

CISTER
Research Centre in
Real-Time \& Embedded
Computing Systems

Technical Report

Linear modelling of Boolean functions

Kostiantyn Berezovskyi
Konstantinos Bletsas
Eduardo Tovar

CISTER-TR-181005

2018

Linear modelling of Boolean functions

Kostiantyn Berezovskyi, Konstantinos Bletsas, Eduardo Tovar

*CISTER Research Centre
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: kosbe@isep.ipp.pt, ksbs@isep.ipp.pt, emt@isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

An adequate and efficient modelling of non-linear functions is one of the principal difficulties in applying linear programming to real-life optimization problems. Here we present a few approaches for such modelling, particularly representing disjunction, conjunction and sign-based Boolean functions.

Linear modelling of Boolean functions

Kostiantyn Berezovskyi, Konstantinos Bletsas and Eduardo Tovar
CISTER Research Centre, ISEP/IPP, Porto, Portugal
\{ kosbe, ksbs, emt \} @isep.ipp.pt

ARTICLE HISTORY

Compiled October 23, 2018

Abstract

An adequate and efficient modelling of non-linear functions is one of the principal difficulties in applying linear programming to real-life optimization problems. Here we present a few approaches for such modelling, particularly representing disjunction, conjunction and sign-based Boolean functions.

KEYWORDS

Linear optimization; Modelling techniques; Boolean functions

Theorem 1. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, X \in\{0,1\}$:
An inequality

$$
\begin{equation*}
\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq X \leq \sum_{i=1}^{I} x_{i} \tag{1}
\end{equation*}
$$

is equivalent to the equality $X=\vee_{i=1}^{I} x_{i}$
Proof. Follows from Lemma 1 and Lemma 2.
Lemma 1. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, X \in\{0,1\}$:
If inequality (1)

$$
\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq X \leq \sum_{i=1}^{I} x_{i}
$$

is valid, then

$$
X=\vee_{i=1}^{I} x_{i}
$$

Proof. Let us consider two complementary cases:

$$
\begin{equation*}
\text { Case 1: } \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { Case 2: } \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=1 \tag{3}
\end{equation*}
$$

In Case 1, from (2) it follows that $\sum_{i=1}^{I} x_{i}=0$, which in turn means that $\frac{1}{I} \sum_{i=1}^{I} x_{i}=0$. Then according to (11), $0 \leq X \leq 0$ which means that $X=0$. But from the assumption of the case, it also holds that $\mathrm{V}_{i=1}^{I} x_{i}=0$ - therefore $X=\mathrm{V}_{i=1}^{I} x_{i}$.

In Case 2, from (3) it follows that $1 \leq \sum_{i=1}^{I} x_{i} \leq I$ and therefore,
$0<\frac{1}{I} \leq \frac{1}{I} \sum_{i=1}^{I} x_{i} \leq 1$. Combining this with Equation (1) and the fact that $X \in\{0,1\}$, we obtain that $X=1$. Additionally, as $\vee_{i=1}^{I} x_{i}=1$, therefore, also in this case, $X=\vee_{i=1}^{I} x_{i}$.

Therefore, in all cases, $X=\vee_{i=1}^{I} x_{i}$.

Lemma 2. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, X \in\{0,1\}$
If

$$
X=\vee_{i=1}^{I} x_{i}
$$

then inequality (1)

$$
\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq X \leq \sum_{i=1}^{I} x_{i}
$$

is valid.
Proof. Again, we explore two complementary cases:

$$
\begin{equation*}
\text { Case 1: } \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\text { Case 2: } \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=1 \tag{5}
\end{equation*}
$$

In Case 1, from (4) follows that $\sum_{i=1}^{I} x_{i}=0$ and consequently $\frac{1}{I} \sum_{i=1}^{I} x_{i}=0$. According to definition of X and (4), $X=0$. Therefore inequality $(\sqrt{1)}$ is valid in Case 1.

In Case 2, from (5) follows that $\sum_{i=1}^{I} x_{i} \geq 1$ and $\frac{1}{I} \sum_{i=1}^{I} x_{i}>0$. According to definition of X and (5), $X=1$. Therefore inequality (1) is valid for Case 2 as well.

