

Makespan computation for GPU threads
running on a single streaming
multiprocessor

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120710

Version:

Date: 07-17-2012

Kostiantyn Berezovskyi

Konstantinos Bletsas

Björn Andersson

Technical Report HURRAY-TR-120710 Makespan computation for GPU threads running on

 a single streaming multiprocessor

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Makespan computation for GPU threads running on a single streaming
multiprocessor
Kostiantyn Berezovskyi, Konstantinos Bletsas, Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Graphics processors were originally developed for rendering graphics but have recently evolved towards being an
architecture for general-purpose computations. They are also expected to become important parts of embedded systems
hardware -- not just for graphics. However, this necessitates the development of appropriate timing analysis techniques
which would be required because techniques developed for CPU scheduling are not applicable. The reason is that we
are not interested in how long it takes for any given GPU thread to complete, but rather how long it takes for all of them
to complete. We therefore develop a simple method for finding an upper bound on the makespan of a group of GPU
threads executing the same program and competing for the resources of a single streaming multiprocessor (whose
architecture is based on NVIDIA Fermi, with some simplifying assunptions). We then build upon this method to
formulate the derivation of the exact worst-case makespan (and corresponding schedule) as an optimization problem.
Addressing the issue of tractability, we also present a technique for efficiently computing a safe estimate of the worst-
case makespan with minimal pessimism, which may be used when finding an exact value would take too long.

Makespan computation for GPU threads running
on a single streaming multiprocessor

Kostiantyn Berezovskyi and Konstantinos Bletsas
CISTER/ISEP Research Unit

Polytechnic Institute of Porto, Portugal
Email: {kosbe, ksbs}@isep.ipp.pt

Björn Andersson
Software Engineering Institute

Carnegie Mellon University, Pittsburgh, USA
Email: baandersson@sei.cmu.edu

Abstract

Graphics processors were originally developed for render-
ing graphics but have recently evolved towards being an
architecture for general-purpose computations. They are also
expected to become important parts of embedded systems
hardware – not just for graphics. However, this necessitates
the development of appropriate timing analysis techniques
which would be required because techniques developed for
CPU scheduling are not applicable. The reason is that we are
not interested in how long it takes for any given GPU thread
to complete, but rather how long it takes for all of them to
complete. We therefore develop a simple method for finding
an upper bound on the makespan of a group of GPU threads
executing the same program and competing for the resources
of a single streaming multiprocessor (whose architecture is
based on NVIDIA Fermi, with some simplifying assumptions).
We then build upon this method to formulate the derivation of
the exact worst-case makespan (and corresponding schedule)
as an optimization problem. Addressing the issue of tractabil-
ity, we also present a technique for efficiently computing a safe
estimate of the worst-case makespan with minimal pessimism,
for use when finding an exact value would take too long.

1. Introduction

The stream processing computational paradigm was con-
ceived so as to allow efficient processing for a particular
type of parallel applications (with minimal data dependen-
cies) while simultaneously simplifying the parallel hardware
architecture. Given a set of data (a stream), a series of
operations (kernel function) is applied to each element in
the stream. This paradigm applies very nicely to graphics
and was partially implemented in graphics processing units
(GPUs) [16]. In other words, GPUs were designed to execute
a large number of threads (in the order of thousands or
more) so that their joint execution provides a result to a user.
These devices were originally used only for graphics, but have
evolved significantly during the recent years. Today, they are

. This work was supported by the REGAIN project, ref. FCOMP-01-
0124-FEDER-020447, co-funded by National Funds through the FCT-MCTES
(Portuguese Foundation for Science and Technology) and by ERDF (European
Regional Development Fund) through COMPETE (Operational Programme
‘Thematic Factors of Competitiveness’).

also capable of performing general-purpose computations (for
desktop applications) and are hence called general purpose
graphics processing units (GPGPUs).

GPGPUs can be expected to also become important building
blocks in embedded systems. This expectation is reflected in
the OpenCL initiative [13] which aims to provide the necessary
framework, as infrastructure, to embedded system developers.
Lots of embedded applications could benefit from GPGPU
computing. For example, in [6] the authors work on speed-
limit sign recognition system that should be part of driver
support solutions in future automobiles. This service seems to
perform complex (including massively parallel) computations
using CPU and GPU in the background and only notifies
the human user in special important situations. In [8] the
authors dwell on the more general problem of real-time robust
obstacle detection. Such scenarios impose real-time constraints
(in the form of deadlines) for the timely completion of the
multi-threaded GPU-based computation. The literature offers
some models for performance analysis of general-purpose
computation on graphics hardware [14], [19], [1], [9], but all of
them consider the average case. However, in real-time system
design, it is the worst-case that is of interest.

Many schedulability analysis techniques today assume that
the execution time of one thread is unaffected by the execution
of other threads and also that we are interested in the timing
of each thread. For GPUs however, these assumptions are
false because the execution of one thread on a processor
(for example a CUDA core in a streaming multiprocessor
of NVIDIA Fermi) may require hardware units (e.g. for
loading/storing the data) shared with other processors in the
streaming multiprocessor. As we mentioned above GPUs were
not designed for running a single thread to provide a result,
so we are interested not in the timing of an individual thread
but of a group of threads. Worst-case execution time (WCET)
analysis [20] calculates an upper bound on the execution time
of a program when it executes as the only program in a
computer system. Therefore, such analysis gives a result which
is independent of the execution of other threads. As already
mentioned above, this is even more unrealistic for GPUs than
it is for CPUs. Moreover, even if accurate simulators for
the GPU architecture were available (and internal scheduling
policies were documented in every detail – which is cur-
rently not the case), guaranteeing the satisfaction of real-time
constraints (meeting the deadlines) necessitates accounting
for the worst case, which might never be observed during

simulation. Therefore, timing analysis techniques are needed
which can determine the time that a group of threads may take
to complete, under this computational model. In this paper we
compute the worst-case makespan (further on referred to as
the makespan) – the longest possible time interval between
the moment when the “earliest” thread starts execution, and
the moment when the “latest” one finishes.

