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Theorem 1. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}:
An inequality

1

I

I
∑

i=1

xi ≤ X ≤

I
∑

i=1

xi (1)

is equivalent to the equality X = ∨I
i=1xi

Proof. Follows from Lemma 1 and Lemma 2.

Lemma 1. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}:
If inequality (1)

1

I

I
∑

i=1

xi ≤ X ≤

I
∑

i=1

xi

is valid, then

X = ∨I
i=1xi

Proof. Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 0 (2)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 1 (3)

In Case 1, from (2) it follows that
∑I

i=1 xi = 0, which in turn means that
1
I

∑I
i=1 xi = 0. Then according to (1), 0 ≤ X ≤ 0 which means that X = 0. But

from the assumption of the case, it also holds that ∨I
i=1xi = 0 – therefore X = ∨I

i=1xi.

In Case 2, from (3) it follows that 1 ≤
∑I

i=1 xi ≤ I and therefore,

0 < 1
I
≤ 1

I

∑I
i=1 xi ≤ 1. Combining this with Equation (1) and the fact thatX ∈ {0, 1},

we obtain that X = 1. Additionally, as ∨I
i=1 xi = 1, therefore, also in this case,

X = ∨I
i=1xi.

Therefore, in all cases, X = ∨I
i=1xi.

Lemma 2. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}
If

X = ∨I
i=1xi

then inequality (1)

1

I

I
∑

i=1

xi ≤ X ≤

I
∑

i=1

xi

2



is valid.

Proof. Again, we explore two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 0 (4)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 1 (5)

In Case 1, from (4) follows that
∑I

i=1 xi = 0 and consequently 1
I

∑I
i=1 xi = 0.

According to definition of X and (4), X = 0. Therefore inequality (1) is valid in
Case 1.

In Case 2, from (5) follows that
∑I

i=1 xi ≥ 1 and 1
I

∑I
i=1 xi > 0. According to

definition of X and (5), X = 1. Therefore inequality (1) is valid for Case 2 as well.
Hence, in all cases, inequality (1) holds.
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Theorem 2. ∀x,X, s ∈ Z such that X >= 0; 0 ≤ x ≤ X; s ∈ {0, 1} :
An equality

s = sign(x) (6)

is equivalent to a double inequality

s ≤ x ≤ s ·X (7)

Proof. Follows from Lemma 3 and Lemma 4.

Lemma 3. ∀x,X, s ∈ Z such that X >= 0; 0 ≤ x ≤ X; s ∈ {0, 1} :
If the equality in Equation (6)

s = sign(x)

holds, then the inequality in Equation (7)

s ≤ x ≤ s ·X

is valid.

Proof. Let us consider two complementary cases that comply with the definition of
x:

Case 1: x = 0 (8)

Case 2: x > 0 (9)

In Case 1, from Equation (6) it follows that s = sign(0) = 0, thus, the inequality in
Equation (7) holds

0 ≤ x ≤ 0 ·X

.
Since x ∈ Z, Case 2 inequality in Equation (9) can be equivalently rewritten as

1 ≤ x. On the other hand, s = sign(x) = 1, hence, the inequality in Equation (7)
holds

1 ≤ x ≤ 1 ·X

Therefore, in all the cases the inequality in Equation (7) is valid.

Lemma 4. ∀x,X, s ∈ Z such that X >= 0; 0 ≤ x ≤ X; s ∈ {0, 1} :
If the inequality in Equation (7)

s ≤ x ≤ s ·X
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is valid, then the equality in Equation (6)

s = sign(x)

holds.

Proof. Again, we explore two complementary cases constructed based on the defini-
tion of x, that were presented in Equation (8) and Equation (9):

Case 1: x = 0

Case 2: x > 0

In Case 1, the inequality in Equation (7) can be reduced to

s ≤ 0 ≤ s ·X

In this case, the only acceptable value of s ∈ {0, 1} would be

s = 0 = sign(0) = sign(x)

Thus, the equality in Equation (6) holds in Case 1.
Since x ∈ Z, Case 2 inequality in Equation (9) can be equivalently rewritten as

1 ≤ x

Since s ∈ {0, 1}, the only value

s = 1 = sign(x)

would make the inequality in Equation (7) valid

1 ≤ x ≤ X

Hence, the equality in Equation (6) holds in Case 2 as well.
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Theorem 3. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}
The inequality

−
I − 1

I
+

1

I

I
∑

i=1

xi ≤ X ≤
1

I

I
∑

i=1

xi (10)

is equivalent to the equality

X = ∧I
i=1xi

Proof. Follows from Lemma 5 and Lemma 6.

