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Abstract 
Graphics processors were originally developed for rendering graphics but have recently evolved towards being an 
architecture for general-purpose computations. They are also expected to become important parts of embedded systems 
hardware -- not just for graphics. However, this necessitates the development of appropriate timing analysis  techniques 
which would be required because techniques  developed for CPU scheduling are not applicable. The reason is that we 
are not interested in how long it takes for any given GPU thread to complete, but rather how long it takes for all of them 
to complete. We therefore develop a simple method for finding an upper bound on the  makespan of a group of GPU 
threads executing the same program and competing for the resources of a single streaming multiprocessor (whose 
architecture is based on  NVIDIA Fermi, with some simplifying assumptions). We then build upon this method to 
formulate the derivation of the exact worst-case makespan (and corresponding schedule) as an optimization problem. 
Addressing the issue of tractability, we also present a technique for efficiently computing a safe estimate of the worst-
case makespan with minimal pessimism, which may be used when finding an exact value would take too long. 
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ABSTRACT
Graphics processors were originally developed for rendering
graphics but have recently evolved towards being an archi-
tecture for general-purpose computations. They are also
expected to become important parts of embedded systems
hardware – not just for graphics. However, this necessitates
the development of appropriate timing analysis techniques
which would be required because techniques developed for
CPU scheduling are not applicable. The reason is that we
are not interested in how long it takes for any given GPU
thread to complete, but rather how long it takes for all of
them to complete. We therefore develop a simple method
for finding an upper bound on the makespan of a group of
GPU threads executing the same program and competing
for the resources of a single streaming multiprocessor (whose
architecture is based on NVIDIA Fermi, with some simpli-
fying assumptions). We then build upon this method to
formulate the derivation of the exact worst-case makespan
(and corresponding schedule) as an optimization problem.
Addressing the issue of tractability, we also present a tech-
nique for e�ciently computing a safe estimate of the worst-
case makespan with minimal pessimism, which may be used
when finding an exact value would take too long.

1. INTRODUCTION
The stream processing computational paradigm was con-
ceived so as to allow e�cient processing for a particular
type of parallel applications (with minimal data dependen-
cies) while simultaneously simplifying the parallel hardware
architecture. Given a set of data (a stream), a series of
operations (kernel function) is applied to each element in
the stream. This paradigm applies very nicely to graphics
and was partially implemented in graphics processing units
(GPUs) [7]. In other words, GPUs were designed to exe-
cute a large number of threads (in the order of thousands
or more) so that their joint execution provides a result to
a user. These devices were originally used only for graph-
ics, but have evolved significantly during the recent years.

Today, they are also capable of performing general-purpose
computations (for desktop applications) and are hence called
general purpose graphics processing units (GPGPUs).

GPGPUs can be expected to also become important build-
ing blocks in embedded systems. For example, in [3] authors
work on speed-limit sign recognition system that should be
part of driver support solutions in future automobiles. This
service seems to perform complex (including massively par-
allel) computations using CPU and GPU in the background
and only notifies the human user in special important sit-
uations. Paper [5] dwells on the more general problem of
real-time robust obstacle detection. Such scenarios impose
real-time constraints (in the form of deadlines) for the timely
completion of the multi-threaded GPU-based computation.
Therefore, the timing of the thread execution on the GPUs
is crucial. However, this timing is in turn dependent on how
internal resources in a GPU (e.g. units for loading/storing)
are shared between threads.

Many schedulability analysis techniques today assume that
the execution time of one thread is una↵ected by the exe-
cution of other threads and also that we are interested in
the timing of each thread. For GPUs however, these as-
sumptions are false because the execution of one thread on
a processor (for example a CUDA core in a streaming mul-
tiprocessor of NVIDIA Fermi) may require hardware units
(e.g. for loading/storing the data) which are shared with
other processors in the streaming multiprocessor. As we
mentioned above GPUs were not designed for running a sin-
gle thread to provide a result, so we are interested not in
the timing of an individual thread but of a group of threads.
Worst-case execution time (WCET) analysis [11] calculates
an upper bound on the execution time of a program when it
executes as the only program in a computer system. There-
fore, such analysis gives a result which is independent of the
execution of other threads. As already mentioned above,
this is even more unrealistic for GPUs than it is for CPUs.
Therefore, timing analysis techniques are needed which can
determine the time that a group of threads take to complete,
under this computational model.

In the remainder of this paper, Section 2 presents platform
description and problem formulation. Section 3 introduces
advanced notation and terminology. Section 4 o↵ers a new
fast but pessimistic method for calculating an upper bound
on the makespan for a single streaming multiprocessor. Sec-



tion 5 considers the formulation of a binary Integer Lin-
ear Programming problem of finding the exact value of the
makespan. Section 6 presents the results of the experiments.
Section 7 concludes and describes future work.

2. ARCHITECTURAL MODEL
AND ASSUMPTIONS

We target a streaming multiprocessor which is based on the
NVIDIA Fermi [8], a recent hardware architecture of GPUs,
that are capable of general-purpose computations. Although
we consider a single streaming multiprocessor in our anal-
ysis (while NVIDIA Fermi includes 16 of them), it consists
already of a large number of components. In our simplified
model, a streaming multiprocessor comprises:

• Multiple (C in count) programmable Compute Uni-
fied Device Architecture (CUDA) cores (each of which
consists of an arithmetic logic unit, a floating point
unit, input/output registers). The CUDA cores of a
given streaming multiprocessor perform computations
in parallel with each other.