The real-time community is interested in the deployment
of GPUs in real-time systems. Focusing on the fact that
GPUs were originally I/O devices, the execution model in [12]
improves the response times of high-priority tasks that should
be run on GPUs. In [11], resource-sharing protocols for using
direct rendering on GPUs are presented. In many cases, the
GPU is used as a co-processor to which certain functions are
offloaded for speed up – and this is the use we are most
interested. Analytical approaches for such systems (as the one
in [5]) typically rely on external analysis to derive worst-case
execution times on the GPU. Our work does exactly that, hence
it can complement such analytical approaches.

In the remainder of this paper, Section 2 presents the
platform description and the problem formulation. Section 3
introduces advanced notation and terminology. Section 4 offers
a new, fast but pessimistic method, for calculating an upper
bound on the makespan for a single streaming multiprocessor.
Section 5 formulates a binary Integer Linear Programming
(ILP) optimization problem for finding the exact worst-case
makespan. Section 6 presents the results of the experiments.
Section 7 concludes and describes future work.

2. Architectural model and assumptions

We target a streaming multiprocessor which is based on the
NVIDIA Fermi [15], a recent hardware architecture of GPUs,
that are capable of general-purpose computations. Although
we consider a single streaming multiprocessor in our analysis
(while NVIDIA Fermi includes 16 of them), it already consists
of a large number of components. In our simplified model, a
streaming multiprocessor comprises:

• Multiple (C in count) programmable Compute Unified
Device Architecture (CUDA) cores (each comprising an
arithmetic logic unit, a floating point unit, input/output
registers). CUDA cores of a given streaming multipro-
cessor perform computations in parallel with each other.

• Supporting units, that load and store data from/to cache
or DRAM. These “load/store units” (L in count) allow
source and destination address calculation for up to L
threads per clock cycle per streaming multiprocessor.

Traditionally, the “entity” of computation is a thread, but
it is important to emphasize that GPU threads differ greatly
from CPU threads as the respective hardware architectures
are drastically different. CPUs have branch prediction (so that
a thread does not have to wait for the result of a branch),
speculative execution (so as to perform computations before
even being sure if the result will be needed), out-of-order
execution (wherein an instruction can be performed as soon as
its operands become available), substantial cache hierarchy (so
as to read/write the data faster in the average case), prefetching
(to get the data earlier). All these hardware optimizations, that

CPUs are built around, aim to minimize the average latency.
In contrast let us consider a GPU-thread which is running
and needs to access the main memory. It takes hundreds of
clock cycles to do that [17] and the GPUs do not have such a
sophisticated architecture, like the one earlier described, that
would help run a thread faster. Therefore, whenever the GPU
thread sends a request to the main memory, the processor
switches to executing another thread. In the general case,
whenever any GPU thread stops for some reason, if there
is enough work to do, we can always keep the streaming
multiprocessor busy in the meantime. In this way, throughput
is good, even if the processing of a single thread is not always
fast. Instead of minimizing latency (like CPUs do), GPUs have
a large number of computational units and switching between
threads “hides” the latency and consequently increases the
efficiency. Another important aspect is that GPU threads are
much more “light-weight” than ordinary CPU threads, because
context-switching between them does not involve updates to
operating system data structures and takes very few clock
cycles (vs hundreds for the CPUs). One of the reasons that
context-switching between GPU-threads is fast is that all of
them execute the same program (the “kernel”) in parallel. This
is also why, in GPU computing, it is much more convenient to
think not in terms of individual threads but, instead, in terms
of another entity of computation, the warp – a group of S
threads, each of which executes the same kernel concurrently.
A streaming multiprocessor processes warps, while its CUDA
cores and load/store units process the corresponding threads.
All threads of all warps, which are running on a given
streaming multiprocessor, execute the same kernel [15].

Instruction latencies are largely dependent on the locality of
the data. However, since NVIDIA Fermi has a relatively large
amount of on-chip memory [8], we make the simplifying as-
sumption that there exists no off-chip traffic (no cache misses).
Regardless of the type of a particular kernel instruction (i.e.
whether it is for a CUDA core or a load/store unit), we assume
that it takes a single clock cycle to perform it and during
this period of time, the corresponding computational unit deals
with this instruction only (we will relax this assumption later).

As mentioned above, the resources of a streaming multi-
processor are shared between warps, but the actual scheduling
policy is not published by the chip makers. It is reasonable,
however, to assume that it is work-conserving. This means that
whenever there are free CUDA cores or load/store units, they
should be utilized by the available warps.

Let us summarize all the most important considerations and
assumptions as follows:

• A streaming multiprocessor consists of two types of
hardware units: load/store (L in count), and CUDA cores
(C in count).

• Threads are organized into warps. All the threads (S in
count) of the same warp execute in parallel.

• All threads from all warps execute the same kernel.
• There are no cache misses (so we do not have to estimate

memory latency).
• Any instruction, takes no more than a single clock cycle.

An instruction holds the resource exclusively (no other
instruction can use it).

• The warps are scheduled in a work-conserving manner.