Hence, in all cases, inequality (1) holds.

Theorem 2. $\forall x, X, s \in \mathbb{Z}$ such that $X>=0 ; \quad 0 \leq x \leq X ; \quad s \in\{0,1\}:$
An equality

$$
\begin{equation*}
s=\operatorname{sign}(x) \tag{6}
\end{equation*}
$$

is equivalent to a double inequality

$$
\begin{equation*}
s \leq x \leq s \cdot X \tag{7}
\end{equation*}
$$

Proof. Follows from Lemma 3 and Lemma 4.

Lemma 3. $\forall x, X, s \in \mathbb{Z}$ such that $X>=0 ; \quad 0 \leq x \leq X ; \quad s \in\{0,1\}:$
If the equality in Equation (6)

$$
s=\operatorname{sign}(x)
$$

holds, then the inequality in Equation (7)

$$
s \leq x \leq s \cdot X
$$

is valid.
Proof. Let us consider two complementary cases that comply with the definition of x :

$$
\begin{equation*}
\text { Case 1: } \quad x=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\text { Case 2: } \quad x>0 \tag{9}
\end{equation*}
$$

In Case 1, from Equation (6) it follows that $s=\operatorname{sign}(0)=0$, thus, the inequality in Equation (7) holds

$$
0 \leq x \leq 0 \cdot X
$$

Since $x \in \mathbb{Z}$, Case 2 inequality in Equation (9) can be equivalently rewritten as $1 \leq x$. On the other hand, $s=\operatorname{sign}(x)=1$, hence, the inequality in Equation (7) holds

$$
1 \leq x \leq 1 \cdot X
$$

Therefore, in all the cases the inequality in Equation (7) is valid.

Lemma 4. $\forall x, X, s \in \mathbb{Z}$ such that $X>=0 ; \quad 0 \leq x \leq X ; \quad s \in\{0,1\}:$
If the inequality in Equation (7)

$$
s \leq x \leq s \cdot X
$$

is valid, then the equality in Equation (6)

$$
s=\operatorname{sign}(x)
$$

holds.
Proof. Again, we explore two complementary cases constructed based on the definition of x, that were presented in Equation (8) and Equation (9):

$$
\text { Case 1: } \quad x=0
$$

Case 2: $x>0$

In Case 1, the inequality in Equation (7) can be reduced to

$$
s \leq 0 \leq s \cdot X
$$

In this case, the only acceptable value of $s \in\{0,1\}$ would be

$$
s=0=\operatorname{sign}(0)=\operatorname{sign}(x)
$$

Thus, the equality in Equation (6) holds in Case 1.
Since $x \in \mathbb{Z}$, Case 2 inequality in Equation (9) can be equivalently rewritten as

$$
1 \leq x
$$

Since $s \in\{0,1\}$, the only value

$$
s=1=\operatorname{sign}(x)
$$

would make the inequality in Equation (7) valid

$$
1 \leq x \leq X
$$

Hence, the equality in Equation (6) holds in Case 2 as well.

Theorem 3. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, X \in\{0,1\}$
The inequality

$$
\begin{equation*}
-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq X \leq \frac{1}{I} \sum_{i=1}^{I} x_{i} \tag{10}
\end{equation*}
$$

is equivalent to the equality

$$
X=\wedge_{i=1}^{I} x_{i}
$$

Proof. Follows from Lemma 5 and Lemma 6.

Lemma 5. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, X \in\{0,1\}$
If inequality 10

$$
-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq X \leq \frac{1}{I} \sum_{i=1}^{I} x_{i}
$$

is valid, then

$$
X=\wedge_{i=1}^{I} x_{i}
$$

Proof. Let us consider two complementary cases:

$$
\begin{equation*}
\text { Case 1: } \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\text { Case 2: } \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=0 \tag{12}
\end{equation*}
$$

In Case 1, from (11) it follows that $\sum_{i=1}^{I} x_{i}=I$ and consequently $\frac{1}{I} \sum_{i=1}^{I} x_{i}=$ $1,-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i}=\frac{1}{I}>0$. Via substitution to 10 we then obtain $0<X \leq 1$, which means that $X=1$. Additionally, it holds that $\wedge_{i=1}^{I} x_{i}=1-$ therefore $X=\wedge_{i=1}^{I} x_{i}$.