• Supporting units, that load and store data from/to
cache or DRAM. These “load/store units” (L in count)
allow source and destination addresses to be calculated
for up to L threads per single time slot (clock cycle)
per streaming multiprocessor.

Traditionally, the “entity” of computation is a thread, but it
is important to emphasize that GPU threads di↵er greatly
from CPU threads as the respective hardware architectures
are drastically di↵erent. CPUs have branch prediction (so
that a thread does not have to wait for the result of a
branch), speculative execution (so as to perform computa-
tions before even being sure if the result will be needed),
out-of-order execution (wherein an instruction can be per-
formed as soon as its operands become available), substan-
tial cache hierarchy (so as to read/write the data faster in
the average case), prefetching (to get the data earlier). All
these hardware optimizations, that CPUs are built around,
aim to minimize the average latency. In contrast let us con-
sider a GPU-thread which is running and needs to access
the main memory. It takes hundreds of clock cycles to do
that [9] and the GPUs do not have such a sophisticated ar-
chitecture, like the one earlier described, that would help
run a thread faster. Therefore, whenever the GPU thread
sends a request to the main memory, the processor switches
to executing another thread. In the general case, whenever
any GPU thread stops for some reason, if there is enough
work to do, we can always keep the streaming multiproces-
sor busy in the meantime. In this way, throughput is good,
even if the processing of a single thread is not always fast.
Instead of minimizing latency (like CPUs do), GPUs have a
large number of computational units and switching between
threads “hides” the latency and consequently increases the
e�ciency. Another important aspect is that GPU threads
are much more “light-weight” than ordinary CPU threads,
because context-switching between them does not involve
updates to operating system data structures and takes very
few clock cycles (vs hundreds for the CPUs). One of the
reasons that context-switching between GPU-threads is fast
is that all of them execute the same program (the “kernel”)

in parallel. This is also why, in GPU computing, it is much
more convenient to think not in terms of individual threads
but, instead, in terms of another entity of computation, the
warp – a group of S threads, each of which executes the same
kernel concurrently. A streaming multiprocessor processes
warps, while its CUDA cores and load/store units process
the corresponding threads. All threads of all warps, which
are running on a given streaming multiprocessor, execute
the same kernel [8].

Instruction latencies are largely dependent on the locality
of the data. However, since NVIDIA Fermi has a relatively
large amount of on-chip memory [8], we make the simplify-
ing assumption that there exists no o↵-chip tra�c (no cache
misses). Regardless of the type of a particular kernel in-
struction (i.e. whether it is for a CUDA core or a load/store
unit), we assume that it takes a single time slot to perform
it and during this period of time, the corresponding compu-
tational unit deals with this instruction only.

As mentioned above, the resources of a streaming multipro-
cessor are shared between warps, but the actual scheduling
policy is not published by the chip makers. It is reasonable,
however, to assume that it is work-conserving. This means
that whenever there are free CUDA cores or load/store units,
they should be utilized by the available warps.

Let us summarize all the most important considerations and
assumptions as follows:

• A streaming multiprocessor consists of two types of
hardware units: load/store (L in count), and CUDA
cores (C in count).

• Threads are organized into warps. All the threads (S
in count) of the same warp execute in parallel.

• All threads from all warps execute the same kernel.

• There are no cache misses (so we do not have to esti-
mate memory latency).

• Any instruction, takes no more than a single time slot.
An instruction holds the resource exclusively (no other
instruction can use it).

• The warps are scheduled in a work-conserving manner.

3. NOTATION
Early works [4], on using GPUs for general-purpose com-
putation, contain a lot of reverse engineering e↵orts and in
terms of programming, everything was developed by hand in
assembly code. The positive aspect of the low-level coding
was that the developers had better knowledge of how their
programs would use the hardware units of the GPUs. Later,
researchers began to use the OpenGL graphics interface [10]
for general-purpose computation. This was also tedious be-
cause, although in the majority of cases, the code was doing
something completely di↵erent, it still had to be written as
for graphics computations.

Nowadays, the programming model for GPU computing is
moving towards that of the high-level programming lan-
guages, but for our work, we still need good understanding of



how the kernel (that is serving general-purpose applications)
uses the computational units of the streaming multiproces-
sor. One option for the developer is the Parallel Thread Ex-
ecution (PTX) – a low-level virtual machine and instruction
set architecture, that is supported by NVIDIA Fermi [8], and
was designed to provide developers with an interface for such
programming languages as C++, OpenCL, DirectCompute,
Fortran, C [8]. The compiler translates code written in these
high-level languages into pseudo-assembly PTX-code, that
is executed on a virtual machine; another compiler, that is
the part of the graphics driver, translates the PTX-code into
the target hardware instruction set – a binary code which
can be run on the computational units of a streaming mul-
tiprocessor.

In this work, we introduce (and reason on the basis of) an
abstraction of the PTX-code, which we term kernel instruc-
tion string – a sequence of “L” and “C” symbols, each of
which represents a hardware instruction that should be per-
formed on load/store unit and CUDA core respectively. For
example, the kernel instruction string “LC” specifies that an
instruction should be carried out by the load/store unit, fol-
lowed by an instruction that should be performed on the
CUDA core.