Lemma 5. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}
If inequality (10)

−
I − 1

I
+

1

I

I
∑

i=1

xi ≤ X ≤
1

I

I
∑

i=1

xi

is valid, then

X = ∧I
i=1xi

Proof. Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 1 (11)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 0 (12)

In Case 1, from (11) it follows that
∑I

i=1 xi = I and consequently 1
I

∑I
i=1 xi =

1, − I−1
I

+ 1
I

∑I
i=1 xi =

1
I
> 0. Via substitution to (10) we then obtain 0 < X ≤ 1, which

means that X = 1. Additionally, it holds that ∧I
i=1xi = 1 – therefore X = ∧I

i=1xi.

In Case 2, from (12) it follows that
∑I

i=1 xi < I and consequently 0 ≤ 1
I

∑I
i=1 xi <

1, − I−1
I

+ 1
I

∑I
i=1 xi ≤ 0. Via substitution to (10) we obtain 0 ≤ X < 1, which means

that X = 0. Additionally it holds that ∧I
i=1xi = 0 – therefore X = ∧I

i=1xi.
Therefore, in all cases, X = ∧I

i=1xi.

Lemma 6. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}
If

X = ∧I
i=1xi

then inequality (10)

−
I − 1

I
+

1

I

I
∑

i=1

xi ≤ X ≤
1

I

I
∑

i=1

xi

6



is valid.

Proof. Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 1 (13)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 0 (14)

In Case 1, from (13) it follows that X = 1, − I−1
I

+ 1
I

∑I
i=1 xi = 1

I
< 1, and

1
I

∑I
i=1 xi = 1. Therefore (10) in this case is valid.

In Case 2, from (14) it follows that X = 0, − I−1
I

+ 1
I

∑I
i=1 xi ≤ 0, and 0 ≤

1
I

∑I
i=1 xi ≤ 1. Therefore (10) is valid for this case as well.

Therefore inequality (10) holds in all cases.
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Theorem 4. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, y, Z ∈ {0, 1}:
The inequality

1

2
× (−

I − 1

I
+

1

I
×

I
∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I
×

I
∑

i=1

xi + y (15)

is equivalent to the equality

Z = (∧I
i=1xi) ∨ y (16)

Proof. Follows from Lemma 7 and Lemma 8.

Lemma 7. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, y, Z ∈ {0, 1}:
If inequality (15)

1

2
× (−

I − 1

I
+

1

I
×

I
∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I
×

I
∑

i=1

xi + y

is valid, then equality (16)

Z = (∧I
i=1xi) ∨ y

holds.

Proof. For the sake of brevity, we denote the left-hand expression and the right-hand
expression of the double inequality (15) as L and R respectively:

L =
1

2
× (−

I − 1

I
+

1

I
×

I
∑

i=1

xi + y)−
1

2× I
(17)

R =
1

I
×

I
∑

i=1

xi + y (18)

Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 1 (19)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 0 (20)

In Case 1, from (19) it follows that
∑I

i=1 xi = I and consequently

1

I

I
∑

i=1

xi = 1 (21)
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Hence, from Equation (17)

L =
1

2
× (−

I − 1

I
+ 1 + y)−

1

2× I
=

1

2
× (

−I + 1 + I

I
+ y)−

1

2× I
=

1

2
× (

1

I
+ y)−

1

2× I

Therefore,

∀i 1 ≤ i ≤ I i ∈ N xi = 1

L =
1

2
× (

1

I
+ y)−

1

2× I
(22)

From Equation (18) and Equation (21) we get

R = 1 + y (23)

We can substitute the left-hand side and the right-hand side of the double inequal-
ity (15) with the right-hand sides of Equation (22) and Equation (23) respectively:

∀i 1 ≤ i ≤ I i ∈ N xi = 1 :

1

2
× (

1

I
+ y)−

1

2× I
< Z ≤ 1 + y (24)

Inside Case 1, we can consider two complementary subcases:

∀i 1 ≤ i ≤ I i ∈ N xi = 1

Case 1.0: y = 0

Case 1.1: y = 1

(25)

In Case 1.0, we can rewrite Equation (24) by substituting y with 0:

1

2
× (

1

I
+ 0)−

1

2× I
< Z ≤ 1 + 0 ⇐⇒

0 < Z ≤ 1 (26)

By the definition, Z is a binary value Z ∈ {0, 1}, therefore, Equation (26) specifies
that Z = 1. Notice, that

∀i 1 ≤ i ≤ I i ∈ N xi = 1, y = 0

(∧I
i=1xi) ∨ y = 1 ∨ 0 = 1 (27)

Therefore, in Case 1.0, Z = (∧I
i=1xi) ∨ y = 1 and Lemma 7 is valid.
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In Case 1.1, we substitute y with 1 in Equation (24):

1

2
× (

1

I
+ 1)−

1

2× I
< Z ≤ 1 + 1 ⇐⇒

I + 1

2× I
−

1

2× I
< Z ≤ 2 ⇐⇒

1

2
< Z ≤ 2 (28)

Since Z can have only two possible values, 0 or 1, Equation (28) specifies that Z = 1.
Given that

∀i 1 ≤ i ≤ I i ∈ N xi = 1, y = 1

(∧I
i=1xi) ∨ y = 1 ∨ 1 = 1 (29)

Z = (∧I
i=1xi) ∨ y = 1. Hence, in Case 1.1, Lemma 7 holds as well.

In Case 2, from Equation (20) we know that 0 ≤
∑I

i=1 xi < I and consequently

0 ≤
1

I

I
∑

i=1

xi < 1 (30)

From Equation (17) and Equation (30) we get the following bounds on the left-hand
expression of the double inequality (15) marked as L.

1

2
× (−

I − 1

I
+ 0 + y)−

1

2× I
≤ L <

1

2
× (−

I − 1

I
+ 1 + y)−

1

2× I
⇐⇒

1

2
× (−

I − 1

I
+ y)−

1

2× I
≤ L <

1

2
× (

−I + 1 + I

I
+ y)−

1

2× I
⇐⇒

1

2
× (−

I − 1

I
+ y)−

1

2× I
≤ L <

1

2
× (

1

I
+ y)−

1

2× I
(31)

To construct the bounds for the right-hand expression of the double inequality (15)
(marked as R) we use Equation (18) and Equation (30):

0 + y ≤R < 1 + y

y ≤R < 1 + y (32)

Inside Case 2, we consider the following complementary subcases:

∃j 1 ≤ j ≤ I j ∈ N xj = 0

Case 2.0: y = 0

Case 2.1: y = 1

(33)

In Case 2.0, we substitute y with its value 0 in Equation (31) to get the bounds on

10



the left-hand side L of the double inequality (15):

1

2
× (−

I − 1

I
+ 0)−

1

2× I
≤ L <

1

2
× (

1

I
+ 0)−

1

2× I
⇐⇒

−I + 1− 1

2× I
≤ L <

1

2× I
−

1

2× I
⇐⇒

−
1

2
≤ L < 0 (34)

For the right-hand side R of the double inequality (15), we substitute y with 0 in
Equation (32):

0 ≤R < 1 + 0

0 ≤R < 1 (35)

From Equation (34) L ∈ [−1
2
, 0) and from Equation (35) R ∈ [0, 1) (see Figure 1).

From the double inequality (15) Z ∈ (L,R], hence its value should be somewhere
on the right side of 0 (included) and on the left side of 1 (excluded). Given that by
definition Z ∈ {0, 1}, the only value that meets for all the constraints is Z = 0. Notice,
that the value Z = 1 violates Equation (35) (R ∈ [0, 1)) and the double inequality (15)
(Z ∈ (L,R]). By checking Equation (16):

−1
2

0 1

L R

Figure 1. Determining the value of Z in Case 2.0

∃j 1 ≤ j ≤ I j ∈ N xj = 0, y = 0

(∧I
i=1xi) ∨ y = 0 ∨ 0 = 0 (36)

Z = ∧I
i=1xi) ∨ y = 0, hence Lemma 7 holds in Case 2.0.

In Case 2.1, y is substituted with 1. By doing this in Equation (31) we get the
bounds for the left-hand side L of the double inequality (15):

1

2
× (−

I − 1

I
+ 1)−

1

2× I
≤ L <

1

2
× (

1

I
+ 1)−

1

2× I
⇐⇒

−I + 1 + I

2× I
−

1

2× I
≤ L <

I + 1

2× I
−

1

2× I
⇐⇒

0 ≤ L <
1

2
(37)

For the right-hand side R of the double inequality (15) we substitute y with 1 in
Equation (32):

y ≤R < 1 + y

1 ≤R < 2 (38)
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From Equation (37) L ∈ [0, 1
2
) and from Equation (38) R ∈ [1, 2) (see Figure 2).