3. Notation

Early works [7], on using GPUs for general-purpose compu-
tation, contain a lot of reverse engineering efforts and in terms
of programming, everything was developed by hand in assem-
bly code. The positive aspect of the low-level coding was that
the developers had better knowledge of how their programs
would use the hardware units of the GPUs. Later, researchers
began to use the OpenGL graphics interface [18] for general-
purpose computation. This was also tedious because, although
in most cases the code did something completely different, it
still had to be written as if it were graphics computations.

Nowadays, the programming model for GPU computing is
moving towards that of the high-level programming languages,
but for our work, we still need good understanding of how
the kernel (that is serving general-purpose applications) uses
the computational units of the streaming multiprocessor. One
option for the developer is the Parallel Thread Execution
(PTX) – a low-level virtual machine and instruction set
architecture, that is supported by NVIDIA Fermi [15], and
was designed to provide developers with an interface for such
programming languages as C++, OpenCL, DirectCompute,
Fortran, C [15]. The compiler translates code written in these
high-level languages into pseudo-assembly PTX-code, that is
executed on a virtual machine; another compiler, that is the
part of the graphics driver, translates the PTX-code into the
target hardware instruction set – a binary code which can be
run on the computational units of a streaming multiprocessor.

In this work, we introduce (and reason on the basis of) an
abstraction of the PTX-code, which we term kernel instruction
string – a sequence of “L” and “C” symbols, each of which
represents a hardware instruction that should be performed
on load/store unit (“L”-instruction) and CUDA core (“C”-
instruction) respectively. For example, the kernel instruction
string “LC” specifies that an instruction should be carried out
by the load/store unit, followed by an instruction that should
be performed on the CUDA core.

Since GPUs evolve rapidly, via PTX, NVIDIA provides
a stable layer of pseudo-assembly language to developers,
while remaining free to change the underlying instruction
set later, if necessary. However, this is not the only aspect
of GPU architecture that is subject to significant changes
from generation to generation. The term compute capability
specifies the level (designated by a number in the format
x.y) of revision of the NVIDIA GPU core architecture. In
particular, the number of computational units of each kind
in a streaming multiprocessor may be different in devices
with different compute capabilities. For example, for devices
of compute capability 2.0 and 2.1, the number of CUDA
cores in a single streaming multiprocessor is 32 and 48
respectively [17]. Since we aim to make our approach as
general as possible, we next introduce the following variables,
for the purposes of addressing streaming multiprocessors of
different compute capabilities:

Let σL and σC denote the maximum number of warps that
can simultaneously (i.e. during the same clock cycle) execute

an “L”- or, respectively, a “C”-instruction on a streaming
multiprocessor. Obviously, σL and σC depend on the number
of load/store units (L) and the number of CUDA cores (C) in
the streaming multiprocessor and also on the warp size (S):

σL =
L

S
(1)

σC =
C

S
(2)

Equations (1) and (2) assume that all threads in a warp
execute the same instruction (“C” or “L”) within the same
clock cycle. However, if the number of computational units
of some type is less than the warp size S, this is simply not
possible. For example, a streaming multiprocessor of compute
capability 2.0 has only L = 16 load/store units while the warp
size is S = 32 (and, respectively, σL = 16

32 = 1
2). Half the

threads of the warp (a half-warp [17]) would execute an “L”-
instruction in one clock cycle and the other half in another one.
If these clock cycles are consecutive, this would be equivalent
to the “L”-instruction taking two clock cycles to execute. To
remove the difficulty arising from having fractional σ-values
or, equivalently, having dissimilar latencies for “L”- and “C”-
instructions (and also in order to simplify the construction of
the ILP problem formulation, at a later stage), we introduce a
transformation of the kernel instruction string as follows:

Assume that a single streaming multiprocessor includes U
units of some kind. We know [15] that in NVIDIA Fermi and
its ancestors (GT200, G80) the number U is a power of 2,
U ≤ S, and S modU = 0. Hence corresponding σU = U

S =
1
n , where n ∈ N. Multiplying both sides of the equation by n,
we get

nσU = 1

We can transform the instruction string for our kernel by
replacing each “U”-instruction with n “U”s (each one cor-
responding to each “sub-warp” of S

n threads) and additionally
assuming that σU = 1 (the transformation is equivalent
because n sub-warps of a warp, execute the “U”-instruction
in mutual exclusion [2]). For our example of a streaming
multiprocessor of compute capability 2.0, where L = 16,
C = 32, S = 32, σL = 1

2 , σC = 1, the instruction string “LC”
will be transformed to “LLC”. (In other words, the original
“L”-instruction is replaced by 2 consecutive “L”-instructions)
and the value of σL will be changed to σL = 1 (Figure 1).
We apply the same technique (at the cost of some pessimism)
to the occasional CUDA instruction that takes more than one
cycle.

LC ⇒ LLC
σL = 1

2 σL = 1

Fig. 1. Transformation of the kernel instruction string

4. Pessimistic makespan derivation

This section introduces an approach with very low compu-
tational complexity for deriving an upper bound on the make-

Clock Cycle 1 2 3 4 5 6 7 8 9
Warp 1 L L C
Warp 2 L L C
Warp 3 L L C
Warp 4 L L C

Fig. 2. Possible schedule (σL = σC = 1)

span of a group of threads executing on a streaming multipro-
cessor. This approach is pessimistic but its output may serve
as input to other, less pessimistic, derivations (as later shown).

The pessimistic derivation formulated in this section is
based on the fact that a streaming multiprocessor is used most
inefficiently when, in a given clock cycle, all warps contend
for the same type of computational unit. In that scenario, the
computational units of other types are “wasted” (i.e. cannot
be used for “latency hiding”) because they cannot be used to
advance any warp in computation (during that cycle).