Since GPUs evolve rapidly, via PTX, NVIDIA provides a
stable layer of pseudo-assembly language to developers, while
remaining free to change the underlying instruction set later,
if necessary. However, this is not the only aspect of GPU
architecture that is subject to significant changes from gen-
eration to generation. The term compute capability specifies
the level (designated by a number in the format x.y) of re-
vision of the NVIDIA GPU core architecture. In particular,
the number of computational units of each kind in a stream-
ing multiprocessor may be di↵erent in devices with di↵erent
compute capabilities. For example, for devices of compute
capability 2.0 and 2.1, the number of CUDA cores in a sin-
gle streaming multiprocessor is 32 and 48 respectively [9].
Since we aim to make our approach as general as possible,
we next introduce the following variables, for the purposes
of addressing streaming multiprocessors of di↵erent compute
capabilities:

Let �
L

and �

C

denote the maximum number of warps that
can simultaneously (i.e. during the same time slot) execute
an “L”- or, respectively, a “C”-instruction on a streaming
multiprocessor. It is obvious that �

L

and �

C

depend on the
number of load/store units (L) and the number of CUDA
cores (C) in the streaming multiprocessor and also on the
warp size (S):

�

L

=
L

S

(1)

�

C

=
C

S

(2)

Equations 1 and 2 assume that all threads in a warp execute
the same instruction (“C” or “L”) within the same time slot.
However, if the number of computational units of some type
is less than the warp size S, this is simply not possible. For
example, a streaming multiprocessor of compute capability

2.0 has only L = 16 load/store units while the warp size is
S = 32 (and, respectively, �

L

= 16
32 = 1

2 ). Half the threads
of the warp (a semi-warp) would execute an L-instruction
in one time slot and the other half in another slot. If these
time slots are consecutive, this would be equivalent to the
“L”-instruction” taking two time slots to execute.

To remove the di�culty arising from having fractional �-
values or, equivalently, having dissimilar latencies for “L”-
and “C”-instructions (and also in order to simplify the con-
struction of the ILP problem formulation, at a later stage),
we introduce a transformation of the kernel instruction string
as follows:

Assume that a single streaming multiprocessor includes U

units of some kind. We know [8] that in NVIDIA Fermi and
its ancestors (GT200, G80) the number U is a power of 2,
U  S, and SmodU = 0. Hence corresponding �

U

= U

S

=
1
n

, where n 2 N. Multiplying both sides of the equation by
n, we get

n�

U

= 1

We can transform the instruction string for our kernel by
replacing each U-instruction with n “U”s (each one corre-
sponding to each sub-warp of S

n

threads) and additionally
assuming that �

U

= 1 (the transformation is equivalent be-
cause n sub-warps of a warp, execute the U-instruction in
mutual exclusion [1]). For our example of a streaming multi-
processor of compute capability 2.0, where L = 16, C = 32,
S = 32, �

L

= 1
2 , �C

= 1, the instruction string “LC” will
be transformed to “LLC”. (In other words, the original “L”-
instruction is replaced by 2 consecutive“L”-instructions) and
the value of �

L

will be changed to �

L

= 1 (Figure 1).

LC ) LLC
�

L

= 1
2 �

L

= 1

Figure 1: Transformation of the kernel instruction

string

4. PESSIMISTIC MAKESPAN DERIVATION
In this section we introduce an approach with very low com-
putational complexity for deriving an upper bound on the
makespan of a group of threads executing on a streaming
multiprocessor. This approach is pessimistic but its output
may serve as input to other, less pessimistic, derivations (as
will later show).

The pessimistic derivation formulated in this section is based
on the fact that a streaming multiprocessor is used most inef-
ficiently when, within a given time slot, all warps contend for
the same type of computational unit. In that scenario, the
computational units of other types are “wasted” (i.e. cannot
be used for “latency hiding”) because they cannot be used to
advance any warp in computation (during that time slot).

This can be illustrated by the following example: 128 threads
(in 4 warps of 32) all execute the same kernel (with in-
struction string “LLC”) on a single streaming multiprocess-
sor. Figure 2 presents one possible schedule (which is work-
conserving). Note that during the first five time slots (Fig-
ure 2), the multiprocessor has a throughput of only one in-



Time Slot 1 2 3 4 5 6 7 8 9

Warp 1 L L C
Warp 2 L L C
Warp 3 L L C
Warp 4 L L C

Figure 2: Possible schedule (�
L

= �

C

= 1)

struction per warp per slot, because initially all warps need
to perform two consecutive load/store instructions and the
CUDA cores are of no use to any of them (hence remain
idle).

Accordingly, our pessimistic makespan derivation assumes
that for every instruction of a given warp, all other warps
are also competing for the same computational unit, at the
time of its issue. In order to enforce this (very pessimistic)
assumption, we no longer consider the actual kernel instruc-
tion string but rather just the number of instructions of a
given type in that string.

Assume that the kernel instruction string ↵ has length I and
that there are two types of computational units: load/store
and CUDA (represented by“L”and“C”in the string). Then,
I

L

and I

C

is the number of “L”s and “C”s in the kernel
instruction string (i.e. I

L

+ I

C

= I). From the original
kernel instruction string, we derive two strings: one string
↵

L

consisting exclusively of“L”s (I
L

in count) and one string
↵

C

consisting exclusively of“C”s (I
C

in count). In equations:

↵

L

= {L L . . . L| {z }
IL “L”s

} (3)

↵

C

= {C C . . . C| {z }
IC “C”s

} (4)

The pessimistic worst-case makespan is then derived as

T = T

L

+ T

C

(5)

where T

L

is the worst-case makespan for a group of hypo-
thetical W warps executing ↵

L

as kernel (and likewise for
T

C

and ↵

C

). In turn, T
L

and T

C

are derived as:

T

L

=

⇠
W

�

L

⇡
I

L

(6)

T

C

=

⇠
W

�

C

⇡
I

C

(7)

5. ILP DERIVATION
In this section we present the formulation of the worst-case
makespan derivation problem as a binary Integer Linear Pro-
gram (ILP). The solution of the ILP instance provides the
exact (subject to our simplyfying assumption) worst-case
makespan. In order to generate the ILP instance from the
problem instance, we also employ the pessimistic makespan
derivation described in the previous section.

