algorithm 2: Slack-based merging

Input:

G: SDF application grapiG = W E;di.
Output:

Gm: merged HSDF application graph.
Variables:

n: number of actors irG.

\%

\Y;

€ repetition vector folG, = fqp;q2;:::;dng, Wheregq; is the corresponding number of
rings of v;.

Vi, is the " ring of actor v;, wheref j: j2 Z;j 2 [1;q]0.
Gn: HSDF graph representation Gf whereGh = W, En;di andvi; 2 V.

1 begin
2 ConvertG to Gy,
3 Calculatedj;, fJj; : 8vj; 2 G;Equation(4.1)g.
4 Calculateq, f g, : 8vi; 2 G;Equation(4.2)g.
5 fsi; :8vi; 2 G;si; = q; Ji; GCig.
6 Gm = Gh.
7 if (8vi; 2 Gm;sj; A 0) then
8 foreachv; in V do
9 fvi;vi:]81;si; GCands; Cig.
10 if (valid_mergévi;; vi)) then
11 mergev;, andv;, in Gn.
12 Calculatelj;, fJj; : 8vi; 2 Gm; Equation(4.1)g.
13 Calculateq; , f gj; : 8vi; 2 Gy, Equation(4.2)g.
14 fsij:8vijZGm;sij=qij Jij Cio.
15 if (8vi; 2 Gm;si; 0) then
16 | Gh= Gn
17 else
18 ‘ sz Gh
19 end
20 else

| // No Merge
21 end
22 end
23 else

| /I Stop Merge

24 end
25 end

function previously explained in Secti@gn3.2 If all the conditions of a valid merge are satis ed,
the merge operation is valid. Otherwise, the algorithm will undo the last merging operation and
pick up two new candidate rings for merging.

When the merge operation is considered a valid merge, the algorithm recalculates the earliest
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Cdo 3
(a) Merging ofvy, andvy, (b) Merging ofve, andv, (c) Final merged graptn

Figure 4.5: Example of slack-based merging.

starttimeJ;;, the latest nish timeg;; and the slacls;; for each ringy; in the new output merged
graphGn, If the slack of all rings inGn, are greater than or equal to zeBv( 2 Gy;si;  0), the
merge operation of{;, v; ) is approved and the algorithm continues to try merging different rings.
Otherwise, the algorithm will undo the last merging operation and move forward by picking up two
new rings for merging. The algorithm iterates until no possible merges can be done. Reaching
that stage, it generates a new small size compact HSDF @gaphat reduces the analysis time,

as later shown experientially in Sectibrv.

4.3.4 Complexity Analysis

In this section, we provide a complexity analysis for the slack-based merging algorithm, previously
presented in Algorithr2. The algorithm starts by calculating earliest start timeand latest nish
timeq;, of all rings, each having a complexity @(jVhj + jErj), since they are based on a Breadth
First Search (BFS)lynch, 1996. Then, it continues with the calculation of the slagk, which

has a complexity 0O(jV;j). The next part of the algorithm is a loofpfeach statement) that runs
jVhj times (in the worst case) and contains earliest start dmelatest nish timeq;; and slack

sj; calculations, with the previously stated complexities. Therefore, the complexity of the loop is
equivalent toO(jVaj ((IVhj + JEnj) + (Vi + JEnj) + (jVh))) = O(3jVhj+ 2)VhjjEnj). Hence, the

nal complexity of theslack-based merginalgorithm isO(jVij? + jVhjj Enj), which is polynomial

and depends on boilj andjEy;.

4.3.5 Example

In this section, we present an example that illustrates how to appbldbk-based merginglgo-
rithm on an SDF/HSDF graph, shown in Figurd, until reaching the reduced-size HSDF graph
Gm, shown in Figuret.5(c) Here, we demonstrate the algorithm for a single iteration for brevity,
as it is a repeated process that takes several iterations to reach the nal outputCgraftne
following paragraphs explains this in detail.

Consider the SDF graph and its HSDF representation shown in Fglréet us assume all
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Table 4.1: SDB benchmark applications.

Application Number of actors . Number of ch_ar_mels
In nite Buffer Finite buffer
h263decoder 1190 2378 4160
h263encoder 201 399 785
modem 48 109 170
samplerate 612 1633 2654
satellite 4515 11619 18723
mp3playback 10000 32237 32237

the execution times of all actors are equal to 1, the throughput requirenent s, and the end-
to-end latency constraint 3 = 8. The periodr of this graph is equal to 3 and the total execution
time of its CP {a,; Viby: Vb, ; Vo, s Ve, V) IS €qual to 6. Calculating]ij;qij;siji for every ring Vi;

in the graph results im,, = H0;3; 2, v, = 1,4, 2, vy, = h2;5; 2, vy, = 13;6;2i, ve, = N2, 7,41,

Ve, = 18,7, 31, v, = M 7,21, vg, = 16;8;2i. As we see, every ringyij has non-negative slacskj,
which allows going forward with the merging process. From Figud€a) we can get the topo-
logically ordered se¥ = f va; Vb; Ve; Vgg. The algorithm will skip actow, and move on to actos,
because/, consists of a single ring/y,. It picks up the two rings (y,, Vb,), because they have
non-negative slack that satisfy the two conditiens Cp andsy,, C,. Then, it merges them
into a single clusteWy,n, with execution timeCy,.n, = 2, as shown in Figurd.5(a) This merg-
ing operation is a valid merge, because it satis es the throughpand the end-to-end latency
D constraints de ned by Equationd.{) and @.8), respectively. The throughput constrainis
satis ed, because the total execution time of the maximum cycle in the gkaph, (v,) is equal

to 3, which means that,, of the resulting graph, shown in Figutes(a) did not changezy, = 13).
Also, the end-to-end latendy constraint is satis ed, because the total execution time of the CP of
the resulting graph did not change (equal to 6). Then, the algorithm recalchlates,;s;;i for
every ring vi; and repeats the process again. Figli&gb)shows the output of an intermediate
step of the merging algorithm, while Figudes(c)shows the nal output HSDF grapBy, of the
merging algorithm.

The nal output HSDF graplGm consists of four actors/g,; Vg, b, Vey:ci:co; Vd,) With execu-
tion times (3 3;3; 1), respectively. Its throughpat, is equal tol=s, while the total execution time
of its CP {ay; Vby:by:by: Veoiciicos Vo) 1S €qual to 8. Thereforeiy, satis es the throughput and
the end-to-end latendp constraints of the original SDF/HSDF graph. As we sgg,has a sin-
gle path Vay; Vibg:by:bys Veiciicos Vdp) COMpared to the original HSDF graph, shown in Figdirs(b)
This speeds up the timing parameter extraction process since it depends on the number of paths
exists in the graph. We later demonstrate this experimentally in Segffon

4.4 Experiments

In this section, we evaluate the slack-based merging algorithm using SDF applications from the
SDF benchmarks$tuijk et al, 2006. Table4.1shows the size of these benchmark applications
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Table 4.2: Run-time (seconds) of the algorithm.

Run-time (sec)

Application In nite Buffer Sizes Minimum Buffer Sizes

Zmax z
h263decoder 264 495 11824
h263encoder 0.55 8.9 11.13
modem 0.215 0.47 0.65
samplerate 38 51 53
satellite 14390 20917 26334
mp3playback 5 (days) ¥ ¥

after transforming them into HSDF graphs. The main goal is to evaluate its run-time with SDF
graphs of different sizes, but also to show the impact of different buffer sizes on the performance
of the slack-based merging algorithm. To illustrate its impact, we consider three values of buffer
sizes. First, is the in nite buffer sizes, assuming the availability of in nite resources. Second and
third, are the minimum buffer sizes, but at two different execution throughputs of the SDF graph,
which are the maximum throughpat,ax and the throughput constraintof the application. The
latency constrainD for the input applications is set to the inverse of their throughput constraint,
D = 1=z. This choice is made to provide enough slack for the applications while we study the
effect of changing other parameters, i.e., throughput and buffer sizes, as shown in the experiment.
Tables4.2 and4.3 show the summary of the results. In most cases, the algorithm succeeds in
generating a reduced-size graph in reasonable time. However, for some caseq3plgyback
the run-time varies from seconds to days depending on the complexity of the graph. This result
is in-line with our expectations because the original graph is huge and consists of 10000 rings.
The algorithm achieves large reduction rates of the original HSDF graph, as shown imtTable
ranging from 50% in case ohp3playbackup to 99.7% (approximately) in case lm263decoder
in case of in nite buffers. In case of nite buffers, the reduction rates are less compared to in nite
case. It ranges from 35.4% up to 94.5% (approximately) depending on the buffer sizes and the
throughput constraint. Also, we notice that the slack-based merging algorithm's run-time and
output graph size have an inverse relation with the buffer size of the application. The reason is
that small buffer sizes add extra dependencies in the graph that prevent further merging and makes
the algorithm spend more time exploring every combination of actors that could be merged. The
¥ and N/A entries imply that the merging algorithm spend unreasonable imienfeek) without
generating any output.

From these results, we can conclude that the slack-based merging algorithm typically succeeds
in achieving large reduction rates in the size of the output graghss result re ects positively
on the timing parameter extraction (TPE) algorithm, as shown in the experiments of Chapter
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Table 4.3: Number of actors before and after merging.

Number of actors
Application After Merge. . -
Before Merge In nite Buffer Sizes (red. %) Minimum Buffer Sizes
Zmax (red. %) Z (red. %)
h263decoder 1190 4 (99.7%) 71 (94.0%) | 300 (74.8%)
h263encoder 201 5 (97.5%) 11 (94.5%) | 181 (10.0%)
modem 48 16 (66.7%) 31 (35.4%) | 31 (35.4%)
samplerate 612 6 (99.0%) 127 (79.2%) | 263 (57.0%)
satellite 4515 22 (99.5%) 988 (78.1%) | 1972 (56.3%)
mp3playback 10000 5000 (50.0%) N/A N/A
4.5 Summary

In this chapter, we presented a new heuristic reduction algorithm for synchronous data ow graphs
called slack-based merging. The proposed algorithm generates reduced-size HSDF graphs that
satisfy the throughput and latency constraints of the original application graph. This helps in
speeding up the process of timing parameter extraction and nding a feasible real-time schedule,
thereby reducing the overall design time of the real-time system, as we later show experimentally
in the next Chapter§ and6. The slack-based merging algorithm uses two main concepts:

the difference between the WCET of the SDF graph's rings and its timing constraints (slack)
to merge rings together and generate a reduced-size HSDF grapiy)ahd novel concept of
merging called safe merge, which is a merge operation that we prove cannot cause a live HSDF
graph to deadlock. Experimental results with real application models from thé B&fhmark

show that the reduced graph) respects the throughput and latency constraints of the original
application graph an@) when the throughput constraint is relaxed with respect to the maximal
throughput of the graph, the merging algorithm is able to achieve a larger reduction in graph size.