This can be illustrated by the following example: 128
threads (in 4 warps of 32) all execute the same kernel (with
instruction string “LLC”) on a single streaming multiproces-
sor. Figure 2 presents one possible schedule (which is work-
conserving). Note that during the first 5 clock cycles, the
multiprocessor has a throughput of only one instruction per
warp per cycle (Figure 2), because initially all warps need to
perform two consecutive load/store instructions and the CUDA
cores are of no use to any of them (hence remain idle).

Accordingly, our pessimistic makespan derivation assumes
that for every instruction of a given warp, all other warps are
also competing for the same computational unit, at the time of
its issue. To enforce this (very pessimistic) assumption, we no
longer consider the actual kernel instruction string but rather
just the number of instructions of a given type in that string.

Assume that the kernel instruction string α has length I
and that there are two types of computational units: load/store
and CUDA (represented by “L” and “C” in the string). Then,
IL and IC is the number of “L”s and “C”s in the kernel
instruction string (i.e. IL + IC = I). From the original
kernel instruction string, we derive two strings: one string αL

consisting exclusively of “L”s (IL in count) and one string αC

consisting exclusively of “C”s (IC in count). In equations:

αL = {L L . . . L� �� �
IL “L”s

} (3)

αC = {C C . . . C� �� �
IC “C”s

} (4)

The pessimistic worst-case makespan is then derived as

T = TL + TC (5)

where TL is the worst-case makespan for a group of W
hypothetical warps executing αL as kernel (and likewise for
TC and αC). In turn, TL and TC are derived as:

TL =

�
W

σL

�
IL (6)

TC =

�
W

σC

�
IC (7)

5. ILP derivation

In this section we present the formulation of the worst-case
makespan derivation problem as a binary ILP. The solution of
the ILP instance provides the exact (subject to our simplifying
assumption) worst-case makespan. In order to generate the
ILP instance from the problem instance, we also employ
the pessimistic makespan derivation described in the previous
section.

Assume that the kernel (known beforehand) consists of I
instructions. We can present the sequence of the instructions
using binary constants with index i = 1..I .

ILi =

�
1 if instruction i is for a load/store unit;
0 otherwise.

(8)

ICi =

�
1 if instruction i is for a CUDA core;
0 otherwise.

(9)

∀i ILi + ICi = 1 (10)

It is obvious that the schedule for which the worst-case (i.e.
longest) makespan is observed can be no longer than T clock
cycles, where T is the makespan estimate (5) computed under
the simple pessimistic approach described earlier in Section 4.

To describe the schedule of W warps over T clock cycles,
we introduce the following binary decision variables, specify-
ing the usage of the resources of the streaming multiprocessor:

LSw,i,t =

1 if warp w performs instruction i on
load/store unit at clock cycle t ;

0 otherwise.

CCw,i,t =

1 if warp w performs instruction i on
CUDA core at clock cycle t ;

0 otherwise.

where indexes w = 1..W and t = 1..T stand for warps
and clock cycles respectively. Note that ∀w, i, t, it holds that
LSw,i,t and CCw,i,t cannot both be non-zero (because any
instruction can only use a specific type of computational unit).

With the help of these variables, the formulation of the
ILP is presented as follows: in subsection 5.1 we derive the
objective function, corresponding to the worst-case makespan;
subsection 5.2 formulates capacity constraints on the com-
putational resources of the single streaming multiprocessor;
subsection 5.3 states precedence constraints for the instructions
of the kernel instruction string; subsection 5.4 dwells on
constructing constraints that guarantee the work-conserving
property of the schedule; subsection 5.5 presents the entire
ILP derivation in one place; finally, subsection 5.6 addresses
tractability issues, related to solving the optimization problem.

5.1. Objective function

The objective function should be designed in such a way, to
provide the longest possible makespan when all the constraints
are satisfied. Relying on the precedence constraints between
instructions, we notice that the makespan is maximized iff the
last instruction of the last warp to complete (whichever that
is), is executed as late as possible. Since this would be the Ith

kernel instruction, the worst-case makespan is then given by

max
w=1..W,t=1..T

{t · (LSw,I,t + CCw,I,t)} (11)

Given that the objective function of our optimization prob-
lem should be linear, we need to add some extra constraints
to present (11) in a proper way. Although, in principle, we
are not interested in which one of the W warps executes the
last instruction in the schedule, specifying that would allow
us to simplify (11). Without loss of generality, since all warps
are identical, any schedule with worst-case makespan can be
transformed into a schedule where the last completing warp is
the warp W (e.g. via re-indexing of warps). We can express
this additional requirement using (W − 1) constraints:

∀w = 1..(W − 1)

T�

t=1

(t · (LSw,I,t + CCw,I,t)) ≤
T�

t=1

(t · (LSW,I,t + CCW,I,t))

Therefore (11) could be presented as finding the clock cycle
when the warp W executes an instruction with the index I .

max
t=1..T

{t · (LSW,I,t + CCW,I,t)} (12)

However, there exists only one t�∈[1..T] such that warp W
performs instruction I at cycle t�. Therefore ∀t�� ∈ [1..T],
t�� �=t�: LSW,I,t��=0 and CCW,I,t��=0 ⇒ LSW,I,t�� +
CCW,I,t�� = 0. Hence expression (12) can be rewritten as
a linear function of LSW,I,t and CCW,I,t as follows:

T�

t=1

(t · (LSW,I,t + CCW,I,t)) (13)

This is the objective function (that should be maximized) in
our binary ILP-formulation.