Assume that the kernel (known beforehand) consists of I

instructions. We can present the sequence of the instructions
using binary constants with index i = 1..I.

IL

i

=

(
1 if instruction i is for a load/store unit;

0 otherwise.

(8)

IC

i

=

(
1 if instruction i is for a CUDA core;

0 otherwise.

(9)

8i IL

i

+ IC

i

= 1 (10)

It is obvious that the schedule for which the worst-case (i.e.
longest) makespan is observed can be no longer than T time
slots, where T is the makespan estimate (5) computed un-
der the simple pessimistic approach described earlier in Sec-
tion 4.

To describe the schedule of W warps over T time slots, we
introduce the following binary variables, specifying the usage
of the resources of the streaming multiprocessor:

LS

w,i,t

=

8
<

:

1 if warp w performs instruction i on
load/store unit at time slot t ;

0 otherwise.

CC

w,i,t

=

8
<

:

1 if warp w performs instruction i on
CUDA core at time slot t ;

0 otherwise.

where indexes w = 1..W and t = 1..T stand for warps
and time slots respectively. Note that 8w, i, t, it holds that
LS

w,i,t

and CC

w,i,t

cannot both be non-zero (because any
instruction can only use a specific type of computational
unit).

With the help of these variables, the formulation of the
ILP is presented as follows: in subsection 5.1 we derive
the objective function, which corresponds to the worst-case
makespan; subsection 5.2 formulates capacity constraints on
the computational resources of the single streaming multi-
processor; in subsection 5.3, we state precedence constraints
for the instructions of the kernel instruction string; subsec-
tion 5.4 dwells on constructing constraints that guarantee
the work-conserving property of the schedule; subsection 5.5
presents the entire ILP derivation in one place; finally, sub-
section 5.6 addresses tractability issues, related to solving
the optimization problem.

5.1 Objective function
The objective function should be designed in such a way,
to provide the biggest possible makespan when all the con-
straints are satisfied. Relying on the precedence constraints
between instructions, we can notice that the makespan is



maximized i↵ the last instruction of the last warp to com-
plete (whichever that is), is executed as late as possible.
Given that this would be the I

th kernel instruction, the
worst-case makespan is then given by

max
w=1..W,t=1..T

{t⇥ (LS
w,I,t

+ CC

w,I,t

)} (11)

Given that the objective function of our optimization prob-
lem should be linear, we need to add some extra constraints
to present (11) in a proper way. Although, in principle, we
are not interested in which one of the W warps executes the
last instruction in the schedule, specifying that would al-
low us to simplify (11). Without loss of generality, since all
warps are identical, any schedule with worst-case makespan
can be transformed into a schedule where the last complet-
ing warp is the warp W (e.g. via changing indexing of other
warps). We can express this additional requirement using
(W � 1) constraints.

8w = 1..(W � 1)

TX

t=1

(t⇥ (LS
w,I,t

+CC

w,I,t

)) 
TX

t=1

(t⇥ (LS
W,I,t

+CC

W,I,t

))

Therefore (11) could be presented as finding the time slot
when the warp W executes an instruction with the index I.

max
t=1..T

{t⇥ (LS
W,I,t

+ CC

W,I,t

)} (12)

However, there exists only one t

0 2 [1..T ] such that warp
W performs instruction I at time slot t

0. Therefore 8t00 2
[1..T ], t00 6= t

0 : LS

W,I,t

00 = 0 and CC

W,I,t

00 = 0, )
LS

W,I,t

00 + CC

W,I,t

00 = 0. Hence expression (12) can be
rewritten as a linear function of LS

W,I,t

and CC

W,I,t

as
follows:

TX

t=1

(t⇥ (LS
W,I,t

+ CC

W,I,t

)) (13)

This is the objective function in our binary ILP-formulation.

5.2 Capacity constraints
As explained in Section 1, the makespan is dependent on
how internal resources in a streaming multiprocessor (CUDA
cores and load/store units in our case) are shared between
threads. Although streaming multiprocessors of modern
GPUs have many computational units, these are still finite
resources. Additionally, the number of computational units
of each type (e.g. C- and L-units, in our case) is typically dif-
ferent. Such limitations, among others, can be represented
by the following constraints:

An upper bound on the number of load/store instructions
that could be performed within a single time slot t, could be
expressed as:

8t
WX

w=1

IX

i=1

LS

w,i,t

 �

L

(14)

An upper bound on the number of CUDA instructions that
could be performed within a single time slot t is given by:

8t
WX

w=1

IX

i=1

CC

w,i,t

 �

C

(15)

Any warp is able to perform no more than one instruction
at a single time slot:

8w, t

IX

i=1

LS

w,i,t

 1,
IX

i=1

CC

w,i,t

 1 (16)

Any instruction can only be executed on a computational
unit of a specific respective type:

8w, i

TX

t=1

LS

w,i,t

= IL

i

,

TX

t=1

CC

w,i,t

= IC

i

(17)

The constraints expressed by Equation 10 and Equation 17
mean that:
– If (IC

i

= 1) then (8w, t LS

w,i,t

= 0)
– If (IL

i

= 1) then (8w, t CC

w,i,t

= 0)
Additionally Equations 17 and 10 ensure that every instruc-
tion is performed by every warp.

