
  

 

 

 

 

 

 

Linearizability and Schedulability 

 

Björn Andersson 

 
 

 

www.hurray.isep.ipp.pt 

Technical Report 

HURRAY-TR-071004 

Version: 0 

Date: 10-22-2007 



Technical Report HURRAY-TR-071004  Linearizability and Schedulability 

© IPP Hurray! Research Group 
www.hurray.isep.ipp.pt   

1 

Linearizability and Schedulability 
Björn Andersson 

IPP-HURRAY! 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail:  

http://www.hurray.isep.ipp.pt 

 
Abstract 
Consider the problem of scheduling a set of tasks on a single processor such that deadlines are met. Assume that tasks 
may share data and that linearizability, the most common correctness condition for data sharing,must be satisfied.We 
find that linearizability can severely penalize schedulability. We identify, however, two special cases where 
linearizability causes no or not too large penalty on schedulability. 

 



Linearizability and Schedulability

Björn Andersson
IPP-HURRAY! Research Group,

Polytechnic Institute of Porto (ISEP-IPP),
Rua Dr. António Bernardino de Almeida 431,

4200-072 Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract

Consider the problem of scheduling a set of tasks on
a single processor such that deadlines are met. Assume
that tasks may share data and that linearizability, the most
common correctness condition for data sharing, must be
satisfied. We find that linearizability can severely penal-
ize schedulability. We identify, however, two special cases
where linearizability causes no or not too large penalty on
schedulability.

1. Introduction

Consider the problem of preemptive scheduling ofn spo-
radically arriving tasks on a single processor where tasks
may share data. A taskτi is given a unique index in the
range 1..n. A task τi generates a (potentially infinite) se-
quence of jobs. The time when these jobs arrive cannot be
controlled by the scheduling algorithm and the time of a job
arrival is unknown to the scheduling algorithm before the
job arrives.

It is assumed that the time between two consecutive jobs
from the same taskτi is at leastTi. It is assumed that there
is a single shared data object in the system. A job may
invoke an operation on that data object and the data object
will generate a response back to the job (for example, if the
shared data object is a linked list then invoking an operation
may be requesting to insert an element in the list and the
response may be a boolean specifying whether the list was
empty before insertion). We assume thatlinearizability [1],
the most common correctness criteria for data sharing, must
be satisfied. In order to define linearizability we need two
other definitions. A history is a sequence of invocations and
responses made on an object by a set of tasks. A sequential
history is a history in which all invocations have immediate
responses. Linearizability is satisfied if every history that

can occur to the shared data object is linearizable. A history
is linearizable if all these three conditions are true:

C1. invocations and responses of the history can be re-
ordered to yield a sequential history;

C2. that sequential history is correct according to the se-
quential definition of the object;

C3. if a response preceded an invocation in the original his-
tory, it must still precede it in the sequential reordering.

The execution of a job is as follows. A job needs
to performCi time units in order to finish execution and
among that,Cop

i of the execution is due to executing
an operation on the shared data object. Clearly it holds
that Cop

i ≤ Ci. The processor utilization is defined as
Uprocessor =

∑n
i=1

Ci

Ti
. The utilization of the shared data

object isUop =
∑n

i=1

C
op

i

Ti
. The utilization is defined as

U = max(Uprocessor, Uop)1.
It is required that the job finishes the execution at most

Ti time units after its arrival. In order to satisfy the dead-
lines and linearizability, a real-time scheduling algorithmS
and a data sharing protocolDP is used. We assume that
0 ≤ Ci ≤ Ti. Also, recall that we have already mentioned
thatCop

i ≤ Ci. It is assumed thatCi, Cop
i andTi are real

numbers.
It is common to characterize the performance of schedul-

ing algorithms using the utilization bound. The utilization
boundUB(S, DP ) of the composition of the scheduling
algorithmS and the data sharing protocolDP is the max-
imum number such that if all tasks are scheduled byS and
operations on the shared data object are controlled byDP
and if U ≤ UB(S, DP ) then all tasks meet their deadlines

1The careful reader can see that sinceC
op

i
≤ Ci it follows that

Uop ≤ Uprocessor and hence themax function in the expression ofU
is redundant. We define utilization in this way though because (i) it can be
easily extended to multiprocessor systems and (ii) it can beused to show
which resource (processor or the shared data object) is the ”‘bottleneck”’.



and all operations on the shared data object satisfies lin-
earizability. It is interesting to ask whether it is possible
to designS andD such thatUB(S, DP ) > 0.