5.2. Capacity constraints

As explained in Section 1, the makespan is dependent on
how internal resources in a streaming multiprocessor (CUDA
cores and load/store units in our case) are shared between
threads. Although streaming multiprocessors of modern GPUs
have many computational units, these are still finite resources.
Additionally, the number of computational units of each type
(i.e. L and C) is typically different. Such limitations, among
others, can be represented by the following constraints:

An upper bound on the number of load/store instructions
that could be performed within a single clock cycle t, could
be expressed as:

∀t
W�

w=1

I�

i=1

LSw,i,t ≤ σL (14)

Similarly for the number of CUDA instructions:

∀t
W�

w=1

I�

i=1

CCw,i,t ≤ σC (15)

Any warp is able to perform no more than one instruction
at a single clock cycle:

∀w, t
I�

i=1

LSw,i,t ≤ 1,
I�

i=1

CCw,i,t ≤ 1 (16)

Any instruction can only be executed on a computational
unit of a specific respective type:

∀w, i
T�

t=1

LSw,i,t = ILi,
T�

t=1

CCw,i,t = ICi (17)

The constraints expressed by Equations (10) and (17) mean
that:
– If (ICi = 1) then (∀w, t LSw,i,t = 0)
– If (ILi = 1) then (∀w, t CCw,i,t = 0)
Additionally, Equations (17) and (10) ensure that every in-
struction is performed by every warp.

5.3. Precedence constraints

Since the kernel instructions are executed in a particular or-
der by all warps, we must model the constraints of precedence
between them. For these purposes it is useful to introduce
auxiliary (not decision) variable Yw,i which denotes the clock
cycle when warp w executes instruction i. This new variable
facilitates expressing the constraint that ∀i = 1..(I − 1) and
for every warp, the instruction i+ 1 cannot be executed until
after the instruction i has been executed by the same warp:

∀w Yw,1 < Yw,2 < · · · < Yw,I−1 < Yw,I (18)

Taking into account Equations (17) and (10), one may see that
(Yw,i = t) is equivalent to (

�t
t�=1(LSw,i,t� + CCw,i,t�) = 1)

That could be written as

Yw,i =
T�

t=1

(t · (LSw,i,t + CCw,i,t)) (19)

By substitution of Equation (19) to (18), we get:

∀w, i = 1..(I − 1)

T�

t=1

(t·(LSw,i,t+CCw,i,t)) <
T�

t=1

(t·(LSw,i+1,t+CCw,i+1,t))

In linear programs the inequalities should be non-strict [21].
Therefore (since the decision variables are integer) we rewrite
the above as:

∀w, i = 1..(I − 1)

1+
T�

t=1

(t·(LSw,i,t+CCw,i,t)) ≤
T�

t=1

(t·(LSw,i+1,t+CCw,i+1,t))

5.4. Work-conserving constraints

One of our assumptions, stated in Section 2, was about
the scheduling policy implemented in GPU. Namely, that it is
work-conserving. This means that whenever there are warps
available and free computational resources on the streaming
multiprocessor, the scheduler must select some warp for
execution. Next, we introduce some additional variables, for
the purpose of modelling the work-conserving property of the
schedule via ILP constraints.

Let us assume that instruction i is for a load/store unit
(ILi = 1, ICi = 0). Then LSREADYw,i,t = 1 iff warp w
was ready to execute instruction i at clock cycle t (i.e. it had
already executed instructions 1..(i− 1)) but did not. Similarly
with variable CCREADYw,i,t if ILi = 0 and ICi = 1. In
formal notation:

∀w, t

LSREADYw,1,t =

�
1 if (IL1 = 1) ∧ (t < Yw,1) ;
0 otherwise.

CCREADYw,1,t =

�
1 if (IC1 = 1) ∧ (t < Yw,1) ;
0 otherwise.

∀w, i = 2..I, t

LSREADYw,i,t =

1 if (Yw,i−1 < t) ∧ (ILi = 1)
∧(t < Yw,i) ;

0 otherwise.

CCREADYw,i,t =

1 if (Yw,i−1 < t) ∧ (ICi = 1)
∧(t < Yw,i) ;

0 otherwise.

A schedule is not work-conserving iff there exists some
warp w that is ready to perform some instruction i at clock
cycle t, but stays idle, even if there were spare computational
units (of the type that instruction i runs on). This scenario
could be expressed as follows:

∃w, t ((
I�

i=1

LSREADYw,i,t �= 0)∧

(
W�

w�=1

I�

i=1

LSw�,i,t < σL))∨

((
I�

i=1

CCREADYw,i,t �= 0)∧

(
W�

w�=1

I�

i=1

CCw�,i,t < σC)) (20)

If and only if the expression (20) does not hold (or equiv-
alently, its logical complement holds), the schedule is work-
conserving. The logical complement to (20) can be derived
via application of De Morgan’s laws and is the following:

∀w, t ((
I�

i=1

LSREADYw,i,t = 0)∨

(
W�

w�=1

I�

i=1

LSw�,i,t = σL))∧

((
I�

i=1

CCREADYw,i,t = 0)∨

(
W�

w�=1

I�

i=1

CCw�,i,t = σC)) (21)

In a system of ILP-constraints, expression (21) can be
split into two constraints that make the following boolean
expressions true:

∀w, t

((
I�

i=1

LSREADYw,i,t = 0) ∨ (
W�

w�=1

I�

i=1

LSw�,i,t = σL))

(22)
and

∀w, t

((
I�

i=1

CCREADYw,i,t = 0) ∨ (
W�

w�=1

I�

i=1

CCw�,i,t = σC))

(23)
Let us consider constraint (22). The equality

I�

i=1

LSREADYw,i,t = 0 (24)

holds iff ∀i LSREADYw,i,t = 0.
From the definition, we know that LSREADYw,i,t = 0 iff

the following boolean expressions hold:

¬((IL1 = 1) ∧ (t < Yw,1)) = true (25)

for LSREADYw,1,t = 0;