5.3 Precedence constraints
Since the instructions of the kernel are executed in a par-
ticular order by all warps, we have to model the constraints
of precedence between them. For these purposes it is use-
ful to introduce auxiliary (not decision) variable Y

w,i

which
denotes the time slot when warp w executes instruction i.
This new variable facilitates expressing the constraint that
8i = 1..(I � 1) and for every warp, the instruction i + 1
cannot be executed until after the instruction i has been
executed by the same warp:

8w Y

w,1 < Y

w,2 < · · · < Y

w,I�1 < Y

w,I

(18)

Taking into account Equations 17 and 10, one may see that

(Y
w,i

= t) equivalent (
P

t

t

0=1(LSw,i,t

0 + CC

w,i,t

0) = 1)

That could be written as

Y

w,i

=
TX

t=1

(t⇥ (LS
w,i,t

+ CC

w,i,t

)) (19)

By substitution of Equation (19) to (18), we get the following
W ⇥ (I � 1) constraints:

8w, i = 1..(I � 1)



TX

t=1

(t⇥(LS
w,i,t

+CC

w,i,t

)) <
TX

t=1

(t⇥(LS
w,i+1,t+CC

w,i+1,t))

5.4 Work-conserving constraints
One of our assumptions, stated in Section 2, was about the
scheduling policy implemented in GPU. Namely, that it is
work-conserving. This means that whenever there are warps
available and free computational resources on the streaming
multiprocessor, the scheduler must select some warp for ex-
ecution. Next, we introduce some additional variables, for
the purpose of modelling the work-conserving property of
the schedule via ILP constraints.

Let us assume that instruction i is for a load/store unit
(IL

i

= 1, IC
i

= 0). Then LSREADY

w,i,t

= 1 i↵ warp w

was ready to execute instruction i at time slot t (i.e. it had
already executed instructions 1..(i � 1)) but did not. Simi-
larly with variable CCREADY

w,i,t

if IL
i

= 0 and IC

i

= 1.
In formal notation:

8w, t

LSREADY

w,1,t =

⇢
1 if (IL1 = 1) ^ (t < Y

w,1) ;
0 otherwise.

CCREADY

w,1,t =

⇢
1 if (IC1 = 1) ^ (t < Y

w,1) ;
0 otherwise.

8w, i = 2..I, t

LSREADY

w,i,t

=

8
<

:

1 if (Y
w,i�1 < t) ^ (IL

i

= 1)
^(t < Y

w,i

) ;
0 otherwise.

CCREADY

w,i,t

=

8
<

:

1 if (Y
w,i�1 < t) ^ (IC

i

= 1)
^(t < Y

w,i

) ;
0 otherwise.

A schedule is not work-conserving i↵ there exists some warp
w that is ready to perform some instruction i at time slot t,
but stays idle, even if there were spare computational units
(of the type that instruction i runs on). This scenario could
be expressed as follows:

9w, t ((
IX

i=1

LSREADY

w,i,t

6= 0)^

(
WX

w

0=1

IX

i=1

LS

w

0
,i,t

< �

L

))_

((
IX

i=1

CCREADY

w,i,t

6= 0)^

(
WX

w

0=1

IX

i=1

CC

w

0
,i,t

< �

C

)) (20)

If and only if the expression (20) does not hold (or equiva-
lently, its logical complement holds), the schedule is work-
conserving. The logical complement to (20) can be derived
via application of De Morgan’s laws and is the following:

8w, t ((
IX

i=1

LSREADY

w,i,t

= 0)_

(
WX

w

0=1

IX

i=1

LS

w

0
,i,t

= �

L

))^

((
IX

i=1

CCREADY

w,i,t

= 0)_

(
WX

w

0=1

IX

i=1

CC

w

0
,i,t

= �

C

)) (21)

In a system of ILP-constraints, expression (21) can be split
into two constraints that make the following boolean expres-
sions true:

8w, t

((
IX

i=1

LSREADY

w,i,t

= 0) _ (
WX

w

0=1

IX

i=1

LS

w

0
,i,t

= �

L

)) (22)

and

8w, t

((
IX

i=1

CCREADY

w,i,t

= 0) _ (
WX

w

0=1

IX

i=1

CC

w

0
,i,t

= �

C

))

(23)

Let us consider constraint (22). The equality

IX

i=1

LSREADY

w,i,t

= 0 (24)

holds i↵ 8i LSREADY

w,i,t

= 0.

From the definition, we know that LSREADY

w,i,t

= 0 i↵
following boolean expressions are true:
¬((IL1 = 1) ^ (t < Y

w,1)) = ¬(IL1 = 1) _ ¬(t < Y

w,1) =

(IL1 = 0) _ (t � Y

w,1) (25)

for LSREADY

w,1,t = 0;

¬((Y
w,i�1 < t) ^ (IL

i

= 1) ^ (t < Y

w,i

)) =
¬(Y

w,i�1 < t) _ ¬(IL
i

= 1) _ ¬(t < Y

w,i

) =

(Y
w,i�1 � t) _ (IL

i

= 0) _ (t � Y

w,i

) (26)

for LSREADY

w,i,t

= 0 8i = 2..I.