In this paper, we show that for everyS andD, it holds
that UB(S, DP )=0. This low performance is caused by
the fact that C3 must be satisfied. As a consequence, we
address two special cases which are less penalized by C3
and for those special cases we find thatUB(S, DP ) = 1
andUB(S, DP ) = 0.5 respectively can be achieved.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses how linearizability limits schedulability.
Section 3 discusses a special case where only read opera-
tions and write operations are performed on the shared data
object. Section 4 discusses the special case where the time
required for each operation is the same. Finally, Section 5
gives conclusions.

2. Linearizability

It is easy to see that for every scheduling algorithm and
for every data-sharing protocol, the composition of these
causes the utilization bound to be zero because linearizabil-
ity must be satisfied. Example 1 shows this.

Example 1. Figure 1 illustrates the task set in the example.
Consider two tasks characterized asT1=1,C1 = Cop

1
=1/L,

T2=L and C2 = Cop
2

=1. We chooseL >2.
Let us consider an arbitrary job released byτ2. Let A2

denote the arrival time of that job. We know that in order
to meet deadlines, this job must finishC2 time units within
[A2, A2 + T2). We also know that in order to satisfy lin-
earizability, the response given by the shared data object is
equal to some sequential order (according toC1). LetSEQ
denote this sequential order. Then it holds that this sequen-
tial order SEQ must be< . . ., OP1′, OP2, OP1′′, . . . >
whereOP1′ andOP1′′ denote two different operations by
τ1 and OP2 denotes an operation byτ2. If we ignore the
deadline constraints then it is possible to schedule tasks
(and hence the operations) such that such an order exist
and hence linearizability would be satisfied.

Let us now reason about linearizability and satisfying
deadlines. Consider the sequential orderSEQ. Since we
do not assume any specific shared data object; the response
given byOP1′′ may depend onOP2 and the response by
OP2 may depend onOP1′. This follows from C2. Because
of this dependency, it follows that the correct response can
only be achieved through scheduling the jobs such that this
sequential history is achieved. That is, it must be that a job
from τ1 is executed and then a job fromτ2 is executed non-
preemptively and this job fromτ2 must finish its execution
before the next job ofτ1 starts executing. Hence it must be
possible to performC1+C2 units of execution a time inter-
val of durationT1.

Using actual numbers gives us that it must be possible to
perform1/L+1 units of execution during a time interval of
duration1. This is clearly impossible and hence it follows
that it is impossible to schedule this task set such that all
deadlines are met and linearizability is satisfied.

We can do this reasoning for every choice ofL. Letting
L → ∞ yields a task set withU → 0 and still a deadline is
missed.

3. Only Read/Write operations

The low utilization bound caused by linearizability fol-
lows from the fact that we made no assumption on the op-
erations offered by the shared data object. We will now
consider a special type of shared data object with only two
possible operations: read the entire data from the shared ob-
ject or write data to the entire shared object.

An efficient shared data object with these operations has
been proposed [3]. The main idea is that a vector stores
pointers to different versions of the object. When a task in-
vokes a request to write to the object, it finds empty space
and writes the new object there. And then, it writes a pointer
to this new version in the vector (using the atomic Compare-
and-Swap instruction). A task invoking a read operation
will obtain a pointer to the last pointer that was inserted
in the vector. Observe that writes are performed on new
buffers and hence a read operation will never ”see” a par-
tially updated object. Also observe that the response of a
write operation does not depend on any previous reads and
hence it is easy to find a sequential order and consequen-
tially this object is linearizable. The scheme also recycles
memory buffers in the vector in order to be able to operate
with a finite amount of memory. This scheme (which we
call TZ-Buffer) can be used together with EDF and it has
UB(EDF, TZ − Buffer) = 1; assuming that the overhead
within the data-object (finding an empty buffer, etc.) is zero.