¬((Yw,i−1 < t) ∧ (ILi = 1) ∧ (t < Yw,i)) = true (26)

for LSREADYw,i,t = 0 ∀i = 2..I .
Expressions (25) and (26) can be equivalently rewritten as:

(IL1 = 0) ∨ (t ≥ Yw,1) = true (27)

for LSREADYw,1,t = 0;

(Yw,i−1 ≥ t) ∨ (ILi = 0) ∨ (t ≥ Yw,i) = true (28)

for LSREADYw,i,t = 0 ∀i = 2..I .
Taking into account that

t�

t�=1

(LSw,i,t� + CCw,i,t�) =

�
1 if t ≥ Yw,i;
0 otherwise.

and
T�

t�=t

(LSw,i,t� + CCw,i,t�) =

�
1 if Yw,i ≥ t;
0 otherwise.

we can rewrite the left hand sides of boolean expressions (27)
and (28) as

TLw,1,t = (IL1 = 0) ∨ (
t�

t�=1

(LSw,1,t� + CCw,1,t�) = 1)

and

TLw,i,t =(
T�

t�=t

(LSw,i−1,t� + CCw,i−1,t�) = 1) ∨ (ILi = 0)∨

(
t�

t�=1

(LSw,i,t� + CCw,i,t�) = 1) ∀i = 2..I

respectively (using the shorthand TLw,i,t for the purpose of
making equations more readable).

In such a way the equality (24) can be equivalently rewritten
as:

TLw,1,t ∧ TLw,2,t ∧ · · · ∧ TLw,I,t = true (29)

To express
�W

w�=1

�I
i=1 LSw�,i,t = σL, which is the right

hand side part of (22), let us denote

Et =

�
1 if

�W
w�=1

�I
i=1 LSw�,i,t = σL ;

0 otherwise.
Intuitively, Et = 1 iff there is no spare capacity of load/store
units in the streaming multiprocessor at clock cycle t. An
equivalent (but more convenient) definition of the above binary
decision variable is:

Et = 1− sign(σL −
W�

w�=1

I�

i=1

LSw�,i,t) (30)

where

sign(r) =

1 for r > 0;
0 for r = 0;

−1 for r < 0.

Subject to (29) and the definition of Et, (22) is rewritten as:

(TLw,1,t ∧ TLw,2,t ∧ · · · ∧ TLw,I,t) ∨ Et (31)

or equivalently

(TLw,1,t ∨Et)∧ (TLw,2,t ∨Et)∧ · · ·∧ (TLw,I,t ∨Et) (32)

We expressed the work-conserving property for load/store
units through the boolean expressions presented above. To
ensure that these expressions hold, we have to model them
using linear constraints. According to Theorems 1 and 2 (see
Appendix in [3]), expression (31) can be represented by a
single relatively long linear constraint:

∀w, t 1

2
((−I − 1

I
+

1

I

I�

i=1

TLw,i,t) + Et) ≤

(TLw,1,t ∧ TLw,2,t ∧ · · · ∧ TLw,I,t) ∨ Et ≤

1

I

I�

i=1

TLw,i,t + Et (33)

wherein the boolean expression is treated as an integer (0/1).
Similarly expression (32) could be represented by I relatively
short linear constraints:

∀w, i, t 1

2
(TLw,i,t + Et) ≤ TLw,i,t ∨ Et ≤ TLw,i,t + Et

(34)
Applying a similar approach to (23), using shorthand

TCw,1,t, where

TCw,1,t = (IC1 = 0) ∨ (
t�

t�=1

(LSw,1,t� + CCw,1,t�) = 1)

TCw,i,t =(
T�

t�=t

(LSw,i−1,t� + CCw,i−1,t�) = 1) ∨ (ICi = 0)∨

(
t�

t�=1

(LSw,i,t� + CCw,i,t�) = 1) ∀i = 2..I

and binary decision variable

Gt = 1− sign(σC −
W�

w�=1

I�

i=1

CCw�,i,t) (35)

we can present (23) by a single long constraint:

∀w, t

1

2
((−I − 1

I
+

1

I

I�

i=1

TCw,i,t) +Gt) ≤

(TCw,1,t ∧ TCw,2,t ∧ · · · ∧ TCw,I,t) ∨Gt ≤

1

I

I�

i=1

TCw,i,t +Gt (36)

or by I short linear constraints:

∀w, i, t 1

2
(TCw,i,t +Gt) ≤ TCw,i,t ∨Gt ≤ TCw,i,t +Gt

(37)

At this point, let us focus on how to model decision
variables Et and Gt (which have non-linear definitions) as
linear expressions. By inspecting Equations (30) and (35),
we can notice that function sign() takes only non-negative
arguments there. In the case of Et, it is because ∀t σL ≥�W

w�=1

�I
i=1 LSw�,i,t In particular:

if σL =
�W

w�=1

�I
i=1 LSw�,i,t, then

sign(σL −
�W

w�=1

�I
i=1 LSw�,i,t) = sign(0) = 0;

if σL >
�W

w�=1

�I
i=1 LSw�,i,t, then

sign(σL −
�W

w�=1

�I
i=1 LSw�,i,t) = 1.