Taking into account that

tX

t

0=1

(LS
w,i,t

0 + CC

w,i,t

0) =

⇢
1 if t � Y

w,i

;
0 otherwise.

and
TX

t

0=t

(LS
w,i,t

0 + CC

w,i,t

0) =

⇢
1 if Y

w,i

� t;
0 otherwise.



we can rewrite expressions (25) and (26) as

TL

w,1,t = (IL1 = 0) _ (
tX

t

0=1

(LS
w,1,t0 + CC

w,1,t0) = 1)

and

TL

w,i,t

=(
TX

t

0=t

(LS
w,i�1,t0 + CC

w,i�1,t0) = 1) _ (IL
i

= 0)_

(
tX

t

0=1

(LS
w,i,t

0 + CC

w,i,t

0) = 1) 8i = 2..I

respectively (using auxiliary binary variables TL
w,i,t

).

In such way the equality (24) could be rewritten as follows:

TL

w,1,t ^ TL

w,2,t ^ · · · ^ TL

w,I,t

(27)

To express
P

W

w

0=1

P
I

i=1 LSw

0
,i,t

= �

L

, which is the right
hand side part of (22), let us denote

E

t

=

⇢
1 if

P
W

w

0=1

P
I

i=1 LSw

0
,i,t

= �

L

;
0 otherwise.

An equivalent (but more convenient) definition of the above
binary decision variable is:

E

t

= 1� sign(�
L

�
WX

w

0=1

IX

i=1

LS

w

0
,i,t

) (28)

Subject to (27) and E

t

definition, (22) could be rewritten
as:

(TL
w,1,t ^ TL

w,2,t ^ · · · ^ TL

w,I,t

) _ E

t

(29)

or equivalently

(TL
w,1,t _E

t

) ^ (TL
w,2,t _E

t

) ^ · · · ^ (TL
w,I,t

_E

t

) (30)

According to Theorem 1 and Theorem 2 (see in Appendix
in [2]), expression (29) could be represented by a single rel-
atively long linear constraint:

8w, t

1
2
((�I � 1

I

+
1
I

IX

i=1

TL

w,i,t

) + E

t

) 

(TL
w,1,t ^ TL

w,2,t ^ · · · ^ TL

w,I,t

) _ E

t



1
I

IX

i=1

TL

w,i,t

+ E

t

(31)

while expression (30) could be represented by I relatively
short linear constraints:

8w, i, t

1
2
(TL

w,i,t

+E

t

)  TL

w,i,t

_E
t

 TL

w,i,t

+E

t

(32)

Applying a similar approach to (23), using extra binary vari-
ables

TC

w,1,t = (IC1 = 0) _ (
tX

t

0=1

(LS
w,1,t0 + CC

w,1,t0) = 1)

TC

w,i,t

=(
TX

t

0=t

(LS
w,i�1,t0 + CC

w,i�1,t0) = 1) _ (IC
i

= 0)_

(
tX

t

0=1

(LS
w,i,t

0 + CC

w,i,t

0) = 1) 8i = 2..I

and binary decision variable

G

t

= 1� sign(�
C

�
WX

w

0=1

IX

i=1

CC

w

0
,i,t

) (33)

we can present (23) by a single long constraint:

8w, t

1
2
((�I � 1

I

+
1
I

IX

i=1

TC

w,i,t

) +G

t

) 

(TC
w,1,t ^ TC

w,2,t ^ · · · ^ TC

w,I,t

) _G

t



1
I

IX

i=1

TC

w,i,t

+G

t

(34)

or by I short linear constraints:

8w, i, t

1
2
(TC

w,i,t

+G

t

)  TC

w,i,t

_G

t

 TC

w,i,t

+G

t

(35)

At this point, let us focus on how to model decision vari-
ables E

t

and G

t

(which have non-linear definitions) as lin-
ear expressions. By inspecting Equations (28) and (33), we
can notice that function sign() takes only non-negative ar-
guments there. In the case of E

t

, it is because 8t �

L

�P
W

w

0=1

P
I

i=1 LSw

0
,i,t

In particular:

if �
L

=
P

W

w

0=1

P
I

i=1 LSw

0
,i,t

, then

sign(�
L

�
P

W

w

0=1

P
I

i=1 LSw

0
,i,t

) = sign(0) = 0;

if �
L

>

P
W

w

0=1

P
I

i=1 LSw

0
,i,t

, then

sign(�
L

�
P

W

w

0=1

P
I

i=1 LSw

0
,i,t

) = 1.

Since there is no need to “implement” sign() for negative
arguments, we can model it as follows. Let us denote SL

t

=
sign(�

L

�
P

W

w

0=1

P
I

i=1 LSw

0
,i,t

). The constraint

SL

t

 �

L

�
WX

w

0=1

IX

i=1

LS

w

0
,i,t

(36)

states the first basic property of the function (that its value
cannot be greater than its argument). The second funda-
mental property (that the value of the function denotes the
sign of the argument) is stated by the following constraint:

�

L

�
WX

w

0=1

IX

i=1

LS

w

0
,i,t

 SL

t

⇥ (�
L

�
WX

w

0=1

IX

i=1

LS

w

0
,i,t

)

Without loss of correctness, we can rewrite this as

�

L

�
WX

w

0=1

IX

i=1

LS

w

0
,i,t

 SL

t

⇥ �

L

(37)

reducing computational complexity for the software imple-
mentation.