In Case 2, from (12) it follows that $\sum_{i=1}^{I} x_{i}<I$ and consequently $0 \leq \frac{1}{I} \sum_{i=1}^{I} x_{i}<$ $1,-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq 0$. Via substitution to 10 we obtain $0 \leq X<1$, which means that $X=0$. Additionally it holds that $\wedge_{i=1}^{I} x_{i}=0$ - therefore $X=\wedge_{i=1}^{I} x_{i}$.

Therefore, in all cases, $X=\wedge_{i=1}^{I} x_{i}$.

Lemma 6. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, X \in\{0,1\}$
If

$$
X=\wedge_{i=1}^{I} x_{i}
$$

then inequality 10

$$
-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq X \leq \frac{1}{I} \sum_{i=1}^{I} x_{i}
$$

is valid.
Proof. Let us consider two complementary cases:

$$
\begin{equation*}
\text { Case 1: } \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\text { Case 2: } \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=0 \tag{14}
\end{equation*}
$$

In Case 1, from (13) it follows that $X=1,-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i}=\frac{1}{I}<1$, and $\frac{1}{I} \sum_{i=1}^{I} x_{i}=1$. Therefore 10 in this case is valid.

In Case 2, from (14) it follows that $X=0,-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq 0$, and $0 \leq$ $\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq 1$. Therefore (10) is valid for this case as well.

Therefore inequality (10) holds in all cases.

Theorem 4. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, y, Z \in\{0,1\}$:
The inequality

$$
\begin{equation*}
\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y\right)-\frac{1}{2 \times I}<Z \leq \frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y \tag{15}
\end{equation*}
$$

is equivalent to the equality

$$
\begin{equation*}
Z=\left(\wedge_{i=1}^{I} x_{i}\right) \vee y \tag{16}
\end{equation*}
$$

Proof. Follows from Lemma 7 and Lemma 8 .

Lemma 7. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, y, Z \in\{0,1\}$:
If inequality 15

$$
\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y\right)-\frac{1}{2 \times I}<Z \leq \frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y
$$

is valid, then equality 16

$$
Z=\left(\wedge_{i=1}^{I} x_{i}\right) \vee y
$$

holds.
Proof. For the sake of brevity, we denote the left-hand expression and the right-hand expression of the double inequality $\sqrt{15}$ as L and R respectively:

$$
\begin{gather*}
L=\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y\right)-\frac{1}{2 \times I} \tag{17}\\
R=\frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y \tag{18}
\end{gather*}
$$

Let us consider two complementary cases:

$$
\begin{equation*}
\text { Case 1: } \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1 \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\text { Case 2: } \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=0 \tag{20}
\end{equation*}
$$

In Case 1, from (19) it follows that $\sum_{i=1}^{I} x_{i}=I$ and consequently

$$
\begin{equation*}
\frac{1}{I} \sum_{i=1}^{I} x_{i}=1 \tag{21}
\end{equation*}
$$

Hence, from Equation 17

$$
\begin{array}{r}
L=\frac{1}{2} \times\left(-\frac{I-1}{I}+1+y\right)-\frac{1}{2 \times I}= \\
\frac{1}{2} \times\left(\frac{-I+1+I}{I}+y\right)-\frac{1}{2 \times I}= \\
\frac{1}{2} \times\left(\frac{1}{I}+y\right)-\frac{1}{2 \times I}
\end{array}
$$

Therefore,

$$
\begin{align*}
& \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1 \\
& L=\frac{1}{2} \times\left(\frac{1}{I}+y\right)-\frac{1}{2 \times I} \tag{22}
\end{align*}
$$

From Equation (18) and Equation we get

$$
\begin{equation*}
R=1+y \tag{23}
\end{equation*}
$$

We can substitute the left-hand side and the right-hand side of the double inequality (15) with the right-hand sides of Equation (22) and Equation (23) respectively:

$$
\begin{align*}
& \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1: \\
& \frac{1}{2} \times\left(\frac{1}{I}+y\right)-\frac{1}{2 \times I}<Z \leq 1+y \tag{24}
\end{align*}
$$