Since there is no need to “implement” sign() for negative
arguments, we can model it as follows. Let us denote the
shorthand SLt = sign(σL −

�W
w�=1

�I
i=1 LSw�,i,t). The

constraint

SLt ≤ σL −
W�

w�=1

I�

i=1

LSw�,i,t (38)

maximize
T�

t=1

(t · (LSW,I,t + CCW,I,t)) subject to

iterated variables expression for constraint number of constraints

∀t
W�

w=1

I�

i=1

LSw,i,t ≤ σL T

∀t
W�

w=1

I�

i=1

CCw,i,t ≤ σC T

∀w = 1..(W − 1)
T�

t=1

(t · (LSw,I,t + CCw,I,t)) ≤
T�

t=1

(t · (LSW,I,t + CCW,I,t)) W − 1

∀w, t
I�

i=1

LSw,i,t ≤ 1 W · T

∀w, t
I�

i=1

CCw,i,t ≤ 1 W · T

∀w, i
T�

t=1

LSw,i,t = ILi W · I

∀w, i
T�

t=1

CCw,i,t = ICi W · I

∀w, i = 1..(I − 1) 1 +
T�

t=1

(t · (LSw,i,t + CCw,i,t)) ≤
T�

t=1

(t · (LSw,i+1,t + CCw,i+1,t)) W · (I − 1)

∀t Et ≥ 1− σL +
W�

w�=1

I�

i=1

LSw�,i,t T

∀t Et · σL ≤
W�

w�=1

I�

i=1

LSw�,i,t T

∀w, i, t 1
2 (TLw,i,t + Et) ≤ TLw,i,t ∨ Et ≤ TLw,i,t + Et W · I · T

∀t Gt ≥ 1− σC +
�W

w�=1

�I
i=1 CCw�,i,t T

∀t Gt · σC ≤
�W

w�=1

�I
i=1 CCw�,i,t T

∀w, i, t 1
2 (TCw,i,t +Gt) ≤ TCw,i,t ∨Gt ≤ TCw,i,t +Gt W · I · T

Fig. 3. The complete ILP formulation (using short constraints)

states the first basic property of the function (that its value
cannot be greater than its argument). The second fundamental
property (that the value of the function denotes the sign of the
argument) is stated by the following constraint:

σL −
W�

w�=1

I�

i=1

LSw�,i,t ≤ SLt · (σL −
W�

w�=1

I�

i=1

LSw�,i,t)

Without loss of correctness, we can rewrite this as

σL −
W�

w�=1

I�

i=1

LSw�,i,t ≤ SLt · σL (39)

reducing computational complexity for the software imple-
mentation.

According to Equation (30) and the definition of SLt, we
can compute Et as (1 − SLt), but it will be more efficient
to model Et directly (using the previous derivation of SLt).

Multiplying (38) by (−1) and adding 1 to both sides yields

1− SLt ≥ 1− (σL −
W�

w�=1

I�

i=1

LSw�,i,t)

This can be rewritten as follows:

Et ≥ 1− σL +
W�

w�=1

I�

i=1

LSw�,i,t (40)

Multiplying (39) by (−1) we get

−(σL −
W�

w�=1

I�

i=1

LSw�,i,t) ≥ (1− SLt) · σL − σL

One may then reduce it to

Et · σL ≤
W�

w�=1

I�

i=1

LSw�,i,t (41)

By analogy, for linear constraints (40) and (41) for Gt:

Gt ≥ 1− σC +
W�

w�=1

I�

i=1

CCw�,i,t

Gt · σC ≤
W�

w�=1

I�

i=1

CCw�,i,t

5.5. Summary of the ILP formulation

Let us now present the entire formulation of the binary ILP
in one place (Figure 3) (opting for using as short constraints
as possible) .

5.6. Resolving the issue of tractability

Integer programming is in common use in various fields
[21] and corresponding problems are probably, the most
widely-used examples of NP-hard computational problems.
Even though bounded ILPs (binary in our case) are, usually,
more tractable than those which allow decision variables to
take values from infinite domains, it is obvious that even
for relatively small number of warps (W), computing the
makespan with the ILP formulation presented above will take
too much time. However, we can find a marginally pessimistic
makespan estimate at only a fraction of the time as follows:

Let T (W) denote the worst-case makespan of W warps
(for which we seek an upper bound) and T (x) denote the
corresponding worst-case makespan for x warps (with x�W).
By choosing a small enough value for x such that the exact
value for T (x) can be tractably computed, according to our
ILP derivation, then T (W) can be safely approximated by

T (W)
approx(x) =

x
min
y=1

T (W,y) (42)

where
T (W,y) =

�
W

y

�
· T (y), y ∈ N (43)

We compute the upper bound on T (W) using Equation (42)
and not as T (W,x) because, although T (W,x) typically de-
creases with increasing x, sometimes there are small increases
(especially for very small x). The estimate T (W)

approx(x) for
T (W) given by (42) improves with higher x, at the cost of
rapidly increasing computation times. However, experimental
evidence (see the next section) shows diminishing returns,
even past small values of x. In other words, the estimate
rapidly converges and even for small x, there is very little
pessimism.

6. Experiments

As shown in Section 5 the makespan depends on the number
of warps, the kernel instruction string and the hardware
(namely, the number of computational units of each type and
the warp size). We implemented the techniques introduced in
this paper in a cross-platform software application that reads

Fig. 4. Typical configuration file and application workflow.

Fig. 5. Computation time for solving ILP-problem with
short and long constraints (σL = σC = 1, “LLCLL”)

the problem instance from a configuration file (Figure 4), con-
structs the binary ILP-formulation and launches the proprietary
ILP-solver (see [10]). After getting the solution, it presents
the worst-case makespan and corresponding schedule (like the
one in Figure 2) or alternatively computes an estimate using
Equation (43) (if the user does not want to wait too long).

In Subsection 5.4 we stated that there are two alternatives
for expressing the work-conserving property: either (i) using
W · I · T shorter constraints (34), (37) or (ii) using W · T
longer constraints (33), (36). We implemented both options
and compared their timings. One such comparison is presented
in Figure 5. In our experiments, the first option generally gave
shorter computation times.