Chapter 5

Timing Parameter Extraction

The previous chapter presented the rst stage of our solution to integrate mixed application mod-
els with timing constraints coexisting on the same multi-core platform. That stage was a graph
reduction technique calleslack-based merginthat aims to reduce the complexity of data ow
applications by generating reduced-size HSDF graphs, avoiding possible large HSDF graphs gen-
erated from traditional conversion metho&sifam and Bhattacharyya00(d. In this chapter, we
present the second stage of our solution called Timing Parameters Extraction @IP&)dl.,
2019. This algorithm extracts the timing parameters (offsets, deadlines and periods) of cyclic
Homogeneous Synchronous Data ow (HSDF) graphs with periodic sources (the output of the rst
stage, Chaptef) transforming them into real-time periodic tasks. This creates a uni ed model
for all applications running on the multi-core platform, where traditional real-time analysis and
scheduling techniques can be applied assuring real-time guarantees for the complete system.
This chapter starts by explaining key concepts, de nitions and techniques that pave the way
for understanding the methodology of timing parameter extraction of HSDF graphs. First, we
present existingleadline assignment strategies for pipelif@sction5.2), which we extend to be
applicable on Directed Cyclic Graphs (DCG). Second, we de neptith sensitivityfSection5.3)
concept that determines the order in which TPE traverses paths in the graph to extract timing pa-
rameters. Last, we propose a methodologyderiving latency constraintéSection5.4) in case
of its absence from the graph timing properties to help in the TPE process. After this essential
overview, we explain in detail the TPE algorithm in Secttof Then, we prove its correctness in
Section5.6, followed by the experimental evaluation of the TPE algorithm in Se&i@nFinally,
we conclude the chapter with a summary in Secldh

5.1 Preliminaries

The TPE algorithm, presented in this chapter, works with HSDF graphs that have a single or
multiple latency constraints. This shows the ability of the TPE algorithm to deal with a more
complex model than the one proposed in this thesis (Se8tif)n which states a single end-to-

end latency constrairld for each HSDF graph. The multiple latency constraints are de ned as

55
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actor-to-actor deadlines (maximum timing constraints) between rings in the same iteration of
any two actorsyy andvy, that have a single or multiple route(s) between them in the HSDF
graph. In contrastD is a latency constraint between an input and output actor only. Due to
this, this chapter refers to latency constraints with the synihgl wherex andy are indices
that refer to the actors in the HSDF graph that are governed bl theonstraint. Therefore, a
time-constrained path B de ned as any route between two actegsandyvy that has a latency
constrainDyy. Fundamentally andD,y are de ned by the same Equatiorgs13 and @.14), but

with two signi cant differences. First, actokg andvy refer to any two actors in the HSDF graph
(not only to input and output actors). Second, the end-to-end latency con&irargubstituted

by the actor-to-actor latency constraidyy, in Equation 8.14). Therefore, for the TPE algorithm
Equations 8.13 and @.14) will be de ned as:

P=fhvg:iiiwi v Vhg (5.1)

where, vy andvy refer to two actors in the HSDF graph de ning the beginning and the end of the
pathP, respectively. The latency constraint®fs de ned as:

y

[o]

8v2GP
In conclusion, the ability to allow representing multiple latency constraints that may be re-
quired by some applications, extends the generality of the TPE algorithm, allowing it to be applied
on wider range of applications represented as HSDF graphs.

5.2 Deadline Assignment Strategies for Pipelines

The problem of assigning individual deadlines to dependent taskgpifedine application 4,
represented by the grafh, = Wy, Epi, distributed on multiple processors using its end-to-end
deadline has been addressed in previous reseitteftale and Stankovjd 994 Kao and Garcia-
Molina, 1997, Lipari and Bini 2011]. The pipeline application consists of a set of tasks (actors)
V, that execute in sequence. The application has a latency congkgititat represents the end-
to-end deadline ofp, wherevy andvy is the start and end task 8§, respectively. Therefore, the
pipeline application grapf®, contains a single time-constrained p&twith a latency constraint

Dyy. The proposed TPE algorithm supports two well-known deadline assignment methods for
pipelines, referred to as NORM and PURE. These are detailed next.

5.2.1 The NORM Method

The NORM method[Di Natale and Stankovjd 994 Kao and Garcia-Molingl997 is an assign-
ment strategy to divide the end-to-end deadlgof a pipeline proportionally to the computation
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time of its tasks. Therefore, the individual deadline of a task in a pip&ljrie computed as fol-
lows: G
Di=—— D (5.3)
I 38vj2PCj Y
From Equation%.3), the NORM method assigns individual deadlirigsto tasks with the same

end-to-end deadlinB,y, such that all tasks have equal densitigs

G 58vj2PCj
ri= —= —— — 5.4
5T B (5.4)

5.2.2 The PURE Method

The PURE methodD)i Natale and Stankovjd 994 Kao and Garcia-Molinal997 is a different
deadline assignment strategy based on the distribution of the kveitually among all tasks of
the pipeline, such that each task have sldckThe laxity e on the time-constrained pafis
de ned as follows:
e=Dy a G (5.5)
8vj2P

Then, the slackl of the tasks is equal to:

d= — (5.6)

wherejV,j is the number of tasks in the pipeline. Therefore, the individual deadline of a task in a
pipelineD; is computed as follows:

Di=C+d (5.7)
Therefore,

Dxy &s8y;2pC;
Vol
From Equation %.7), the PURE method assigns individual deadlifigs such that tasks have

relative densities;. This means, a task with high have highr; relative to a task with smag;.

Di=C+ (5.8)

r: = 9: Ci
I Di GC+d

(5.9)

5.3 Path Sensitivity

In this section, we de ne a key concept in our algorithm calpath sensitivitythat enables sup-
porting general HSDF graphs, as opposed to being limited to pipelines. Dealing with actors in
general graphs implies that an actor can be present on multiple time-constrained paths of the
graph. The path sensitivity parameter helps in addressing this problem by determining the order
in which to consider the time-constrained paths when extracting the timing parameters.
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De nition 5.1 (Path sensitivityg). Path sensitivity is a measure of the criticality of a time-
constrained path with respect to density. It is calculated as follows:

o Cj
a

Il 5.10
o (5.10)

g:
8vj2P

The density is the measure of how tight the latency constjptis for a time-constrained
pathP compared to its execution timey is in the rangg0; 1] (because of the relation in Equa-
tion (3.14), where higher values indicate higher sensitivity. In case of NORM, substituting Equa-
tion (5.10 in Equation b.3) gives:

C.
Di = EI (5.11)
by solving forg and substituting Equatiob(4) in Equation 6.11)
ri=g9 (5.12)

This means that all taskson the same time-constrained p&have densities; equal to the path
sensitivityg.
In case of PURE, substituting Equatidn10) in Equation 6.8) gives:

Di=G+d=c+ 1 9 Dy (5.13)
1P
by dividing Equation .13 by D;, then substituting by Equatio®.4) and solving for
=1 921 (1 9Dy (5.14)

Di iPi Dj

From Equations{.11), (5.12), (5.13 and 6.14), we can draw two conclusions. Firsliere is
an inverse relation between the path sensitigignd the task relative deadling for both NORM
and PURE This conclusion is obvious from Equatiof.{1). In case of Equation5(13), since
0< g 1, anincrease in the value gfdecreases the value Bf and vice versa, con rming the
inverse relation. Secondihen the sensitivity of a time-constrained path increases, the value of
its task densities; increases tooThis is con rmed from Equationss(12 and 6.14) and the rst
conclusion.

5.4 Deriving Latency Constraints

In this section, we present two techniques for deriving latency constraints for HSDF graphs. First,
we derive latency constraints for cyclic paths. We then derive end-to-end latency constraints in
case it is not speci ed by the application.
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5.4.1 Deriving Constraints for Cyclic Paths

HSDF applications can have several cycles in its graph. Each cycle requires a latency constraint
that satis es the throughput requirememtof the application. A quick choice for a cycle latency
constraintD"® value is the period of the applicatioh. However, such a choice of latency
constraint ignores the number of tokehswolved in the cycle and limits possible pipeline paral-
lelism in the application. Therefore, the latency constraint of a cyclic time-constraineﬁ)ﬁﬁ{ﬁ

must take into account the number of tokens involved in this aygige such that the application
throughputz; is not violated. The latency constraint for a cyclic time-constrained path is de ned
as follows Moreira et al, 2007:

1 C d
D)(gcle: Ccycle"'( Z Cycle) dcycle: w (515)

i dcycle Zj

whereCeycle is the summation of execution times of the actors involved in the cycle. The latency
constraint of a cycle tells us how much the execution of the actors on the cycle as a whole can be
extended while still guaranteeing the desired application throughput

5.4.2 Deriving End-to-End Latency Constraint

Our proposed algorithm requires an end-to-end latency constraint for each HSDF application to
satisfy the precedence constraints and the throughput requirement. In case of an HSDF application
without a speci ed end-to-end latency constreiig, we derive it as follows:

Dy=maxtT;b § Cg (5.16)
8vi2CP
As we can noticéDyy is set to the maximum of two values. The rst, the application pefipd
which is extracted from the inverse of its throughput requireragnt; = 1=z; . The second, is
the sum of theC; of actors in the critical path (CP) of the application multiplied by a condiant
where the CP of an application is de ned as its longest execution path from input to output, as
de ned in Sectiorn3.2.2
Theb constant has a value that randés¢). Selectingb = 1 results in unnecessarily tight
actor deadline values and increases the total density of the application that makes it more critical
and hard to schedule with other applications, since the actors in the application CP, kate
On the other hand, selecting higher value® atlaxes the criticality of the application and eases
its schedulability with other applications. A good value liothat we use in this thesis is when the
sensitivity of the CP of the applicatiagp is equal to the maximum sensitivity of all the cycles
Geycle IN the application,
s G _ &sv;2cpPCj

max fgyaed= kr= a

= = (5.17)
8cycl2 G 8v;2CPDXy b anjZCPCJ
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output
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Figure 5.1: HSDF graph after adding sous@nd sinkt.

At this value ofb, the individual deadlines of actors participating in cycles and time-constrained
paths governed by the derived end-to-end latency constraint in the application graph can be ex-
tended to the maximum possible limit (latency constraint computed in Equé&tib), while still
satisfying the throughput requirement Therefore, solving fob in Equation 6.17) de nes it as:

b = 1 (5.18)

MaXgeycle f Gycled

The derived end-to-end latency constrdg, shown in Equationg.16), is considered a lower
bound using computed in Equatiorb(18. Choosing a larger value will not affect the through-
put requirement of the application, but it increases the schedulability of the application. However,

it also delays the rst output by a latency equal to the chosen value of the end-to-end latency
constraintDyy. It is up to the system designer to choose a different larger valbetban Equa-
tion (5.18) if it suits the system.

5.5 Timing Parameters Extraction Algorithm

The algorithm presented in this section is intended for extracting the timing paraf@et€rsT;; D;)

of HSDF applications with periodic sources. It is divided into two phases. The rst phase nds all
time-constrained paths in the graph, while second phase extracts the timing parameters of individ-
ual actors. The following sections explain these two phases in detail.

5.5.1 First phase: Finding All Time-Constrained Paths

In this phase, we calculate all time-constrained paths for a given HSDF in non-increasing order
of sensitivities. A time-constrained path in an HSDF can be between any two actors that have
a latency constraint. The rst phase of the algorithm is divided into the following two stages,
creation of source and sink actors and path enumeration. These two stages are detailed next.

5.5.1.1 Creation of Source and Sink Actors

This technique have been used before in Seclidh2to de ne the end-to-end path (De ni-
tion 4.8). Here, we use it again to easily traverse the gr@phFirst, we search the graph to
nd all input (output) actors. Actors associated with the input (output) data stream are speci ed as
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Partial Path : P Yy

P, = (vx,...,v))
Extend Partial Path using

Succ(vj) = (Vji,Vjy, Vs -+ s Vi)

N/

Resulting Paths :

PiI = (vx,...,vj,vjl>
Piz = <vX7"'_7vj7vj2>
Pil = <Vx,...',Vj,le>

Figure 5.2: Enumeration of time-constrained paths.

the starting-actors (ending-actors), respectively. A dummy saifsiek t) actor that has a zero
execution time is inserted at the beginning (end) of the ga@s shown in FigurB.1 These two

actors §, t) are connected with dummy links to starting and ending actors, respectively. Adding
these dummy actors with their edges converts the graph into a canonical form, since all the paths
that traverse the graph from the input to the output of the graph have a uniform form that starts
with sand ends with. This is helpful when traversing multi-input/multi-output graphs.

5.5.1.2 Path enumeration

This is an iterative process where all time-constrained paths between sandeinkt actors in
the HSDF are generated. In case of having latency constraints between two speci ¢ actors, the
path enumeration phase generates all time-constrained paths between these two actors in addition
to the ones generated frasmo t. The set of all time-constrained paths between actors with latency
constraints is calle®, which is arranged in non-increasing order of path sensitivigiest is
de ned as follows:

P=fhR;gi:Vig 1 4;92(0;1]g (5.19)

The process starts by initializing with a few partial paths In this case, these initial partial

paths are all single hop paths generated by combining the start actors with the elements in their
list of successor actors. The list of successor actors is a set of child actors that are one hop away
from their parent. For example, in FiguBel, the list of successor actors for source acis

Sucgvs) = (ag;a1). The starting actors can be the source astor any actor that starts a set

of time-constrained pathg with a speci ¢ latency constrairiDyy. The list of successor actors
Sucgvy) is de ned as follows:

SUCEVy) = (Vi ; Vs Vxgs 2573 V) (5.20)

tion (3.13), as shown in Figuré.2 The extension process starts by getting $egv;) =



62 Timing Parameter Extraction

(a) Class Head partial path

(b) Class Tail partial path

(c) Class Middle partial path

Figure 5.3: Partial path classes for offsets setting

possible continuations iR in non-increasing order of sensitivity. The path enumeration process
continues until all partial paths ia are extended to full time-constrained paths.