Inside Case 1, we can consider two complementary subcases:

$$
\begin{align*}
& \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1 \\
& \text { Case 1.0: } \quad y=0 \\
& \text { Case 1.1: } \quad y=1 \tag{25}
\end{align*}
$$

In Case 1.0, we can rewrite Equation (24) by substituting y with 0 :

$$
\begin{align*}
\frac{1}{2} \times\left(\frac{1}{I}+0\right)-\frac{1}{2 \times I} & <Z \leq 1+0 \\
0 & <Z \leq 1 \tag{26}
\end{align*}
$$

By the definition, Z is a binary value $Z \in\{0,1\}$, therefore, Equation (26) specifies that $Z=1$. Notice, that

$$
\begin{align*}
& \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1, \quad y=0 \\
& \left(\wedge_{i=1}^{I} x_{i}\right) \vee y=1 \vee 0=1 \tag{27}
\end{align*}
$$

Therefore, in Case 1.0, $Z=\left(\wedge_{i=1}^{I} x_{i}\right) \vee y=1$ and Lemma 7 is valid.

In Case 1.1, we substitute y with 1 in Equation (24):

$$
\begin{align*}
\frac{1}{2} \times\left(\frac{1}{I}+1\right)-\frac{1}{2 \times I}<Z \leq 1+1 & \Longleftrightarrow \\
\frac{I+1}{2 \times I}-\frac{1}{2 \times I}<Z \leq 2 & \Longleftrightarrow \\
\frac{1}{2}<Z \leq 2 & \tag{28}
\end{align*}
$$

Since Z can have only two possible values, 0 or 1 , Equation 28 specifies that $Z=1$. Given that

$$
\begin{align*}
& \forall i \quad 1 \leq i \leq I \quad i \in \mathbb{N} \quad x_{i}=1, \quad y=1 \\
& \left(\wedge_{i=1}^{I} x_{i}\right) \vee y=1 \vee 1=1 \tag{29}
\end{align*}
$$

$Z=\left(\wedge_{i=1}^{I} x_{i}\right) \vee y=1$. Hence, in Case 1.1, Lemma 7 holds as well.
In Case 2, from Equation (20) we know that $0 \leq \sum_{i=1}^{I} x_{i}<I$ and consequently

$$
\begin{equation*}
0 \leq \frac{1}{I} \sum_{i=1}^{I} x_{i}<1 \tag{30}
\end{equation*}
$$

From Equation (17) and Equation we get the following bounds on the left-hand expression of the double inequality (15) marked as L.

$$
\begin{align*}
& \frac{1}{2} \times\left(-\frac{I-1}{I}+0+y\right)-\frac{1}{2 \times I} \leq L<\frac{1}{2} \times\left(-\frac{I-1}{I}+1+y\right)-\frac{1}{2 \times I} \quad \Longleftrightarrow \\
& \frac{1}{2} \times\left(-\frac{I-1}{I}+y\right)-\frac{1}{2 \times I} \leq L<\frac{1}{2} \times\left(\frac{-I+1+I}{I}+y\right)-\frac{1}{2 \times I} \Longleftrightarrow \\
& \frac{1}{2} \times\left(-\frac{I-1}{I}+y\right)-\frac{1}{2 \times I} \leq L<\frac{1}{2} \times\left(\frac{1}{I}+y\right)-\frac{1}{2 \times I} \tag{31}
\end{align*}
$$

To construct the bounds for the right-hand expression of the double inequality (15) (marked as R) we use Equation 18) and Equation (30):

$$
\begin{align*}
0+y & \leq R<1+y \\
y & \leq R<1+y \tag{32}
\end{align*}
$$

Inside Case 2, we consider the following complementary subcases:

$$
\begin{align*}
& \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=0 \\
& \text { Case 2.0: } \quad y=0 \\
& \text { Case 2.1: } \quad y=1 \tag{33}
\end{align*}
$$