maximize
TX

t=1

(t⇥ (LS
W,I,t

+ CC

W,I,t

)) subject to

iterated variables expression for constraint number of constraints

8t
WX

w=1

IX

i=1

LS

w,i,t

 �

L

T

8t
WX

w=1

IX

i=1

CC

w,i,t

 �

C

T

8w = 1..(W � 1)
TX

t=1

(t⇥ (LS
w,I,t

+ CC

w,I,t

)) 
TX

t=1

(t⇥ (LS
W,I,t

+ CC

W,I,t

)) W � 1

8w, t

IX

i=1

LS

w,i,t

 1 W ⇥ T

8w, t

IX

i=1

CC

w,i,t

 1 W ⇥ T

8w, i

TX

t=1

LS

w,i,t

= IL

i

W ⇥ I

8w, i

TX

t=1

CC

w,i,t

= IC

i

W ⇥ I

8w, i = 1..(I � 1)
TX

t=1

(t⇥ (LS
w,i,t

+ CC

w,i,t

)) <
TX

t=1

(t⇥ (LS
w,i+1,t + CC

w,i+1,t)) W ⇥ (I � 1)

8t E

t

� 1� �

L

+
WX

w

0=1

IX

i=1

LS

w

0
,i,t

T

8t E

t

⇥ �

L


WX

w

0=1

IX

i=1

LS

w

0
,i,t

T

8w, i, t

1
2 (TLw,i,t

+ E

t

)  TL

w,i,t

_ E

t

 TL

w,i,t

+ E

t

W ⇥ I ⇥ T

8t G

t

� 1� �

C

+
P

W

w

0=1

P
I

i=1 CC

w

0
,i,t

T

8t G

t

⇥ �

C


P

W

w

0=1

P
I

i=1 CC

w

0
,i,t

T

8w, i, t

1
2 (TCw,i,t

+G

t

)  TC

w,i,t

_G

t

 TC

w,i,t

+G

t

W ⇥ I ⇥ T

Figure 3: The complete ILP formulation (using short constraints)

According to Equation (28) and the definition of SL

t

, we
can compute E

t

as (1 � SL

t

), but it will be more e�cient
to model E

t

directly (using the previous derivation of SL
t

).
After multiplying (36) by (�1) and adding 1 to both its sides
we get

1� SL

t

� 1� (�
L

�
WX

w

0=1

IX

i=1

LS

w

0
,i,t

)

This could be rewritten as follows:

E

t

� 1� �

L

+
WX

w

0=1

IX

i=1

LS

w

0
,i,t

(38)

Multiplying (37) by (�1) we get

�(�
L

�
WX

w

0=1

IX

i=1

LS

w

0
,i,t

) � (1� SL

t

)⇥ �

L

� �

L

One may then reduce it to

E

t

⇥ �

L


WX

w

0=1

IX

i=1

LS

w

0
,i,t

(39)

By analogy, for linear constraints (38) and (39) for G
t

:

G

t

� 1� �

C

+
WX

w

0=1

IX

i=1

CC

w

0
,i,t

G

t

⇥ �

C


WX

w

0=1

IX

i=1

CC

w

0
,i,t

5.5 Summary of the ILP formulation
Let us now present the entire formulation of the binary ILP
in one place (Figure 3) (opting for using as short constraints
as possible) .

5.6 Resolving the issue of tractability
Integer programming is in common use in various fields [12]
and corresponding problems are probably, the most widely-
used examples of NP-hard computational problems. Even
though bounded ILPs (binary in our case) are, usually, more
tractable than those, which allow decision variables to take
values from infinite domains, it is obvious that even for rela-
tively small number of warps (W ), computing the makespan
with the ILP formulation presented above will take too much



time. However, we can find a minimally pessimistic upper
bound for the makespan at only a fraction of the time as
follows:

Let T

(W ) denote the worst-case makespan of W warps (on
which we want to derive an upper bound) and T

(x) denote
the corresponding worst-case makespan for x warps (with
x ⌧ W, x 2 N). By choosing a small enough value for
x such that the exact value for T

(x) can be tractably com-
puted, according to our ILP derivation, then T

(W ) can be
safely approximated by

T

(W ) =
x

min
y=1

T

(W,y) (40)

where

T

(W,y) =

⇠
W

y

⇡
⇥ T

(y)
, y 2 N (41)

We compute the upper bound on T

(W ) using Equation 40
and not as T

(W,x) because, although T

(W,x) typically de-
creases with increasing x, sometimes there are small in-
creases (especially for very small x). The estimate for T (W )

given by Equation 40 improves for higher values of x, at the
cost of rapidly increasing computation times. However, ex-
perimental evidence (see the next section) shows diminishing
returns, even past small values of x. In other words, the esti-
mate rapidly converges and even for small x, the pessimism
is minimal.

6. EXPERIMENTS
As shown in Section 5 the makespan depends on the num-
ber of warps, the kernel instruction string and the hardware
(namely, the number of computational units of each type and
the warp size). We implemented the techniques introduced
in this paper in a cross-platform software application that
reads the problem instance from a configuration file (Fig-
ure 4), constructs the binary ILP-formulation and launches
the proprietary ILP-solver (see [6]). After getting the solu-
tion, it presents the worst-case makespan and corresponding
schedule (like the one in Figure 2) or alternatively computes
an estimate using Equation (41) (if the user does not want
to wait too long).