5.5.2 Second phase: Extracting Timing Parameters

The second phase, shown in Algorittf8nrepeats for each application in the applicationselt
picks a time-constrained pa#h in order of sensitivity fromP. The selected patR is checked
whether or not it has actokg with assigned deadlindgs;. If B has no actors with assigned dead-
lines @v; 2 R), the algorithm assigns individual deadlirigsfor the actors/; usingdead_assign()
function that implements either NORM or PURE (Equatidn8)or (5.8), respectively), using the
corresponding latency constrat(y.

On the other hand, B has a set of actors with assigned deadlXdgshared actorg, with any
previously processed time-constrained paths), the algorithm assigns individual deBgliodise
unassigned actorg using either NORM or PURE based on the corresponding latency constraint,
which is the difference betwedh;y and the sum of individual deadlin€ already assigned to
actors, DLy asy2x Dk)- In all cases, the period of the acfByris derived from the throughput
constraintza of the application. It is de ned as follows:

T, = 1=2a (5.21)

This follows naturally for an HSDF graph, since each actor executes only once per iteration by
de nition.

Once the applicatiody actors relative deadline are determined, the offset of the aajors
are calculated in a similar fashion. AlgorithBhgenerates a new sét P containing time-
constrained paths that inclugendt actors only.P is arranged in a non-increasing ordery,.
If two paths have the sani@yy, they are ordered in a non-increasing ordegofThe algorithm
picks a time-constrained paBhfrom P. Ifthe path has no actors with assigned offsets, it assigns
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Algorithm 3: Extracting timing parameters of HSDF

R: Afull time-constrained path i set.

D;y: deadline constraint between actgrand actony, on a full time-constrained paff.

P : totally ordered set of all time-constrained paths of an application ordered accorgjigto fR :g 1 gg.

P totally ordered set of time-constrained paths fretat of an application ordered accordingldgy, P P,
P=fR:w=sw=t[D} > Dl orfDi = Dl:g 1 ado.

PH: set of higher sensitivity time-constrained paths tRa®™ = thP;:::;R 1i:g 1 a9

Xi: set of shared actors betweBrwith higher sensitivity time-constrained paths EE‘I; Xi=fw:w2Rw2P2 Png

pi: partial path in time-constrained pakh

1 begin
/I Actor deadline assignment
2 foreachPR in P do
3 if (8vj 2 R;Dj= ?)then
4 foreachv; in B do
5 | Dj= dead assigi{D}y); // NORM/PURE
6 end
7 else/l X R
8 foreachvjin B X do
9 Dj = dead assigfD}, & Di);// NORM/PURE
8vi2X
10 end
11 end
12 end
/I Actor offset assignment
13 foreachP, in P do
14 if (8vj 2 R;aj = ?)then
15 ag= 0;
16 foreachvj in R, j = 1:sizeo{R) do
17 aj=aj 1+ Dj 1;
18 Tj = 1=zp,
19 end
20 else
21 Determine allp; 2 B, with aj = ?.
22 Determine reference actoy.
23 foreach p; in B do
24 if (p;i is Head or Middle)then
25 foreachv;j in p; do
26 Vi = Vj+1,
27 aj=a Dj;
28 Tj = 1=2za;
29 end
30 else
31 foreachv;j in p; do
32 Vi = Vo1
33 aj = a + Dr;
34 Tj = 1=2za;
35 end
36 end
37 end
38 end
39 end
/I Validation check
40 foreachRinP do
a1 if (4 Dj Dy)&(a+Dy a D}))then
8vj2R
42 | Algorithm Succeeds
43 else
44 |  Algorithm Fails
45 end
46 end

47 end
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offsetsa; for the actors/; on the path in the direction fromitot as follows:
aj=aj 1t Dj 1 (5.22)

If time-constrained patR has a set of actors with assigned offsets (actors assigned in previously
processed paths), the algorithm traverBeis search for partial path segmenmgsof actors with
unassigned offsets. Once they are listed, the algorithm determines the reference artdrdas-

sify them into one of three typesiead Middle or Tail, as shown in Figuré.3. This information

is used to calculate the offsedg, as shown in Algorithn8. If the partial pathp; is of typeHead

or Middle, the reference actef is always on the right hand side pf, as shown in Figure8.3(a)
and6.3(c) and the offsets gp; actors are assigned using the following equation:

aj=a Dj (5.23)

After assigning the offset of the actey, the reference actw advances its position to the already
offset assigned actor, preparing for the offset assignment of the next actor in the partal path
shown in Algorithm3. Offset assignment dleadandMiddle in this way instead of traversing the
path fromstot assigning offsets using Equatidn22), enables larger offset values to be assigned
to actors delaying their execution allow satisfying wider range of latency constraints, as we show
in Section5.5.4

If the partial pathp; is typeTail, the reference actat is always on the left hand side pf, as
shown in Figures.3(b) and the offsets of; actors are assigned using the following equation:

aj=a,+D; (5.24)

The reference actof advances in the same way mentioned previously. After assigning deadline
and offsets for the application actors, the algorithm checks the application for the validity of the
assigned values and that they do not violate the latency constraints speci ed.

Finally, we can conclude that Algorithi® preserves relative deadline values computed
from high-sensitivity time-constrained paths. This is clear from determining the actors with unas-
signed deadlines iR, and their corresponding latency constraf()( asy2x Dk), leaving the
preassigned set of actoXg untouched. In case of using deadline-based schedulers, this property
makes actors in high-sensitivity time-constrained paths have a higher priority compared to actors
in low-sensitivity time-constrained paths, since they have tighter deadlines (as concluded from
Equations %.11) and 6.13).

5.5.3 Complexity Analysis

In this section, we provide a complexity analysis for the TPE algorithm, previously presented
in Section5.5. The TPE algorithm consists of two phases. The rst phase, detailed in Sec-
tion 5.5.1 is concerned with nding the set of all time-constrained pa@hsvhich have a com-
plexity of O(jVhj + jEnj), since it is based on a Breadth First Search (BES$h¢h, 1996. The
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(a) HSDF application. (b) HSDF timing diagram.
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(c) Actors' timing parameters.

Figure 5.4: HSDF example.

second phase, detailed in Secti®®.2 is concerned with extraction of timing parameters, as
shown in Algorithm3. It is composed of three main partk) actor deadline assignmer2f), actor
offset assignment an@) validation check. Each part is represented by a |dopeéch state-
ment) that rungPj times (in the worst case). The actor deadline and offset assignment parts
contains inside loops that ruyw;j times. Consequently, the complexity of the second phase
is equivalent toO((jPj jVhi) + (JPj jVhi) + iPj) = O(2jPjjVhj + jPj). In conclusion, the total
complexity of the TPE algorithm is the sum of its two pha®€p/j + jEnj + (jP] jVhi) + (jP]

Vi) + iPj) = O(2)PjjVhj + jPj + jVhj + jEnj). Hence, the nal complexity of the TPE algorithm

is O(jPj + jPjj Vhj + jVhj + jEnj), which is polynomial and depends @, jVj andjE;.

5.5.4 Example

In this section, we present an example, illustrated in Fi¢gudeto demonstrate our proposed al-
gorithm step-by-step. The following paragraphs explains this in detail.

Figure5.4(a)shows an HSDF graph application comprising six actars;€;d;e; f) with
execution times of all actors equal to 1, throughput requirereent0:5, and two end-to-end
latency constraints, one is speci ddl.q = 3, while the otheD,q is not. The example HSDF
graph is not trivial, as it features multiple input actarande, a cycle, and multiple initial to-
kens. Applying the rst phase of our proposed algorithm results in three time-constrained paths.
The rst time-constrained path B = he; f;di with an end-to-end latency constrabf, = 3 and
sensitivityg = 1. The second time-constrained pathPis= hb; ci, which represents a cycle in
the graph with a latency constraibﬁC = 4 calculated by substituting witBcycie= Cp+ Cc = 2,

z = 0:5 and number of tokens in the cyate= 2 in Equation §5.15. The sensitivity ofP is
henceyp = 0:5 (Equation $.10). The third time-constrained path®s = ha; b; c; di with a latency



66 Timing Parameter Extraction

constrainngd equal to the second end-to-end deadline, which is not speci ed by the application.
Therefore, we calcula’tbgd using Equationq.16 (b = 1= = 2, Equation $.18) that results in

ng = 8 and its sensitivity igg = 0:5. Therefore, the set of all possible time-constrained paths is
P = thPy; qii ; hP; i hPs; gsig = fh(e; f;d); 1i;h(b;c); 0:5i ; h(a; b; ¢; d); 0:5ig .

The second phase of the proposed algorithm pick®d @md assigns individual deadlines to ac-
tors ( f;d) equal to De= 1;D¢ = 1;Dq = 1;), respectively. Picking up the next time-constrained
path P, for deadline assignment results iD= 2;D¢ = 2). Finally, picking up the last time-
constrained patl’ for deadline assignment results D= 3). The individual deadline values
calculated are the same for both NORM and PURE.

For offset assignment, the algorithm creates the set of time-constrained paths that goes from
sourcesto sinkt, ordered according to the constrgibt,* > D} orfD |, *= Di;g 1 ggl.P =
fhP3; D3,i;hPy; DL4ig. First, it picks the time-constrained path with the longest end-to-end delay
P; for offset assignment. Since none of its actors have assigned offsets, the actor offsmisare (
0;ap = 3;ac= 5;a4 = 7). Then, it pick?, where one of its actord has already assigned offsgt
equal to 7. It discovers a single partial path of tyeadin P, which isp; = ( €; f). The reference
actor forpy is actord. Therefore, the offsets of actaeandf are @ = 5;as = 6), respectively. As
noted, actoeis triggered at timed. = 5) even though its input data is available from time instance
zero to satisfy the latency constraiitdy = 3) of the application. For the period3aE Ty= T =
Tq= Te= T = 1=z = 2). Therefore, the extracted timing parameigsCi; Ti; D;) for the graph
actorsfa;b;c;d;e; fg aref(0;1;2;3);(3;1;2;2);(5;1,2;2);(7;1,2;1);(5;1;2;1);(6;1;2; 1) g, re-
spectively. These extracted parameters, shown in Figdie), preserve the precedence, through-
put and latency constraints of the HSDF application, indicated in the timing diagram in Fig-
ure5.4(b) The timing diagram also shows that multiple iterations of the graph execute in parallel
assuming at least three processors are available.

5.6 \Validation of the TPE algorithm

This section validates the proposed algorithm by proving that it assigns individual deadlines for
actors of any application graph such that it respects all its latency constraints. First, we start by
the following property driven from the inverse relationship between path sensighatyd actor
relative deadlind®,, (concluded from Equation$(11) and 6.13):

Property 5.1. If there are two time-constrained pathsad B, whereg > g; and there is a shared
actor v between them. The deadline vald)ecbmputed for actor v on; B less than the value!D
computed for the same actor op B}, < D{.

Another important property of the deadline assignment strategies NORM and PURE, derived
from Equations§.3) and 6.9) is:
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Property 5.2. A time-constrained path P with a latency constraing, whose actors yvare as-
signed individual deadlines Dusing NORM or PURE, has the following property:

Dyy = é_ Dj (5.25)
8v,2P

From Propertys.2, it follows that applying Algorithn8 on any time-constrained paly whose
actors has no assigned deadlines, results in a time-constrained path that satis es its latency con-
straints. This is for the simple case where the actof8 lras no assigned deadlines. However,
whenP shares some actors with higher sensitivity time-constrained paths the situation gets more
complex. Lemm&.1 proves the correctness of this case.