In Case 2.0, we substitute y with its value 0 in Equation (31) to get the bounds on
the left-hand side L of the double inequality (15):

$$
\begin{array}{rlr}
\frac{1}{2} \times\left(-\frac{I-1}{I}+0\right)-\frac{1}{2 \times I} & \leq L & <\frac{1}{2} \times\left(\frac{1}{I}+0\right)-\frac{1}{2 \times I} \\
\frac{-I+1-1}{2 \times I} & \leq L & <\frac{1}{2 \times I}-\frac{1}{2 \times I} \\
-\frac{1}{2} & \leq L<0 \tag{34}
\end{array}
$$

For the right-hand side R of the double inequality (15), we substitute y with 0 in Equation (32):

$$
\begin{align*}
& 0 \leq R<1+0 \\
& 0 \leq R<1 \tag{35}
\end{align*}
$$

From Equation (34) $L \in\left[-\frac{1}{2}, 0\right)$ and from Equation 35) $R \in[0,1$) (see Figure 11 . From the double inequality (15) $Z \in(L, R]$, hence its value should be somewhere on the right side of 0 (included) and on the left side of 1 (excluded). Given that by definition $Z \in\{0,1\}$, the only value that meets for all the constraints is $Z=0$. Notice, that the value $Z=1$ violates Equation $(35)(R \in[0,1))$ and the double inequality (15) $(Z \in(L, R])$. By checking Equation (16):

Figure 1. Determining the value of Z in Case 2.0

$$
\begin{align*}
& \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=0, \quad y=0 \\
& \left(\wedge_{i=1}^{I} x_{i}\right) \vee y=0 \vee 0=0 \tag{36}
\end{align*}
$$

$\left.Z=\wedge_{i=1}^{I} x_{i}\right) \vee y=0$, hence Lemma 7 holds in Case 2.0.
In Case 2.1, y is substituted with 1. By doing this in Equation (31) we get the bounds for the left-hand side L of the double inequality 15 :

$$
\begin{align*}
\frac{1}{2} \times\left(-\frac{I-1}{I}+1\right)-\frac{1}{2 \times I} & \leq L & <\frac{1}{2} \times\left(\frac{1}{I}+1\right)-\frac{1}{2 \times I} & \Longleftrightarrow \\
\frac{-I+1+I}{2 \times I}-\frac{1}{2 \times I} & \leq L & <\frac{I+1}{2 \times I}-\frac{1}{2 \times I} & \Longleftrightarrow \\
0 & \leq L & <\frac{1}{2} & \tag{37}
\end{align*}
$$

For the right-hand side R of the double inequality (15) we substitute y with 1 in Equation (32):

$$
\begin{align*}
& y \leq R<1+y \\
& 1 \leq R<2 \tag{38}
\end{align*}
$$

From Equation (37) $L \in\left[0, \frac{1}{2}\right.$) and from Equation (38) $R \in[1,2)$ (see Figure 2). According to the double inequality $(\sqrt{15}) Z \in(L, R]$, the value of Z has to be somewhere on the right side of $\frac{1}{2}$ (excluded) and on the left side of 1 (included). By definition, Z can be either 0 or 1 , therefore, $Z=1$ is the only value that can satisfy all the constraints. Notice, that the value $Z=0$ is not eligible since it violates Equation (37) $\left(L \in\left[0, \frac{1}{2}\right)\right)$ and the double inequality $(Z \in(L, R])$. Let us check Equation (16):

Figure 2. Determining the value of Z in Case 2.1

$$
\begin{align*}
& \exists j \quad 1 \leq j \leq I \quad j \in \mathbb{N} \quad x_{j}=0, \quad y=1 \\
& \left(\wedge_{i=1}^{I} x_{i}\right) \vee y=0 \vee 1=1 \tag{39}
\end{align*}
$$

$Z \in\{0,1\}$, from double inequality (15) $Z \in(L, R]$ Hence, Lemma 7 is also valid in Case 2.1.

Thus, we showed that Lemma 7 holds in all subcases within Case 1 and Case 2.