4. Equal execution time for operations

Example 1 in Section 2 showed that the utilization bound
can be 0 because linearizability must be satisfied. In the
example, the execution times of the tasks were very differ-
ent. This is reasonable in many real-world applications. For
example one task may perform sampling and it inserts the
data in a buffer and it has a very small execution time. An-
other task reads data from the buffer, performs processing
and outputs the result on a display and it has a very large
execution time.

Despite the fact that execution times of tasks may be very
different; it is often the case that the operations on shared
data objects are small and the execution times are approxi-
mately the same. Consider for example a FIFO queue; the

2



Figure 1. An example of a task set with utilization arbitrary close to zero and it misses a deadline
because linearizability must be satisfied. An arrow pointin g upwards indicates the arrival time of a
job.

time required to perform insert and remove is approximately
the same. Also, consider a hierarchical data structure (as a
tree). Searching, adding and deleting typically have time
complexitiesO(log k), wherek is the number of elements,
and hence the difference in execution times cannot be too
high assuming that there is an upper bound on the num-
ber of elements. It has also been observed that in practice
many operations on shared data objects have a short execu-
tion time [4, 5].

For these reasons, we will now consider the case where
∀i, j : Cop

i = Cop
j . We will consider Earliest-Deadline-

First (EDF) scheduling [2]. At timet, it assigns priorities
to jobs that have arrived at timet but have not yet finished
execution. LetA(Ji) denote the arrival time of a jobJi.
Then the priority of jobJi is higher than the priority of job
Jj if A(Ji) + Ti < A(Jj) + Tj . We will consider the non-
preemptive critical-section (NPCS) protocol. It means that
all operations on the shared data object are protected by a
critical section and when a task executes in the critical sec-
tion, it executes non-preemptively; when the task leaves the
critical section, the task can be preempted again.

The performance of EDF with the NPCS protocol is pro-
vided by Theorem 1.

Theorem 1. Consider a task set such that∀i, j : Cop
i =

Cop
j and

∑n

j=1
Cj/Tj ≤ 1/2 and this task set is scheduled

by EDF and the NPCS protocol. We claim that this task set
meets all deadlines.

Proof. The proof is by contradiction. Suppose that the the-
orem was incorrect. Then there must exist a task set such
that:

∀i, j : Cop
i = Cop

j (1)

and
n∑

j=1

Cj/Tj ≤ 1/2 (2)

and the task set is scheduled by EDF and the NPCS protocol
and at least one deadline was missed.

Let us consider the earliest time when a deadline was
missed.M denotes one of those jobs.Ai denotes the arrival
time of M . τi denotes the task that releasedM . Let us
consider two cases:

1. Ci/Ti > 0.5

This contradicts Equation 2.

2. Ci/Ti ≤ 0.5

Let us reason about this case.t1 denotes the deadline
of M andt0 denotes the latest time such thatt0 < t1
and the processor is busy during[t0, t1) and the proces-
sor is idle just beforet0. For convenience we letL de-
notet1 − t0. We know that[t0, t1) must be non-empty
sinceCi > 0 andTi > 0. Let us define two classes of
tasks:

τclassA,i = {τj : Tj < Ti} (3)

end

τclassB,i = {τj : (Tj ≥ Ti) ∧ (j 6= i)} (4)

Let us consider a taskτj in τclassA,i. If τj arrived after
timet1−Tj then its deadline is later thant1 and hence
it will have a lower priority thanM . Also observe that
such a job from taskτj arrives afterAi becauseTj <
Ti. Hence this job cannot cause any delay to the job
M . Consequently, we delete this job released byτj

and thenM still misses its deadline. For this reason
we obtain that the amount of work performed by task
τj in τclassA,i during[t0, t1) is at most:

max(⌊
L − Tj

Tj

⌋ + 1, 0) · Cj (5)

Let us now consider a taskτj in τclassB,i. If none
of these jobs executed just after timeAi then we ob-
tain that the amount of work performed by taskτj in
τclassB,i during[t0, t1) is at most:

3



max(⌊
L − Tj

Tj

⌋ + 1, 0) · Cj (6)

Let us now consider a taskτj in τclassB,i. If one of
these jobs executed just after timeAi then letτj de-
note this task. Observe that this task may release a job
with a lower priority thanM but it will still execute
in [t0, t1). The amount of execution it will perform is
Cop

j . With reasoning similar to Equation 5-6 we ob-
tain that the amount of work performed by this taskτj

in τclassB,i during[t0, t1) is at most:

Cop
j + max(⌊

L − Tj

Tj

⌋ + 1, 0) · Cj (7)

It is also clear that for taskτi we have that the amount
of work performed by taskτi during[t0, t1) is at most:

max(⌊
L − Ti

Ti

⌋ + 1, 0) · Ci (8)

Taking Equation 5-8 together and simplifying yields
that the amount of work performed by all tasks during
[t0, t1) is at most:

Cop
j +

n∑

j=1

max(⌊
L − Ti

Ti

⌋ + 1, 0) · Ci (9)

We know thatCop
j = Cop

i and Cop
i ≤ Ci and that

Ci ≤ Ti/2. Using this on Equation 9 yields that the
amount of work performed by all tasks during[t0, t1)
is at most:

Ti

2
+

n∑

j=1

max(⌊
L − Ti

Ti

⌋ + 1, 0) · Ci (10)

Simplifying yields that the amount of work performed
by all tasks during[t0, t1) is at most:

Ti

2
+

n∑

j=1

⌊
L

Ti

⌋ · Ci (11)

Since a deadline is missed it must be that:

Ti

2
+

n∑

j=1

⌊
L

Ti

⌋ · Ci > L (12)

Sinceτi was the task that missed a deadline, it follows
that Ti ≤ L. Using it on Equation 12 and rewriting
yields:

L

2
+

n∑

j=1

⌊
L

Ti

⌋ · Ci > L (13)

Simplifying Equation 13 yields:
n∑

j=1

⌊
L

Ti

⌋ · Ci >
L

2
(14)

Dividing by L and relaxing yields:
n∑

j=1

Ci

Ti

>
1

2
(15)

But this contradicts Equation 2.

We can see that regardless of the case we obtain a con-
tradiction. And hence the theorem is true.

5. Conclusions

We have seen that satisfying linearizability causes the
utilization bound to drop to 0. We also saw two special
cases where the utilization is greater than zero.

It deserves to find out which data objects can be shared
while attaining a non-zero utilization bound. For those data
objects where the utilization bound necessarily is zero it
deserves to find (i) limitations on the task sets for which
the utilization bound is non-zero and (ii) whether alterna-
tive correctness criteria can be used.

Acknowledgements

This work was partially funded by the Portuguese Sci-
ence and Technology Foundation (Fundação para Ciência
e Tecnologia - FCT) and the ARTIST2 Network of Excel-
lence on Embedded Systems Design.

References

[1] M. P. Herlihy and J. M. Wing. Linearizability: a correct-
ness condition for concurrent objects.ACM Transactions on
Programming Languages and Systems (TOPLAS), 12(3):463–
492, May 1990.

[2] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment.Journal of the
Association for the Computing Machinery, 20:46–61, 1973.

[3] P. Tsigas and Y. Zhang. Non-blocking data sharing in multi-
processor real-time systems. InProc. of Real-Time Comput-
ing Systems and Applications, pages 247–254, Hong Kong,
China, Dec. 13–15, 1999.

[4] P. Tsigas and Y. Zhang. Evaluating the performance of non-
blocking synchronization on shared-memory multiproces-
sors. InProc. of ACM SIGMETRICS Performance Evalua-
tion, pages 320–321, Massachusetts, USA, June 17–20, 2001.

[5] P. Tsigas and Y. Zhang. Integrating non-blocking synchroni-
sation in parallel applications: performance advantages and
methodologies. InProc. of the 3rd international workshop
on Software and performance, pages 55–67, Rome, Italy,
July 24–26, 2002.

4



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