Lemma 5.1. If a time-constrained path;Rvith a latency constrainDj(y, has a set of actors;X
G, Algorithm3 assures that the sum of individual deadlinesdd actors in Pis equal toDi(y =
&gv,2p Dj.

Proof. Let us assume a time-constrained pBf+ P, except that all its actom(j’ haveD? =?
(empty element). Assigning individual deadlirfe%to the actors of time-constrained p&Pusing
either NORM or PURE (Equation$ ) and 6.8)) and its latency constraiﬂili(y under the system
model constraint speci ed in Equatio3.(L4) then

8wW2prS DY Cj; D= & DY (5.26)
8v2R°

The set of shared acto¥s in B has a sum of individual deadlines equakto

k= & Dj; 8vj2X;D; C; (5.27)
8vj2X
Here k represents the value calculated from the higher sensitivity time-constrainedathst
us assum& represents the value calculated for the same set of atorstime-constrained path

PY Then, from Propert{.1:
k < k° (5.28)

And,
D)y k>Dj, k° (5.29)

Again, let us assume that the sum of computation time of actoXsisc.

c= a G (5.30)
8vj2X

Then, from Equationg.27)
k ¢ (5.31)
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And, since the summation of individual deadlines of actorgfisuch that?2 P? X is

a DY=Dj, Kk° (5.32)
2R X
Therefore, from Equation$(26 and 6.29 and the system model constraint speci ed in Equa-
tion (3.14
Dy k>Djy, k° &cC ¢ (5.33)
8v;
The intuitive reason behind Equatiof.83 is that the sum of deadlines of unshared actors is
greater than the sum of their execution times, according to our system model. Also, it can be
written as
D, a Dj>D,, a DY 4c¢ c (5.34)
8vj2X; 892X 8vj
According to Equationsy31) and 6.33, DLy k andk follows the system model constraint
speci ed in Equation 8.14). Then, applying NORM or PURE (Equations.8) and 6.8)) using
the corresponding latency constram;_' .k, the sum of individual deadlines of all the actors in
Ris
a Dj+ & Dj=D;, k+k=D, (5.35)
8vj2R X 8v|2X:
Therefore, Algorithm3 assures thaﬁ;y = &gy;2p Dj even when actors are shared across time-
constrained paths. O

After proving that in case of a time-constrained pRtsharing some actors with higher sensi-
tivity time-constrained paths, the proposed algorithm assureP 8dts es its latency constraints.
Here comes the main proof through Theorgrhthat states the validity of the proposed approach
and assures that any type of application graph (DAG or DCG) satis es its latency constraints.

Theorem 5.1. Consider an HSDF DCG G h; E;di with multiple latency constrainl@i(y. As-
suming that G is represented by a set of all possible time-constrained Patindered by non-
increasing order of sensitivity, Algorithm3 assures that the actors of G are assigned individual
deadlines that makes anyZH° not exceed its speci ed latency constraint.

Proof. For any time-constrained paBhthere are two cases:
Case 1:R has no actors with assigned deadlines,

8v; 2 R;D; = ? (5.36)

Therefore, Algorithn8 applies either NORM or PURE stated by Equatiahd.{) or (5.13 under
the system model constraibty  &sg,,2pCj. Therefore, from Property.2

a Dj=Dj, (5.37)
8vj2R
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and,P, does not exceed its speci ed latency constrﬁ)ﬂg}.
Case 2:R, has a set of shared actotswith a set of high-sensitivity time-constrained paRis

8V 2 X;;Dx 6 ? (5.38)

Therefore, Algorithm3 determines the set of unassigned actors and their corresponding latency
constraint Di(y asy2x Dy)- SinceR has a set of shared actofswith a set of high-sensitivity
time-constrained patr&, Lemmab5.1 assures that the sum of individual deadlilgsof actors
in R is equal toD), = &gy,25 Dj.

Therefore, AlgorithnB assures that the assigned deadlines of all actoBare such that all
latency constraints are satis ed. O

Finally, we would like to show that in the special case of pipeline application graphs, the pro-
posed algorithm behaves identically i[Natale and Stankovjcl994 Kao and Garcia-Molina
1997, Lipari and Binj 2017 and gives the same results. This is proved in Coroltafy

Corollary 5.1. In case of pipeline application graph & h; E;di, where G is a multiple actor
graph with each actor having a single input/output connected in sequence, applying the proposed
algorithm will lead to exactly the same results as previous deadline assignment work for pipelines.

Proof. Let us assume that we have a pipeline application gfaphhV; E;di, where each actor
has a single input/output connected in sequence. Applying the rst phase of the algorithm ( nding
all possible time-constrained paths) @nresults in a listP with a single time-constrained path

path graph and its actors have no assigned deadlines, it will be covered by the rst case (1) in
Theoremb.1 Therefore, applying the proposed algorithm will lead to exactly the same results as
previous deadline assignment work for pipelines, Equatibri &énd 6.8) will be applied in this

case. O

Corollary 5.1 is an important nding, since it shows thaur proposed algorithm is more
general and deals with any types of application graphs without any particular drawbacks

5.7 Experiments

The Timing Parameter Extraction (TPEI{ et al., 2015 is proposed for HSDF applications,
enabling them to be scheduled and analysed using traditional real-time analysis techniques. This
means that TPE requires conversion from an SDF graph to an HSDF graph, which may result in
large graphs and hence long run-times of the algorithm. However, in Chépterintroduced a

graph reduction technique called slack-based merging, which addresses this problem by generating
a reduced-size HSDF graph that maintains the throughput and latency constraints of the original
application graph. In this experiment, we evaluate the run-time of the TPE algorithm with HSDF
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Figure 5.5:h263encoderesults.

graphs obtained using the classical conversion algorithm f@nngm and Bhattacharyya00Qq

(Gp) and the slack-based merging algorith@y) presented in Chaptet. This experiment will

show that spending this extra time running the slack-based merging algorithm to generate a graph
Gnm typically results in a reduction in the run-time of the TPE algorithm, thereby reducing the
overall run-time of the complete process.

5.7.1 Experimental Setup

In this experiment, we have the same settings as previously used in Séetioie change the
throughput requirement of the tested applications from the given throughput constraint (denoted by
0%) to the maximum throughput (denoted by 100%) in a step-wise fashion in increments of 20%.
The latency constrairidy, of each application is set to the inverse of the throughput constraint of
the applicationDyy, = 1=z. At each throughput step, we apply our merging algorithmGoto
generate a reduced-size HSDF gr&h Then, both types of graph&f andG,;,) are provided as
inputs to the TPE algorithm to compare and record their run-time.
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Figure 5.6:h263decoderesults.

5.7.2 Experimental Results

The experiment is on applications with two types of buffer sizes, in nite buffers and minimum
buffers for maximum throughput ( nite buffers). In case of applications with in nite buffers, the
results show that the proposed algorithm succeeds in generating a reduced-size comp&st, graph
at the maximum throughput (100%) in most cases, as shown in Figée) 5.7(a)and5.8(a)

This is re ected in the large reduction in the run-time of slack-based merging added to the TPE
algorithm, that ranges from 39% to 95%, compared to the run-time of the TPE algorithm on the
original G, graphs, as shown in Figue6(b) 5.7(b) and 5.8(b) Also, the results show that
having a reduced-size gra@, at the maximum throughput is not always possible in case of in-
nite buffers. Theh263encodeapplication results, shown in Figuge5, illustrates that there are
cases where the ability to generate a reduced-size graph decreases with increasing the application
throughput (see Figure.5(a). This is natural, because a higher throughput requirement restricts
the ability to merge parallel rings, which results in larger output graphs. This is re ected in the
increase in the total run-time of slack-based merging and TPE algorithm following the increase in
throughput constraint due to the increase in@ggraph size, as shown in Figubes(b)
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In case of applications with minimum buffers for maximum throughput ( nite buffers case),
the results show that when the throughput constraint is relaxed with respect to the maximum
throughput of the application, the proposed algorithm is able to achieve larger reduction in the
application graph size, as shown in Figute§(a) 5.6(a) 5.7(a)and5.8(a) This signi cantly
reduces the total run-time of slack-based merging and the TPE algorithm, within a range from
27% to 92%, at relaxed throughput constraints. This effect gradually decreases when approach-
ing the maximum throughput of the graph, as shown in Figarb&) 5.6(b) 5.7(b)and5.8(b)
Moreover, in some nite buffer cases, i.8263encodeandh263decodernwhen approaching the
maximum throughput the total run-time of slack-based merging and the TPE algorithm exceeds
the run-time of applying TPE directly 0By, as shown in FigureS.5(b)and5.6(b) This is due
to the increase in the throughput constraint that decreases the ability of merging parallel rings, as
in the in nite buffer case. Also, the minimum buffers introduce more dependencies in the graph
compared to the in nite buffer case, which reduces the ability to achieve a large reduction in the
graph size. For thenp3playbackthe output grapltsy, takes inde nitely long time for extracting
its timing parameters that we terminated the experiment after two weeks without reaching any
result. This is due to the size of the output gra@h is still huge (5000 actors), although it has
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been reduced to 50% of its size.

Figures5.5(c) 5.6(c) 5.7(c)and5.8(c) show a decrease in the percentage of the total ex-
ecution time of the CP of the applications (0% means execution time of CP is equal to the CP
of Gy) with the increase of the throughput constraint for a xed end-to-end latency condiraint

This means that the remaining slack (after generating the reduced-sizeGjfapttreases along

with the increase in the throughput constraint. The interpretation of this phenomena is, when the
throughput constraint increases a merging decision could be rejected despite of the availability of
enough slack, because it could result in a violation of the throughput constraint by increasing the
period of the application. This conforms with the previous results which states that the increase in

the throughput constraint limits the ability of merging parallel rings.

From these results, we can conclude that our merging algorithm typically succeeds in gener-
ating reduced-size graphs, in particular for applications that do not need to execute at maximum

throughput, which helps in speeding up the derivation of the timing parameters
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5.8 Summary

In this chapter, we presented a new algorithm for extracting the real-time properties of data ow
applications with timing constraints called Timing Parameter Extraction (TPE). The algorithm can
be applied on data ow applications modelled as HSDF graphs with periodic sources. The main
novelty is that the HSDF graphs can be cyclic or acyclic and the graph actors are modelled as
arbitrary-deadline real-time tasks. In addition, it enables applying traditional real-time schedulers
and analysis techniques on HSDF data ow graphs. Moreover, it provides a method to assign indi-
vidual deadlines for real-time data ow actors and support for two deadline assignment techniques
(NORM/PURE) that are widely used in the literature. Through the chapter, we demonstrate the
functionality and the validity of the proposed algorithm using an example and proofs. Further-
more, we showed the positive effect of the reduction technique for synchronous data ow SDF
graphs called slack-based merging, explained in Chajpten the run-time of the TPE. The ex-
periments shows that the generated reduced-size HSDF graphs typically enable faster extraction
of timing parameters compared to using the original larger HSDF graphs.



Chapter 6

Communication-Aware Mapping

The preceding chapters (Chaptdra&nd5) presented a detailed overview of how to represent
data ow applications with timing constraints as periodic independent arbitrary-deadline real-time
tasks, enabling the usage of traditional real-time scheduling and analysis techniques. The pro-
posed solution starts by proposing a graph reduction technique called slack-based merging algo-
rithm, demonstrated in Chaptérwhich aims to reduce the complexity of data ow applications by
generating reduced-size HSDF graphs possibly avoiding large HSDF graphs generated from tra-
ditional conversion method§firam and Bhattacharyya00(. These reduced-size HSDF graphs
are used as an input to the next stage called Timing Parameters Extraction AlIRER[., 2019,
where we extract the timing parameters (offsets, deadlines and periods) of the actors, transforming
them into real-time periodic tasks (Chap®r This creates a uni ed model for all applications
running on the multi-core platform, where traditional real-time analysis and scheduling techniques
can be applied assuring real-time guarantees for the complete system.