Lemma 8. $\forall i \quad 1 \leq i \leq I$ such that $i, I \in \mathbb{N} ; I \geq 2$ and $x_{i}, y, Z \in\{0,1\}$:
If the equality 16)

$$
Z=\left(\wedge_{i=1}^{I} x_{i}\right) \vee y
$$

holds, then the inequality 15

$$
\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y\right)-\frac{1}{2 \times I}<Z \leq \frac{1}{I} \times \sum_{i=1}^{I} x_{i}+y
$$

is valid.
Proof. Let us consider the boolean expression $\left(\wedge_{i=1}^{I} x_{i}\right) \vee y$ in the right-hand side of Equation 16 as a disjunction of the boolean expression $\wedge_{i=1}^{I} x_{i}$ and the binary variable y, for the sake of applying Theorem 1 . In the formulation of the theorem, we substitute X with Z and $I=2$ terms of the disjunction x_{1}, x_{2} with $\wedge_{i=1}^{I} x_{i}$ and y, hence the following bounds on the boolean expression $\left(\wedge_{i=1}^{I} x_{i}\right) \vee y$ are derived:

$$
\begin{equation*}
\frac{1}{2} \times\left(\left(\wedge_{i=1}^{I} x_{i}\right)+y\right) \leq Z \leq\left(\wedge_{i=1}^{I} x_{i}\right)+y \tag{40}
\end{equation*}
$$

Notice, that according to Theorem 3

$$
\begin{equation*}
-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq \wedge_{i=1}^{I} x_{i} \leq \frac{1}{I} \sum_{i=1}^{I} x_{i} \tag{41}
\end{equation*}
$$

subject to the substitution of X with $\wedge_{i=1}^{I} x_{i}$ in the formulation of the theorem.

Let us consider the left-hand inequality of the double inequality 40)

$$
\begin{equation*}
\frac{1}{2} \times\left(\left(\wedge_{i=1}^{I} x_{i}\right)+y\right) \leq Z \tag{42}
\end{equation*}
$$

and the left-hand inequality of the double inequality (41)

$$
\begin{equation*}
-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i} \leq \wedge_{i=1}^{I} x_{i} \tag{43}
\end{equation*}
$$

The right-hand side of Equation (43) appears in the left-hand side of Equation (42). Therefore, we can substitute the right-hand side of Equation (43) into the left-hand side of Equation 42):

$$
\begin{array}{r}
\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i}+y\right) \leq \frac{1}{2} \times\left(\left(\wedge_{i=1}^{I} x_{i}\right)+y\right) \leq Z \quad \Longleftrightarrow \\
\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i}+y\right) \leq Z \tag{44}
\end{array}
$$

By subtracting a positive number $\left(\frac{1}{2 \times I}\right)$ from the left-hand side of Equation (44) we can make the corresponding non-strict inequality strict:

$$
\begin{equation*}
\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i}+y\right)-\frac{1}{2 \times I}<Z \tag{45}
\end{equation*}
$$

Let us consider the right-hand inequality of the double inequality 40

$$
\begin{equation*}
Z \leq\left(\wedge_{i=1}^{I} x_{i}\right)+y \tag{46}
\end{equation*}
$$

and the right-hand inequality of the double inequality (41)

$$
\begin{equation*}
\wedge_{i=1}^{I} x_{i} \leq \frac{1}{I} \sum_{i=1}^{I} x_{i} \tag{47}
\end{equation*}
$$

The right-hand side of Equation (47) can be found in the left-hand side of Equation (46). Thus, we substitute the right-hand side of Equation (47) into the left-hand side of Equation (46).

$$
\begin{align*}
Z & \leq\left(\wedge_{i=1}^{I} x_{i}\right)+y \leq \frac{1}{I} \sum_{i=1}^{I} x_{i}+y \\
Z & \leq \frac{1}{I} \sum_{i=1}^{I} x_{i}+y \tag{48}
\end{align*}
$$

One can combine the inequality (45) and the inequality (48) into a double inequality

$$
\begin{equation*}
\frac{1}{2} \times\left(-\frac{I-1}{I}+\frac{1}{I} \sum_{i=1}^{I} x_{i}+y\right)-\frac{1}{2 \times I}<Z \leq \frac{1}{I} \sum_{i=1}^{I} x_{i}+y \tag{49}
\end{equation*}
$$

which is exactly the same as Equation (15) in the formulation of Lemma 8 .