According to the double inequality (15) Z ∈ (L,R], the value of Z has to be somewhere
on the right side of 1

2
(excluded) and on the left side of 1 (included). By definition,

Z can be either 0 or 1, therefore, Z = 1 is the only value that can satisfy all the
constraints. Notice, that the value Z = 0 is not eligible since it violates Equation (37)
(L ∈ [0, 1

2
)) and the double inequality (15) (Z ∈ (L,R]). Let us check Equation (16):

0 1
2

1 2

L R

Figure 2. Determining the value of Z in Case 2.1

∃j 1 ≤ j ≤ I j ∈ N xj = 0, y = 1

(∧I
i=1xi) ∨ y = 0 ∨ 1 = 1 (39)

Z ∈ {0, 1}, from double inequality (15) Z ∈ (L,R] Hence, Lemma 7 is also valid in
Case 2.1.

Thus, we showed that Lemma 7 holds in all subcases within Case 1 and Case 2.

Lemma 8. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, y, Z ∈ {0, 1}:
If the equality (16)

Z = (∧I
i=1xi) ∨ y

holds, then the inequality (15)

1

2
× (−

I − 1

I
+

1

I
×

I
∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I
×

I
∑

i=1

xi + y

is valid.

Proof. Let us consider the boolean expression (∧I
i=1xi) ∨ y in the right-hand side

of Equation (16) as a disjunction of the boolean expression ∧I
i=1xi and the binary

variable y, for the sake of applying Theorem 1. In the formulation of the theorem, we
substitute X with Z and I = 2 terms of the disjunction x1, x2 with ∧I

i=1xi and y,
hence the following bounds on the boolean expression (∧I

i=1xi) ∨ y are derived:

1

2
×
(

(∧I
i=1xi) + y

)

≤ Z ≤ (∧I
i=1xi) + y (40)

Notice, that according to Theorem 3

−
I − 1

I
+

1

I

I
∑

i=1

xi ≤ ∧I
i=1xi ≤

1

I

I
∑

i=1

xi (41)

subject to the substitution of X with ∧I
i=1xi in the formulation of the theorem.
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Let us consider the left-hand inequality of the double inequality (40)

1

2
×
(

(∧I
i=1xi) + y

)

≤ Z (42)

and the left-hand inequality of the double inequality (41)

−
I − 1

I
+

1

I

I
∑

i=1

xi ≤ ∧I
i=1xi (43)

The right-hand side of Equation (43) appears in the left-hand side of Equation (42).
Therefore, we can substitute the right-hand side of Equation (43) into the left-hand
side of Equation (42):

1

2
× (−

I − 1

I
+

1

I

I
∑

i=1

xi + y) ≤
1

2
×
(

(∧I
i=1xi) + y

)

≤Z ⇐⇒

1

2
× (−

I − 1

I
+

1

I

I
∑

i=1

xi + y) ≤Z (44)

By subtracting a positive number ( 1
2×I

) from the left-hand side of Equation (44) we
can make the corresponding non-strict inequality strict:

1

2
× (−

I − 1

I
+

1

I

I
∑

i=1

xi + y)−
1

2× I
< Z (45)

Let us consider the right-hand inequality of the double inequality (40)

Z ≤ (∧I
i=1xi) + y (46)

and the right-hand inequality of the double inequality (41)

∧I
i=1xi ≤

1

I

I
∑

i=1

xi (47)

The right-hand side of Equation (47) can be found in the left-hand side of Equa-
tion (46). Thus, we substitute the right-hand side of Equation (47) into the left-hand
side of Equation (46).

Z ≤ (∧I
i=1xi) + y ≤

1

I

I
∑

i=1

xi + y ⇐⇒

Z ≤
1

I

I
∑

i=1

xi + y (48)
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One can combine the inequality (45) and the inequality (48) into a double inequality

1

2
× (−

I − 1

I
+

1

I

I
∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I

I
∑

i=1

xi + y (49)

which is exactly the same as Equation (15) in the formulation of Lemma 8.
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