Now, we reached the nal stage towards@mplete approacfor combining mixed applica-
tion models on multi-core real-time systems, which is application mapping. Such systems require
ef cient techniques to map applications to cores, while satisfying their timing constraints, to avoid
over-dimensioned systems. In this chapter, we introduce an ef cient mapping algorithm called
communication-aware mapping his algorithm aims to provide an ef cient solution to improve
utilization of the platform resources. The effectiveness of the approach is demonstrated through
experiments that show the improvement in utilizing the multi-core platform resources compared
to the well-known First Fit (FF) bin-packing heuristic. Also, the proposed algorithm takes into ac-
count the communication cost caused by message transfer between communicating tasks, which is
essential for data ow applications in the mixed model. However, the mapping algorithm ignores
the communication modelling for independent real-time tasks, because they are not communi-
cating. This work is based on the heuristic algorithm for the mapping of real-time streaming
applications modelled as data ow graphs on 2D mesh multi-core processors called Critical-Path-
First (CPF) Rli et al., 2013.

This chapter begins with de ning a methodology for modelling communication cost in data-
ow applications, detailed in Sectiof.1. Next, we introduce the core selection methodology,

75
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(a) HSDF graph (b) HSDF graph with message act@gnm

Figure 6.1: Initial modelling of communication.

which is a method used byommunication-aware mappirajgorithm for selecting the next core
for mapping in Sectio®.2 Then, we present the algorithm itself in detail in Sectos) followed
by a discussion of its limitations and complexity analysis in Secttoaand6.5, respectively. We
experimentally evaluate our proposed approach in Seéti@nFinally, we conclude the chapter
with a summary in Sectiof.7.

6.1 Modelling Communication Cost

Data ow applications are data-driven networks of actors where there is data transfer (communi-
cation) occurring between actors during application execution. This communication is signi cant,
since it plays an important role in determining when actors can re. Also, it impacts the over-

all utilization of the resources and the end-to-end response time. Therefore, this communication
should be modelled in a way that ensures correct execution of data ow applications, satisfying
their timing constraints. In this work, we model the communication in a two step process. The
rst step isinitial modelling, where we transform all the messages in the HSDF graph to actors,

as shown in Figuré.1 We refer to these actors asessage actord-igure6.1(a)depicts a HSDF

graph, where actors communicate with each other by sending a single message (token) on each
channel. These messages have been transformed into message actors to model the communication
cost, as shown in Figuré.1(b) For example, the message acgy , represents the message
transferred from actov,, to actorv,,. No transformation of initial tokens is required. The rea-

son is that initial tokens represent messages that are ready in the input buffers of their destination
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actors, waiting to be consumed. This means their execution time is equal to zero and they do not
affect the communication model.

The message actors have a WCET equal to the time required to traverse the IN of the platform
from the source to destination. Therefore, according to the platform described in Séetion
which states daomogeneoumulti-core platform with &2D MeshIN topology usingX-Y routing
wormhole switchingand TDM arbitration, the WCET of a message actor is de ned by Equa-
tion (3.27), where p refers to the message size (bits) in this work. However, Equa8adiii)(
shows that the WCET of a message actor depends on the number ¢f hopsssage traverses on
the IN, which cannot be computed a priori, because the mapping of the application graphs is not
known yet. To overcome this problem, we initially assume that each message have its source and
destination located on the two furthest cores on the platform. This means that each message has to
traverse the maximum number of hdpsn the IN of the platform. By evaluating Equatich 19,
the maximum number of horﬁ;on a multi-core platforn of sizen nis equal to:

h=(n 1)+(n 1)=2n 2 (6.1)

By substitutingh instead oh in Equation 8.27), the initial value of the WCET of a message actor
Ci.pis de ned as:

~ ~ f pi f lsw { i f 1
C..= h + L'} _— + — + 1 — 2
"P Ry | f L{ZRi Ri} | Ri b z L R c? (62)
message header message payload interference

wheref is the it size in bits, lg, represents the switch latency in secor@dss the IN frequency
in hertz (Hz),L is the multi-core link capacity in bits per second (bps), &ds the reserved
bandwidth ofL in percentage (%), dedicated to a speci ¢ data ow applica#ipn

The second step comes after mapping the application on the pla#fpwhere we update the
WCET of the message actors. At this point, we know exactly which messages ow on the IN of
the platformP and which are not. Also, we can precisely determine the number ofthepsh
message take to reach its destination. Based on this information, the WCET of message actors
that ow internally in cores are set to zero, since they reach their destination instantly once they
are generated. However, the WCET of message actors that ow on the IN are updated according
to the actual number of hopsthey traverse. This is achieved by replacing maximum number of
hopsﬁ in Equation 6.2) with the actual number of hogs which results in an equation identical
to Equation 8.27).

Equation 6.2) shows that the execution time of a message actor comprises three terms. The
rst term is the time spent by the message header (a single it) to traverse the IN. The second term
is the time taken by the message payload to traverse the IN. The third term is the interference suf-
fered by the message actors during traversing the IN. From this, we can deduce two conclusions.
First, the reservation bandwidtR has a great impact on both the WCET of message actors and
the response time of a data ow application, due to the inverse relation betRemmd WCET in
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all three terms in Equatiof6.2). A larger value of reservation bandwidghdecreases the WCET

of message actors and improves the response time of the data ow application, which enhances
its schedulability. However, in case of limited communication resources, it may also reduce the
schedulability of multiple communication ows in the network, as the ows on some communica-
tion links may exceed the link capacity By changing the reservation bandwid®h the system
designer can understand the impact of communication on the mapping of the applications, which
is evaluated later in Sectidh6.2 Second, we claim thatespite the pessimism in the assumption

of maximum number of hop}sas an initial value for the WCET of message actors, its impact is
insigni cant. The maximum number of ho;fsaffects only the time spent by the message header,
which is the rst term of the equation. The message header is a single it compared to the rest of
the message (payload). This means that our assumption has an insigni cant effect on the WCET of
the message actors. Especially, when the message payload size is in terms of hundreds of its. For
example, thn263decodernpplication has messages with a payload of 304128 Bytes. Assuming

a multi-core platfornP with the con guration mentioned in Tabkg 1 (Section6.6.1), theéi;p of

a message actor is equal to 1.0 2 seconds, approximately. Although the maximum number of
hopsﬁ is equal to 14, the value of the execution time of the message payl®ad {9 * seconds)

added to the interference (510 © seconds) is 1336% greater than the execution time of the mes-
sage header (7 10 7 seconds). This means, the impact of the maximum number ofﬁnops

the WCET of message actors is insigni cant. However, there are two cases where the impact of
the execution time of the message header can be signi cant. Either if the maximum number of
hopsﬁ is in the order of 1&hop, or the message payload size is very small, e.g. 1 or 2 its. Both
these cases are highly unlikely in the work considered in this thesis. Morglgesecond step of
updating the value of the WCET of message actor decreases more the effect of maximum number
of hopsﬁ initial assumptionas explained later in Secti@h3.

The modelling of the communication cost is presented in the complete approach, shown in
Algorithm 4. Following Algorithm 4, it starts by generating a reduced-size gr&husing the
slack-based merging algorithm, detailed in ChagtéFhen comes the rst stage of modelling the
communication cost by applying a graph transformation for the merged @aptalledchannel
convert This transformation process converts all channel&gfinto actors with WCET equal
to éi;p. If initial tokens exist, they are added on the edge created between the message actor and
the destination actor. For example, the chamggl, connecting actorsy, , W, is carrying an ini-
tial token, as shown in Figur@.1(a) After transforming it into a message actey, . the initial
token is added on the new edgg, ,, b, Created between the message aetgr, and the actor
Vi, @S shown in Figur€.1(b) This transformation helps the timing parameter extraction (TPE)
algorithm, detailed in Chaptes, to derive timing parameter®ffset period deadling also for
messages such that they can transfer safely from the source to the destination in a synchronized
manner with the execution of the actors in the graph. After extracting the timing parameters, the
main topic of this chapter callecommunication-aware mappirgarts, which involves mapping
the tasks on the platform and updating their timing parameters according to the nal placement of
the application graph on the platfoth The communication-aware mapping is dicussed in detail
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Algorithm 4: Complete approach for integrating mixed application models on the same pldform
Input:
G: SDF application graptG = hv;E;di.
Output:
Y : The complete system that consists of a homogeneous symmetrical multi-core platform
P and the mapped application getY = HP;AI.
Variables:
Gmn: merged HSDF application graph.
Gcom: HSDF graph with channels modelled as actors.
P: totally ordered set of all time-constrained paths of an application ordered according to

gP=fR:g 1 g0

1 begin
2 foreach A in Ado
3 Gm = slackbased mergin@s) ..........oovevvevvvvviinnnnnn. /l..Chapter 4
4 Geom= channel conveliGu) «.vvvvvvvveeeeeeeeeieiiiiiieees /l..Section 6.1
5 e I T L ll..Chapter 5
6 Y = communicatioraware mappin{Geom P;P) .....// Chapter 6
7 end
8 end

in Section6.3.

6.2 Core Selection Methodology

In this section, we present titere selectioomethodology, which helps the communication-aware
mapping algorithm select a new core for allocating actors. This selection is based on a concept
calledindependent / dependent patiat classi es the time-constrained paths of a gr&pmto

two types based on whether or not all its actors are unallocated. The independent / dependent path
concept is de ned as follows:

plication A is said to bandependentff all its actors are unallocated. If at least one of Rctors
is already allocated, the path is considemependent

The core selection is the process where a new core is selected for assigning actors. It is
composed of two different methods, which are cafipotal_moveand nd_nearest_coreas shown
in Figure6.2 Depending on the type of path to be allocatediependentr dependentone of
these methods is applied, respectively.

Forindependenpaths, the selection is performed $piral_move As shown in Figurés.2(a)
every time thespiral_movefunction is called it returns the next core in the spiral path. The
spiral_movefunction is called when the current core fails the feasibility test (Se@itr?). The
spiral path for core selection is initialized only once at the beginning of the allocation process
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Figure 6.2: Core selection methodology

using one of the middle cores in the platfoi and advances to the next core each time the
feasibility test (Sectiors.1.2 fails. In case of the platform dimensions are eveiis(even), the
middle cores are the four cores at the middle of the 2D-Mesh IN. Otherwisenfld), the middle
core is uniguely de ned. For example, the middle cores in the platlramown in Figures.2 are
(3;1), (21), (,2) and (22), where core (11) is selected to initialize the spiral path.

For dependenpaths, as they are partially allocated, allocation of child (unallocated) actors
is doneas near as possible to their parent (allocated) actors to reduce communicatianTduest
function nd_nearest_corestarts searching for a suitable core (a core that passésdasbibility test
explained in SectioB.1.2 one hop away from the reference core (de ned in Sedii@?, where
the rst core that passes the feasibility test is selected. If not possible, it searches for a suitable
core two hops away, and so on, until nding a possible core. The search criteria starts by nding
the nearest core in this order: North, South, East and West. In each of these directions, starting
from two hops distance from the reference core, there are several cores that can be selected. For
example, Figuré.2(b)shows in the South direction there are three cores that are two hops away
from the reference core. Thed_nearest_cordunction arbitrarily chooses a core among them
and returns it for allocation. Figu&2(b)shows the searching regions, classi ed according to the
distance from the reference core.

6.3 Communication-Aware Mapping

The communication-aware mapping algorithm is a heuristic for allocating mixed application mod-
els on a 2D-mesh multi-core platform. These mixed application models comprise data ow appli-
cations with timing constraints and real-time independent tasks. It aims to maximize the usage
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Algorithm 5: Communication-aware mapping

Input:

Gcom: HSDF graph with channels modelled as actors.

P: totally ordered set of all time-constrained paths of an application ordered according to
gP=fR:g 1 go

Output:

Y : The full system that consists of Homogeneous symmetrical multi-core plaBoamd
the mapped application sAtY = hP;Ai.