We also explored how the tractable approximation for
T (W) (presented in Subsection 5.6) improves/converges with
increased values of the parameter x. Figure 6 and Figure 7
present the results of two such experiments. In general, we

Fig. 6. Convergence of T (W) with increasing x (W=600,
σL=σC=1, “LLCLL”). The horizontal dashed line corre-
sponds to the pessimistic estimate T (Section 4).

Fig. 7. Growth of computation time and convergence of
T (W,x) with increasing x (W = 420, σL = 1

2 , σC = 1,
“LCLCL”).

observed that the estimate T (W) converges very fast with
increasing x and afterwards the improvement to the estimate
is minor (diminishing returns). Our interpretation is that this
is because the approximation is good even for small values
of x. Therefore, although the computation time increases very
rapidly with x (Figure 7), one may obtain (i.e. using small x)
estimates that are both quite accurate and tractably derivable.

7. Conclusion and future work

In this paper we introduce techniques for finding the worst-
case makespan for a group of GPU threads: one approach
which is pessimistic but has very low computational com-
plexity and another approach (which builds on the former
one) which employs Integer Linear Programming for an exact
derivation (subject to some simplifying assumptions). Since
the exact approach is computationally intractable for a large
number of warps, we also introduce a simple way of obtaining,
at only a fraction of the time, a safe estimate that is only
marginally pessimistic.

In this work, we address a single streaming multiprocessor,
based on the NVIDIA Fermi hardware architecture. However,
since a GPU contains many streaming multiprocessors, as
a next step, we intend to extend our approach to address
thread execution over multiple streaming multiprocessors. Do-
ing so will require faithfully modelling how warps are dis-
patched/partitioned among streaming multiprocessors – some-
thing which, to the best of our understanding, is either not
fully documented at the moment or subject to change between
revisions. Another direction for our future work, will be to
relax the assumption about the absence of cache misses. We
believe that this line of work will apply also to NVIDIA Kepler
and Maxwell [4] – the next generation GPU architectures.

References

[1] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W. W.
Hwu. An adaptive performance modeling tool for GPU architectures. In
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), January 2010.

[2] J. Balfour. CUDA threads and atomics. Lecture slides (2011) –
http://mc.stanford.edu/cgi-bin/images/3/34/Darve cme343 cuda 3.pdf.

[3] K. Berezovskyi, K. Bletsas, and B. Andersson. Makespan
computation for GPU threads running on a single streaming
multiprocessor. Technical Report HURRAY-TR-111215,
CISTER-ISEP Research Center, Polytechnic Institute of Porto,
Available at www.cister.isep.ipp.pt/docs/makespan+computation
+for+gpu+threads+running+on+a+single+streaming +multiproces-
sor/685/view.pdf, December 2011.

[4] B. Dally. GPU computing to exascale and beyond. Lecture slides –
http://www.nvidia.com/content/PDF/sc 2010/theater/ Dally SC10.pdf.

[5] G. Elliott and J. Anderson. Real-time multiprocessor systems with
GPUs. In 18th International Conference on Real-Time and Network
Systems, November 2010.

[6] V. Glavtchev, P. Muyan-Özçelik, J. M. Ota, and J. D. Owens. Feature-
based speed limit sign detection using a graphics processing unit. In
Intelligent Vehicles Symposium (IV), pages 195–200, 2011.

[7] D. Göddeke. GPGPU:basic math tutorial. http://www.mathematik.uni-
dortmund.de/

[8] M. Gouiffès, A. Patri, and M. Vasiliu. Robust obstacles detection and
tracking using disparity for car driving assistance. In SPIE, volume
7539, 2010.

[9] S. Hong and H. Kim. A memory-level and thread-level parallelism aware
GPU architecture performance analytical model. In 36th International
Symposium on Computer Architecture (ISCA-36), June 2009.

[10] IBM Corporation. IBM ILOG CPLEX Optimization Studio. Product
brief – http://www-01.ibm.com/software/integration/optimization/cplex-
optimization-studio/modeling/, 2011.

[11] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar. Resource
sharing in GPU-accelerated windowing systems. In 17th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2011.

[12] S. Kato, K. Lakshmanan, A. Kumar, Y. Ishikawa, and R. Rajkumar.
Rgem: A responsive GPGPU execution model for runtime engines. In
32nd IEEE Real-Time Systems Symposium (RTSS), 2011.

[13] Khronos OpenCL Working Group. The OpenCL specifica-
tion. Available online – www.khronos.org/registry/cl/specs/opencl-
1.2.pdf#page=49, 2011.

[14] W. Liu, B. Schmidt, and W. Müller-Wittig. Performance analysis
of general-purpose computation on commodity graphics hardware: A
case study using bioinformatics. Journal of Signal Processing Systems
(JSPS), 48(3):209–221, 2007.

[15] NVIDIA Corp. NVIDIA’s next generation CUDA compute architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2009.

[16] NVIDIA Corporation. GeForce 256 the world’s first GPU. Product brief
– http://www.nvidia.com/page/geforce256.html, 1999.

[17] NVIDIA Corporation. NVIDIA CUDA C programming guide.
http://developer.download.nvidia.com/compute/DevZone/docs/html/
C/doc/CUDA C Programming Guide.pdf, 2011.

[18] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. Purcell. A survey of general-purpose computation on
graphics hardware. In Computer Graphics Forum, pages 80–113, 2007.

[19] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), February 2008.

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution time problem – overview of methods and survey of tools.
ACM Trans. Embedded Computing Systems, 7(3):1–53, 2008.

[21] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial
Optimization. Wiley-Interscience, 1998.