Variables:

1 begin

2 P = SPHGcom P)
3 Geom= EZM(Geom)
4 P = TPE(Gcom)

5 end

of system resources while taking the communication cost of data ow applications into considera-
tion. In case of data ow applications, the algorithm uses the time-constrained paths and periodic
task set information output of the TPE algorithm to allocate the application graph on the platform.
For independent real-time tasks, the algorithm deals with them as graphs with a single node. The
communication-aware mapping algorithm is based on two main criteria:

1. Allocating time-constrained paths in decreasing order of sensitivity.

2. Exploiting parallelism in the application by allocating parallel time-constrained [Fatims
different cores.

The rst criteria allows the algorithm to map the time-constrained paths that have the highest
impact on the schedulability of the application rst, which allows maximizing the usage of the
available resources. Also, it gives the mapping algorithm a tendency to order the allocation of
tasks from heaviest to lightest density, which has been shown to provide a better solution than the
well-known FF Hoffman, 1999. The second criteria potentiates parallelism, which improves the
performance of the allocated applications and allow mapping more applications, as demonstrated
later in Sectior6.6.

This algorithm is inspired by the heuristic data ow graph mapping algorithm called Critical-
Path-First (CPF)Ali et al., 2013. However, the communication-aware mapping uses the path
density as parameter for path sensitivity, as stated in De n&idnwhile in case of CPF the exe-
cution time of a path determines the path sensitivity. The communication-aware mapping is more
general then the CPF algorithm. This is because CPF ignores the communication cost contrary to
the communication-aware mapping. In the following sections, we present a description of the gen-
eral functionality of the communication-aware mapping algorithm in Se&i8ri. Section6.3.2
then provides a detailed explanation of the SPF mapping heuristic, which is a main building block
in the proposed algorithm.
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6.3.1 General Functionality

The communication-aware mapping consists of three stages, as shown in Algbritfime rst
stage is the mapping heuristic called Sensitive-Path-First (SPF). The SPF algorithm is responsible
for allocating the application actors (not the message actors) @dhggraph on the multi-core
platformP, such that the system is schedulable. This is assured through using the Partitioned Ear-
liest Deadline First (PEDF) as scheduler and the Quick convergence Processor-demand Analysis
(QPA) (Section3.1.2.9 as feasibility test to decide whether or not to map an actor to a specic
core. The following Sectiof.3.2explains the SPF mapping algorithm in detail.

The second stage is eliminating message actors with zero computation time fr@g,the
graph, which we refer to da8ZM(G¢om) in Algorithm 5. This stage searché.q, for message
actors whose source and destination actors have been mapped to the same core to eliminate them
from the Gcom graph. This is because these messages are produced at their destination and never
use the IN of the platform. For example, the actgysandvc, in the Gcom shown in Figures.1(b)
have been mapped on the same core, so appEEl(Geom Stage eliminates the message actor
Vit ey

The third stage is the TPE algorithm that plays the role of updating the timing parameters for
the actors and the message actors in the graph according to the placement of the actors on the
platformP. This update process is necessary because the initial values of timing parameters are
calculated based on two pessimistic assumptions, which are:

1. Each message have to cross the maximum number offmrp)she platformP.
2. All message actors ow on the IN of the platforn

This makes the initial values of the timing parameters pessimistic compared to the actual reality.
The new computed timing parameters relax the individual deadlines of the mapped actors by
recalculating them based on how many messages of the application graph use the IN and the actual
number of hop$ that a message traverse on the IN. This means that the density of the mapped
actors decreases, allowing more new applications to be allocated, whether they are data ow graphs
or independent real-time tasks, which helps increasing the utilization of the platform resources.

However, recalculating timing parameters raises a question about the schedulability of the
system, since the task’s timing parameters have been changed. Although it is a valid question, the
system is still schedulable. After mapping the application graph using SPF, two mutual exclusive
and jointly exhaustive cases can happen. They are:

1. Geomis mapped such that every two communicating actors in the graph are located on two
different cores with a distance equal to the maximum number of ﬁotnsthis case, all the
message actors are owing on the IN of the platfoPm This mean€ ZM(Gcon) will not
eliminate any of the message actors. Also, all message actors traverse the maximum number
of hopsﬁ on the IN. This means that their WCET is still the same and the TPE stage will
not update any of the timing parameters of the graph actors or message actors. Therefore,
the system is schedulable.
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2. Geomis mapped such that every two communicating actors in the grapmoatecated on
two different cores with a distance equal to the maximum number of ﬁoﬂ'shis means
either, some of the message actors have been eliminated BZNEG.om) Stage and the
rest is traversing a number of hopdess than or equal to the maximum or all of the
messages are traversing a number of Holess than or equal to the maximtﬁr@excluding
the rst case). In both cases, the TPE algorithm will nd more latency slack, resulting
from the eliminated message actors and the current mapping pattern, to distrilfsigon
graph actors. This means that the relative deadlinef the mapped actors will increase,
which will not affect the schedulability of the system. Also, the offsgtef the mapped
actors will change, but the schedulability will not be affected. This is because of the QPA
feasibility test being offset agnostic, as shown in Algorithirand Equation 3.8). This
means QPA assumes that all actors start simultaneously at time instard;zer@)( which
is a pessimistic assumption.

Therefore, updating the timing parameters helps in increasing the utilization of the platform re-
sources without negatively affecting the schedulability of the system.

6.3.2 Sensitive-Path-First Algorithm

Sensitive-Path-First (SPF) is a heuristic algorithm that allocates mixed application models with
timing constraints, after unifying them, on a 2D-mesh multi-core platform. The main criteria of
the SPF algorithm is to allocate time-constrained p&lisat have the highest sensitivigy rst.
Itis also able to exploit parallelism in the application by allocating parallel time-constrained paths
P on different cores. These criteria allow maximizing the usage of the available resources and
potentiates parallelism, which helps increasing the number of mapped applications and improve
their performance.

The proposed approach, shown in AlgoritBnpicks a path? in order of sensitivityg from P.
The selected patR is checked whether it is independent or depend@gris always independent
by de nition if it is the most sensitive patim the graph.

test for the current core. If the test is true, it assigns the agtiorthe current core. Otherwise, the
next core is selected usispiral_moveand the process is repeated again.

On the other hand, if patR is dependent, the algorithm searches its partial paPneun-
allocated path sections) and classi es them into three classes: Head, Middle and Tail, similar to
the offset assignment mechanism mentioned in Se&ibr2 Figure6.3 shows the three classes
of partial paths. For each partial pa#ff, the algorithm determines a reference allocated actor
(parent) and uses its core as a reference core in the process of selecting the nearest possible core.
This reference actor (parent) is determined according t®¥helass. In case d?° being a Head,
the reference actor is the successor of the last actor in the partial path, as shown ir6R&¢pire
In case of a Tail, the reference actor is the last allocated actor before the partial path, as shown
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Algorithm 6: Sensitive-Path-First (SPF)
P: totally ordered set of all time-constrained paths of an applicaj@rdered according
togP=fR:g 1 gg
R: A full time-constrained path iR .
PP: Partial path of full pattP,.
LPP: List of partial paths irP,.

begin
n = spiral_mové);
foreachR in P do
if B is Independenthen
foreachv; in B do
while (all cores are not tested) andj(wnot allocated)do
if feasibility testthen
| allocatev; on corepy,
else
| n=spiral_mové);
end
end
if vj not allocatedthen
| unallocateBv; 2 A from P.
end
end
Ise // Dependent Path Case
search for possiblB” in B,
classify foundP”& add them toLPP.
foreach PP in LPP do
if Heador Tail then
nd the reference actor (Parent).
allocate usingnd_nearest_core
else ifMiddle then
calculate mid-point (core).
allocate usingnd_nearest_core
end
if (vj in PP) not allocatedthen
| unallocate8v; 2 G from P.
end
end
end
end
end
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in Figure6.3(b) In the case of a Middle, the reference core is selected differently. The class
middle partial path is surrounded by two allocated actors (parents), as shown in&gaeThe
reference core is thus selected by computing the middle core between the parents. If the number
of cores between the parents is even, an arbitrary core is selected from the two middle cores in
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Figure 6.3: Partial path classi cation used by SPF heuristic.

between the parents. The location of the computed reference core is given tearest_coreas
an input to nd the possible nearest core to allocate the child actors.

The SPF approach uses two different technigepsal_moveand nd_nearest_corefor al-
locating independent and dependent paths, respectively. This is because independent paths can
be allocated on any set of cores that have enough capacity to accommodate the path. However,
unallocated parts (children) of a dependent path need to be allocated near to their parents to de-
crease the communication cost between child and parent actors. The partial path classi cation
discovers potential parallelism in the application, since, by de nition, the full path (containing the
partial path) shares some of its actors with another allocated path. This feature is an advantage
and this knowledge allows to allocate these parallel sections on different cores (if possible), thus,
enhancing the performance and reduce the end-to-end worst-case response time of the application
graph. If the heuristic fails in the allocation of any p&hthe heuristic unallocates all previously
allocated actors of the graph.

6.4 Limitations

The communication-aware mapping algorithm has a communication model that is used to account
for the communication cost of data ow applications running on the platfBrnirhis communi-

cation model guides the mapping algorithm, aiming to increase utilization of the full system. It
comprises two phases that begin with modelling all the messages exchanged between actors as
message actors, as demonstrated in SeéitnThen after mapping the data ow application on

the platformP, the update phase recalculates the timing parameters of all actors and message
actors re ecting the current mapping decisions, as explained previously in S&cfdn This

model successfully allows to show the impact of communication on the schedulability of the sys-
tem in terms of number of allocated applications, as experimentally demonstrated in $e@tion
However, it does not guarantee the feasibility of the communication on the IN of the pldform

This means that it does not guarantee that the sum of total reservations on each link on the IN
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is less than or equal to 100%. Another limitation that affects the feasibility of the communica-
tion is coming from reserving a dedicated bandwidth per application and not per communication
ow. This means that the WCET of the communication ows (messages actors) can be more than
the one computed, which can affect the communication feasibility. This is because of the pos-
sibility of multiple communication ows of the same application using the same link of the IN
at the same time. This means that the dedicated bandwidth for this speci ¢ application is shared
between these communication ows on this link, which increases the WCET of these ows, and
hence affecting the communication feasibility. Performing schedulability analysis at the network
level during mapping would be possible, but would be dependent on the routing strategy used,
and would increase the complexity and overhead of the mapping. For simplicity, the approach
considers that the feasibility at the network is performed in a nal step, after the applications
are mapped. Improvements to this approach are relevant future work and are brie y presented in
Chapter7. Note that the reservation bandwid®hparameter allows the designer to understand the
impact of communication in the allocation of applications. When a particular mapping is found
not to be schedulable, this understanding can guide the selection of R .new

The communication-aware mapping does not assure that rings of the same SDF actor are
mapped on the same core. This affects the correct execution of the HSDF application. Therefore,
we assume that shared states between rings of the same SDF actor are always communicated
through self edge channels.

6.5 Complexity Analysis

In this section, we provide a complexity analysis for the communication-aware mapping algorithm
(Section6.5.1) and the complete approach (Sect®b.?), previously presented in Algorithnis

and4, respectively. The complexity analysis is done assuming a single application graph as an
input.

6.5.1 Communication-Aware Mapping

The communication-aware mapping algorithm is composed of two sub-algorithms. They are the
SPF and the TPE. The SPF consists of a two-level nested fooga¢h statement) that runs

iPj jVhj times. Consequently, the complexity of SPF is equivale@({i®jj Vij). The complexity

of TPE is equivalent t®(jPj + jPjj Vihj + jVhj + jEnj) according to the calculations in Sectibrb.3
Therefore, the total complexity is the sum of the complexity of the two algorithms SPF and TPE
O(jPj + jPiiVhi + jVhj * JEnj + jPjjVhi) = O(jP] + 2PjjVhj + jVhi + jEnj). Hence, the nal com-
plexity of the communication-aware mapping algorithr®{gP ] + jPjj Vij + jVhj + jEnj), which is
polynomial and depends gRj, jVij andjEy,j.
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6.5.2 Complete Approach

Now, we are ready to compute the complexity of the complete approach, shown in Algdrithm

It is composed of four sub-algorithms. They are the slack-based merging, the channel convert,
the TPE and the communication-aware mapping. First, the slack-based merging has a complexity
of O(jVhj®+ jVhijiEnj), as detailed in Sectiof.3.4 Second, the channel convert has a complexity

of O(jEy)), since it traces every edge in the HSDF graph and converts it into an actor, as shown
in Figure6.1 Third, the TPE has a complexity @(jPj + jPjjVhj + jVhj + JEnj), as detailed in
Section5.5.3 Fourth, the communication-aware mapping has a complexi@(i#j + jPjj Vij +

iVhi + jEnj), as explained previously. Therefore, the nal complexity of the complete approach is
equivalent tad(jVhj?+ jVhjj Enj + jPj + jPjj Vhj + jVhj + jEnj), which is still polynomial and depends

onjPj, jVhj andjEy;.

6.6 Experiments

Finally, we reached the evaluation section of this chapter. Through the previous ones, we eval-
uated the primal stages of the complete approach step by step. In Chapterevaluated the
slack-based merging algorithm and showed that it generates reduced-size HSDF graphs that sat-
isfy the throughput and latency constraints of the original application graph. Then, we followed

it by evaluating the TPE algorithm in Chapter where we showed it typically extracts timing
parameters faster using these reduced-size HSDF graphs compared to using the original larger
graphs.

In this section, we evaluate the full system solution using three experiments that test different
algorithms of its structure. The rst experiment, detailed in Sectofi2 evaluates the com-
munication modelling methodology of the communication-aware mapping algorithm through the
testing of the communication cost and its effect on the schedulability of the system. The second ex-
periment, presented in Sectiérb.3 evaluates the SPF mapping heuristic of the communication-
aware mapping algorithm by comparing it against the well-known FF bin-packing heuristic. The
reason for choosing FF is it has been shown to behave as well as other bin-packing algorithms, and
outperform them in some cases, in terms of achieved througBud fnd Bhuyaj2006 Hoff-
man 1999. The nal experiment, presented in Sectiérb.4 evaluates the complete approach
and shows the trade-off between using original and merged data ow graphs in terms of number of
allocated applications and the overall run-time of the complete approach. This evaluation assess
the suitability of the proposed approach for different types of applications.

6.6.1 General Experimental Setup

The set of input applications comprises Stifenchmark applicationsSfuijk et al, 2004. The

SDF benchmark applications are classi ed into two types: high (0:5) and low (1 0:5) total
utilization, as shown in Tabl6.2 From these two types, each experiment uses different weights
for the random generator to create ve sets, of 500 applications each, with a range of Low/High:
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Table 6.1: General con guration of the experimental setup.

Platform sizen n 8 8
Maximum number of hops h 14
Router switch latencylsy 1 cycle
it size f 16 Byte
Feasibility test QPA
Link Capacity L 256 Gbps
IN frequency G 2 GHz
Number of allocated Slots{ 1
Reservation BandwidthR R

Table 6.2: SDB benchmark applications.

Applications Utilization (Low/High)
h263decoder 0:76 (High)
h263encoder 1:2 (High)
modem 0:9 (High)
samplerate 0:37 (Low)
satellite 0:6 (High)
MP3 decoder (granule level) 0:41 (Low)
MP3 decoder (block level) 0:41 (Low)

90% Low - 10% High, 60% Low - 40% High, 40% Low - 60% High, 20% Low - 80% High, 10%

Low - 90% High. Each experiment runs the complete approach, shown in Algofitiom these

ve input data sets trying to allocate as many applications as possible on the multi-core plRtform
using this approach. To ensure the schedulability of the system, the Quick convergence Processor-
demand Analysis (QPA) is used to guarantee the feasibility of the mapped applicationB. The
isan 8 8 2D-mesh homogeneous multi-core with a NoC of link capdcigqual to 256 Gbps.

Each applicatiod\ has a single allocated slot in a TDM frame, and the reservation bandwidth per
applicationR; equal toR. Table6.1 summarizes the general con guration of the experimental
setup.

6.6.2 Evaluation of the Communication Cost

In real-time multi-core platforms that run dependent tasks, communication plays a big role in the
schedulability of the system. In our system, this role can be noticed in Equati that shows

the inverse relation between the IN link capaditand the reserved bandwidghon one side, and

the WCET of messagés;, on the other side. The link capacityand the reserved bandwid®y
represent the communication resources available to an application. When the communication re-
sources increase the resource utilization decreases allowing the IN to handle more traf ¢, and vice
versa. This experiment aims to demonstrate the effect of availability of communication resources
on the schedulability of the system in terms of number of allocated applications. To show this, we
run Algorithm4 on the input data sets, mentioned previously in Seddiénl, using three values
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Figure 6.4: Effect of reservation bandwidg

of the reservation bandwidfR. These values considered are: in nity, 5% and 1%.

The in nity value of reservation bandwidtR represents a system that does not model com-
munication costs in any way where messages reach their destination immediately once they are
produced. Therefore, in such system the WCET of message actors is equal to zero and its com-
munication is always feasible. This allows to set an upper bound on the number of allocated
applications, no matter which type of arbiter and arbiter con guration is used. On the contrary,
the 5% and 1% values of reservation bandwidthepresent a system with limited communication
resources. As we mentioned previously in Sectof) the communication-aware mapping does
not guarantee the communication feasibility of the system. This means the experimental results
may be optimistic, but demonstrates the impact of communication cost on the schedulability of
the system. To decrease the margin of optimism in our results, we give away bandwidth at a ne
granularity to assure that each communication link can handle messages from a lot of applications
before it becomes infeasible. For example, a reservation bandwidth of 1% allows 100 applications
to use a communication link safely, since they have one allocated slot each.

In this thesis, we propose a platform with a TDM arbiter for the IN to guarantee dedicated
bandwidth to mapped applications and to provide traf c isolation. Using a TDM arbiter results
in interference, as the reserved bandwiBths not available immediately once requested by the
application. This interference shows up as the téfpy in Equation 8.16), which evolves into
Equation 8.27) used in our experiments. However, we would like to investigate the boundaries of
our complete approach in case of using different types of arbiters for particular reservation band-
width R values (5% and 1%). Therefore, we run the same experiment assuming an ideal arbiter,
which means WCET of message actQyg is equal to the isolation tim@ii;sg. This experiment
gives an upper bound on the number of allocated application by our complete approach using any
type of arbiters at speci c reservation bandwidRhvalues.

Figure6.4 shows the summary of the results in case of in nite communication resources (in-
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Figure 6.5: Evaluation of the mapping heuristic.

nite R), TDM and an ideal arbiter. The results show that the case of in nite communication
resources (in niteR) upper bound any type of arbiter for any reservation bandwiltralue in
terms of average number of mapped applications. As expected, it upper bounds the ideal arbiter
that is considered as an optimistic upper bound for the TDM arbitbe in nite R exceeds by
an average o26% and 76% more mapped applications ovéfb and 1% R values for the ideal
arbiter, respectively. This shows the importance of considering communication cost and its effect
on the number of schedulable applications on the system

Another optimistic upper bound is the ideal arbiter to the actual TDM arbiter for any reserva-
tion bandwidthR value, as shown in Figui&4. The ideal arbiter allocates an average of 31% and
28% more applications over the actual TDM arbiter in 5% andR.%espectively. This shows
the effect of the TDM interferendg py on the number of schedulable applications on the system.
Also, the results illustrate the direct relation between the reservation bandwialtid the number
of allocated applications on the platfoith As we notice from Figuré.4, whenR is equal to
in nity, the maximum number of allocated applications is achieved in all input data sets, no matter
which type of arbiter is used. However, the number of allocated applications reduces following
the decrease dR. In addition, we notice that the number of mapped application decreases as
the percentage of high utilization application increases in the input data sets. This is due to high
utilization applications consume a lot of the platform resources preventing our algorithm from
mapping more applications.

Finally, we can conclude théhe communication cost has a signi cant impact on the schedu-
lability of the system. When the communication resources (reservation bandRyidtbrease the
number of mapped applications increase, and vice versa.

6.6.3 Evaluation of the Mapping Heuristic

The proposed complete approach is modular and easily allows using different bin-packing heuris-
tics. In this experiment, we compare two different mapping heuristics, Sensitive-Path-First (SPF)
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and First Fit (FF). The choice of FF for comparison with SPF heuristic is because FF surpasses
other bin-packing algorithms in terms of achieved through@utd and Bhuya200§. This ex-
periment uses the same input data sets and settings as illustrated in the previous experiment in
Section6.6.2 except it assumes TDM arbitration and runs for both SPF and FF heuristics.

The experimental results are demonstrated in Figube In terms of number of allocated
applications, Figuré.5(a)shows that the SPF heuristic dominates FF, succeeding ef ciently in
utilizing the computational resources through the allocation of more applications in all input data
sets and for different reservation bandwi&hvalues. In case of in nite reservation bandwidkh
which represents an upper bound on number of mapped applications using any arbiter type, the
achieved gain using SPF ranges from 2% to 10% (approximately) with an average gain of 6%. In
case of 5% reservation bandwidih the achieved gain ranges from 4% to 24% (approximately)
with an average gain of 12%. In case of 1% reservation bandvRdtthe achieved gain ranges
from 3% to 28% (approximately) with an average gain of 15%. This is due to the selective nature
of the SPF heuristic that enables the allocation of actors in the most sensitive paths rst that have
higher impact on application schedulability, previously discussed in Segt®hB Also, SPF ac-
tively encourages mapping independent and partial (Head, Tail, Middle) paths on different cores,
which enables parallelism to be exploited in each application. In addition, Fégbifg)illustrates
the effect of the communication resources on the number of allocated applications, whatever bin-
packing heuristic is used (SPF or FF). The presented results conforms with the conclusions of the
previous experiment detailed in Sectiér®.2

In terms of run-time, the SPF heuristic outperforms FF. As noticed in Fig&@®) the SPF
heuristic achieves a lower run-time for most data sets and reservation ban@®wvidtlues. The
overall achieved gain, in terms of run-time, ranges from 1% to 22% (approximately) with an av-
erage of 9%. This occurs because SPF has a tendency to order the tasks in decreasing order of
density while mapping, which enables the heuristic to nd a feasible core quicker than FF. This
tendency is coming from the nature of SPF to map higher sensitive paths rst. The higher sensi-
tive paths comprise tasks with high densities that have great impact on the schedulability of the
system. Therefore, mapping highly sensitive paths rst means mapping tasks in decreasing or-
der of density. The results show that there is no added complexity from using SPF compared to
FF. Also, the results show that the run-time of both heuristics converge for high utilization data
sets. The reason behind this is that both heuristics struggle similarly to map applications, because
high utilization applications consume a lot of resources leaving no space for mapping others. This
struggle is illustrated in the rise of run-time with the increase of high utilization applications in the
input data sets.

Based on these results, we conclude 8RFE outperforms the well-known FF both in terms of
number of mapped applications and run-time.

6.6.4 Evaluation of Slack-based Merging

In this experiment, we evaluate an important part of the proposed complete approach, which is the
slack-based merging. The evaluation illustrates the trade-off between using merged and original
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Figure 6.6: Mapping results for merged and original HSDF graphs.

HSDF graphs in terms of number of mapped applications and run-time of the complete approach.
This experiment uses the same ve input data sets and settings described in $e&tlomhe
mapping heuristic is SPF, and the reservation bandwilik set to in nity. The choice of set-

ting the value oR to in nity is because it has the shortest run-time, as shown in Figuséo)

Any choice of a different value d® de nitely will lead to new results in terms of absolute value.
However, these new results will have the same trend of the existing results and conclusions will
be the same. Moreover, the new experiments will take unreasonable longer run-time.

The experimental results are summarized in Figu& In terms of number of mapped ap-
plications, the original HSDF graphs (complete approach without slack-based merging) enabled
the complete approach to map approximately 12% (approximately) more applications than the
merged ones in all input data sets. This is because the original HSDF graphs contain ne-grained
parallelism that the SPF heuristic exploits to ef ciently use the platform resources. However, the
merged HSDF graphs lose such ne-grained parallelism in the slack-based merging process, de-
creasing the ability of the SPF heuristic to map applications.

As expected, the complete approach, using merged HSDF graphs achieves lower run-time in
all input data sets compared to the original ones. The reduction in run-time ranges from 82% to
90%. This trade-off between the number of mapped applications and the run-time, clearly, goes
into the favour of using slack-based merging and merged HSDF graphs, since it speeds up the
overall design time of the system. However, this does not mean that the slack-based merging is
the best in all cases. The experimental results of Ch&gterwe shown that data ow applications
with high throughput fail in the merging process and generates a new graph with almost the same
size as the original one. This means that the slack-based merging will not help in reducing the
overall time of the system design process. Even more, it will slow it down by adding the run-time
of the merging process as an overhead.

In generalthe proposed complete approach succeeds in decreasing the overall design time of
the system signi cantly, especially at relaxed throughput constraints.
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6.7 Summary

This chapter presented the nal stage of the complete approach aaledhunication-aware
mapping It is a heuristic algorithm for mapping mixed application models, data ow graphs
with timing constraints and independent real-time tasks, taking into account the communica-
tion cost of data ow graphs. The platform considered in this work is 2D-Mesh homogeneous
multi-core processors operated using X-Y routing, wormhole switching and TDM arbitration. The
communication-aware mapping algorithm comprises three heuristics. Thel) &ensitive-Path-

First (SPF)2) eliminate messages with zero execution tifa& M) and3) Timing Parameter Ex-
traction (TPE). SPF is responsible for mapping mixed application models in the communication-
aware mapping algorithm, guaranteeing the schedulability of the system. It is based on the heuris-
tic algorithm for the mapping of real-time streaming applications called Critical-Path-First (CPF)
[Ali et al., 2013. The SPF main criteria is to allocate time-constrained pRtthat have the high-

est sensitivityg (density) rst. Itis also able to exploit parallelism in the application by allocating
parallel time-constrained pattison different cores. These criteria allow maximizing the usage

of the available resources and potentiates parallelism, and hence helps increasing the number of
mapped applications and improve their performance. Before the communication-aware mapping
begins execution, all messages in a application are initially modelled as real-time tasks. This ini-
tial modelling is updated using the two heuristEZM and TPE to re ect the actual estimate

of communication cost after mapping the application on the platform. The experimental evalu-
ation reveals a direct relation between the number of allocated applications and the availability
of communication resources, which demonstrates the importance of considering communication
cost. The experiments shows that ignoring communication cost allows mapping up to 76% more
applications (in nite case), which gives a wrong perception of the ability to map applications with
timing constraints. These extra applications can be mapped, but they would not actually meet
their timing constraints, which is a dangerous situation in real-time systems. Also, it shows that
the SPF mapping heuristic surpasses the well-known FF bin-packing heuristic in terms of number
of allocated applications and run-time that reaches up to a maximum of 28% and 22%, respec-
tively. Moreover, it shows that the slack-based merging has a great impact on the run-time of the
complete approach achieving a reduction in the overall system design time that ranges from 82%
to 90%.
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Chapter 7

Conclusion and Future Directions

In this chapter, we conclude this work by brie y discussing the research question of integrat-
ing mixed application models with timing constraints (data ow and real-time applications) on
the same multi-core platform and recapping the proposed solution. We discuss our contributions
stating their pros and cons in Secti@rl. Then, we provide possible extensions of our work in
Section7.2

7.1 Conclusions

We are surrounded by embedded systems that help us in various daily life activities. Initially, em-
bedded systems were designed to perform a dedicated function within a larger system. However,
the increase in the application demands and the advancement in processor architectures allowed
them to perform multiple functions from different computing domains simultaneously. For exam-
ple, autonomous driving systems enable cars to navigate without human input, while providing
infotainment to the passengers. Both autonomous navigation and infotainment are functions from
two different computing domains. Hence, there is a growing trend of embedded systems running
mixed application models on their processing platform. In this thesis, we are concerned with em-
bedded systems running mixed application models with timing constraints. The considered mixed
applications models are data ow applications with timing constraints (latency and throughput) and
traditional real-time applications represented as independent periodic tasks. Such embedded sys-
tems running mixed application models require real-time guarantees that assure satisfying timing
constraints.

We proposed an approach, formulated in Algorithnwhich transforms SDF graphs into peri-
odic arbitrary-deadline tasks, to enable applying real-time scheduling and analysis techniques that
guarantee that the timing constraints of the applications are satis ed when they are mapped on
the multi-core platform. The proposed approach comprises three main contrib&iacis;Based
Merging Timing Parameter Extraction (TPEndCommunication-Aware Mappindn the follow-
ing sections, we recap on our main contributions, discussing their advantages and disadvantages.

95
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7.1.1 Slack-Based Merging

Slack-based merging is an algorithm for addressing the problem that SDF graphs may grow expo-
nentially when converted to an HSDF graph. Itis based on two main concepts. First is the concept
of slack which is the difference between the WCET of the SDF graph's rings and their relative
deadlines. Second is the novel concept cadleie mergewhich is a merge operation that we prove
cannot cause a live HSDF graph to deadlock. The algorithm generates reduced-size HSDF graphs
that satisfy the throughput and latency constraints of the original application graph. The experi-
mental results of Chaptdrshow that the proposed algorithm achieves large reduction rates of the
original HSDF graph, in terms of number of actors, that reaches up78®& some applications.

This result re ects positively on the run-time of the complete approach, achieving a reduction in
the overall system design time that ranges from 82% to 90%, as demonstrated in the experimental
evaluation in Chapte8. This does not mean that the slack-based merging is always a good so-
lution for reducing the complexity of HSDF data ow applications. One of the drawbacks of this
algorithm is a reduction of ne-grained parallelism in the application, which is a main bene t of
the data ow computational model. This reduction decreases the maximum throughput a data ow
application is able to reach, although never below the throughput constraint. Another drawback
the experimental results of Chaptehave shown is that the merging algorithm may be ineffective
and generates a new graph with almost the same size as the original for data ow applications with
high throughput requirements. In this case, slack-based merging will not reduce the overall time
of the system design process. In fact, it will slow it down by adding the run-time of the merging
process as an overhead.

7.1.2 Timing Parameter Extraction

Timing Parameter Extraction (TPE) is an algorithm for converting HSDF graphs with multiple tim-
ing constraints (throughput constraint and multiple latency constraints), represented as a Directed
Cyclic Graphs (DCG), into arbitrary-deadline real-time tasks de ned wfitkets periods dead-
linesas timing parameters. This enables applying well known real-time schedulers and analysis
techniques on HSDF data ow graphs. The proposed algorithm provides a method to assign indi-
vidual deadlines for real-time data ow actors and support for two deadline assignment techniques
(NORM/PURE) that are widely used in the literature. In addition, it allows capturing overlapping
iterations, which is a main characteristic of the execution of data ow applications, by modelling
actors as tasks with arbitrary-deadlines. However, the TPE algorithm has a downside related to
the rst phase of the algorithm that nds all possible time-constrained paths (Seeof). This

phase of the TPE algorithm is a very computationally expensive process, especially when the
HSDF graph is large. The experimental results of Chapstrows that applying TPE on tisatel-

lite large size HSDF graph with 4515 actors take® 310* seconds approximately. When the
HSDF graph becomes larger, i.enp3playbackvith size of 10000 actors, the TPE takes inde -
nitely long time for extracting its timing parameters that we terminated the experiment after two
weeks without reaching any result. Speeding up the TPE run-time was the main motivation for
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proposing the slack-based merging algorithm, which it achieved successfully with improvements
of up to 92% and 95% for the cases with nite and in nite buffer, respectively.

7.1.3 Communication-Aware Mapping

Communication-aware mapping is an algorithm for mapping mixed application models (data ow
application and independent real-time tasks) with timing constraints taking into account the com-
munication cost of data ow applications. The proposed algorithm is able to exploit parallelism in
the application by allocating parallel paths on different cores. The main criteria for the allocation

is to allocate paths with higher impact on the schedulability of the application rst. Also, it models

the messages (tokens) exchanged in data ow applications as real-time tasks and hence, accounts
for the communication cost. The experimental evaluation (Ch&)tdemonstrated four key re-

sults that concern both the communication-aware mapping algorithm and the complete approach.
They are:

1. the importance of the communication cost and its impact on the number of allocated appli-
cations and the schedulability of the system. The results show that ignoring communication
cost, as frequently done in existing work, allows mapping up to 76% more applications,
which gives a wrong perception of the ability to map applications with timing constraints.
These extra applications can be mapped, but they would not actually meet their timing con-
straints, which is a dangerous situation in real-time systems.

2. the direct relation between the number of allocated applications and the availability of the
communication resources. The experimental results show, when the reservation bandwidth
is equal to in nity, the maximum number of allocated applications is achieved in all in-
put data sets, no matter which type of arbiter is used. However, the number of allocated
applications reduces following the decrease of the reservation bandwidth.

3. the effect of the TDM arbiter interference on the number of allocated applications on the
platform, which shows that an ideal arbiter allocates an average of 31% and 28% more ap-
plications over the actual TDM arbiter in 5% and 1% reservation bandwidth, respectively.
This result sets the boundary for the possibility of using any type of arbiter based on band-
width reservations, since it quanti es how much better a different type of arbiter could
maximally do.

4. the ability of the proposed algorithm, particularly its main mapping heuristic called Sensitive-
Path-First (SPF), to ef ciently use platform resources and speed up the mapping process
compared to well known bin-packing heuristics like First-Fit (FF). The results show that
SPF surpasses FF in terms of number of allocated applications and run-time that reaches up
to a maximum of 28% and 22%, respectively. This shows that there is no added overhead
when using the SPF heuristic. On the contrary, it saves time.

Although the communication modelling of communication-aware mapping algorithm success-
fully allows to show the impact of communication on the schedulability of the system in terms of
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number of allocated applications, as experimentally demonstrated in Cleagiter model is sub-
ject to the limitations discussed in Sectiérd and proposed as future work in Sectin2.

7.2 Future Work

In every research, there is room for improvement. In this section, we discuss possible future
directions for improving and extending our work.

7.2.1 Timing Parameter Extraction (TPE)

The TPE algorithm transforms a HSDF graph with multiple latency constraints into independent
arbitrary-deadline real-time tasks. One of the main phases of this transformation process is an
algorithm that traverses the HSDF graph to nd all time-constrained paths, as explained in Sec-
tion 5.5.1 This phase has a run-time that grows rapidly with the increase in size of the HSDF
graph. In this thesis, we have addressed this problem by introducing the reduction algorithm
called slack-based merging that reduces the complexity of HSDF data ow graphs, speeding up
the run-time of the TPE algorithm, demonstrated in the experimental results in Chéprats.
However, the nature of the algorithm has a downside of reducing ne-grained parallelism, which
is a main benet of the data ow computational model. Also, in some cases its run-time adds
an overhead on the overall design time, as shown in the experimental results in Ghapter
future direction to address this problem is to propose an algorithm to nd onlyghessaryime-
constrained paths in the HSDF graph that are critical for correct execution that satis es timing
constraints. This is because many time-constrained paths share the same actors (dependent paths).
Once the timing parameters of an actor is derived from a high sensitivity time-constrained path, it
is not mandatory to check the same actor for a lower sensitivity time-constrained path. This will
speed-up the run-time of both the TPE algorithm and the complete approach. A possible start is
the work of [Geilen 2009, where the author proposes an SDF graph reduction technique based
on Max-Plus algebra that transforms an SDF graph into a smaller HSDF graph with equivalent
maximal throughput and latency, which is faster to analyse. This smaller HSDF graph can be used
to nd the necessaryime-constrained paths in the graph that are critical for correct execution that
satis es timing constraints.

7.2.2 Communication-Aware Mapping

The communication-aware mapping algorithm is based on a communication model that accounts
for the communication cost and its effect on the schedulability of the system without guaranteeing

the communication feasibility. This means that it does not guarantee that the sum of total reser-
vations on each link on the interconnect IN is less than or equal to 100%, as discussed previously
in Section6.4. A future direction is to improve the communication model to check the feasibility

of the communication while mapping tasks on the platform. This requires accounting for different
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message routing mechanisms, i.e. X-Y routing, on the IN of the platform. Another possible exten-
sion is to consider a real-time communication model that incorporate xed-priority for scheduling
messages on the IN, such as the communication models discussékiahd et al, 2013 Shi and

Burns 200§. Such a communication model will provide real-time guarantees for the messages
owing on the IN, allowing communication feasibility and satisfying timing constraints for both
communication and the system.
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