In Subsection 5.4 we stated that there are two alternatives
for expressing the work-conserving property: either (i) us-
ing W ⇥ I ⇥ T shorter constraints (32), (35) or (ii) using
W ⇥ T longer constraints (31), (34). We implemented both
options and compared their timings. One such comparison
is presented in Figure 5. In our experiments, the first option
generally gave shorter computation times.

We also explored how the tractable approximation for T (W )

(presented in Subsection 5.6) improves/converges with in-
creased values of the parameter x. Figure 6 and Figure 7
present the results of two such experiments. In general, we
observed that the estimate T (W ) converges very fast with in-
creasing x and afterwards the improvement to the estimate is

Figure 4: Typical configuration file and the workflow

of the application.

Figure 5: Computation time for solving ILP-

problem with short and long constraints (�

L

= �

C

=
1, “LLCLL”)

Figure 6: Convergence of T

(W )
with increasing

x (W=600, �

L

=�

C

=1, “LLCLL”). The horizontal

dashed line corresponds to the pessimistic estimate

T (Section 4).



Figure 7: Growth of computation time and conver-

gence of T

(W,x)
with increasing x (W = 420, �

L

= 1
2 ,

�

C

= 1, “LCLCL”).

minor (diminishing returns). Our interpretation is that this
is because the approximation is good even for small values
of x. Therefore, although the computation time increases
very rapidly with increasing x (Figure 7), one may obtain
(i.e. using small x) estimates that are both quite accurate
and tractably derivable.

7. CONCLUSION AND FUTURE WORK
In this paper we introduce techniques for finding the worst-
case makespan for a group of GPU threads: one approach
which is pessimistic but has very low computational com-
plexity and another approach (which builds on the former
one) which employes Integer Linear Programming for an ex-
act derivation (subject to some simplifying assumptions).
Since the exact approach is computationally intractable for
a large number of warps, we also introduce a simple way of
obtaining, at only a fraction of the time, a safe estimate that
is only marginally pessimistic.

In this work, we address a single streaming multiprocessor,
based on the NVIDIA Fermi hardware architecture. How-
ever, since a GPU contains many streaming multiprocessors,
as a next step, we intend to extend our approach to address
thread execution over multiple streaming multiprocessors.
Doing so will require faithfully modelling how warps are
dispatched/partitioned among streaming multiprocessors –
something which, to the best of our understanding, is either
not fully documented at the moment or subject to change
between revisions. Another direction for our future work,
will be to relax the assumption about the absence of cache
misses.
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Appendix
Lemma 1. 8i 1  i  I such that i, I 2 N; I � 2 and

x

i

, X 2 {0, 1}:

If inequality

1
I

IX

i=1

x

i

 X 
IX

i=1

x

i

(42)

is valid, then

X = _I

i=1xi

Proof. Let us consider two complementary cases:

Case 1: 8i 1  i  I i 2 N x

i

= 0 (43)

Case 2: 9j 1  j  I j 2 N x

j

= 1 (44)

In Case 1, from (43) it follows that
P

I

i=1 xi

= 0, which in

turn means that 1
I

P
I

i=1 xi

= 0. Then according to (42), 0 
X  0 which means that X = 0. But from the assumption
of the case, it also holds that _I

i=1xi

= 0 – therefore X =
_I

i=1xi

.

In Case 2, from (44) it follows that
P

I

i=1 xi

� 1 and there-

fore 1
I

P
I

i=1 xi

> 0. Combining this with the (42) and the
fact that X 2 {0, 1}, we obtain that X = 1. Additionally,
as _I

i=1 x

i

= 1, therefore, also in this case, it holds that
X = _I

i=1xi

.

Therefore, in all cases, X = _I

i=1xi

.

Lemma 2. 8i 1  i  I such that i, I 2 N; I � 2 and
x

i

, X 2 {0, 1}

If

X = _I

i=1xi

then inequality (42)

1
I

IX

i=1

x

i

 X 
IX

i=1

x

i

is valid.

Proof. Again, we explore two complementary cases:

Case 1: 8i 1  i  I i 2 N x

i

= 0 (45)

Case 2: 9j 1  j  I j 2 N x

j

= 1 (46)

In Case 1, from (45) follows that
P

I

i=1 xi

= 0 and conse-

quently 1
I

P
I

i=1 xi

= 0. According to definition of X and
(45), X = 0. Therefore inequality (42) is valid in Case 1.

In Case 2, from (46) follows that
P

I

i=1 xi

� 1 and 1
I

P
I

i=1 xi

>

0. According to definition of X and (46), X = 1. Therefore
inequality (42) is valid for Case 2 as well.

Hence, in all cases, inequality (42) holds.

Theorem 1. 8i 1  i  I such that i, I 2 N; I � 2 and
x

i

, X 2 {0, 1}:

An inequality (42)

1
I

IX

i=1

x

i

 X 
IX

i=1

x

i

is equivalent to the equality X = _I

i=1xi

Proof. Follows from Lemma 1 and Lemma 2.

Lemma 3. 8i 1  i  I such that i, I 2 N; I � 2 and
x

i

, X 2 {0, 1}

If inequality

�I � 1
I

+
1
I

IX

i=1

x

i

 X  1
I

IX

i=1

x

i

(47)

is valid, then

X = ^I

i=1xi

Proof. Let us consider two complementary cases:

Case 1: 8i 1  i  I i 2 N x

i

= 1 (48)

Case 2: 9j 1  j  I j 2 N x

j

= 0 (49)

In Case 1, from (48) it follows that
P

I

i=1 xi

= I and con-

sequently 1
I

P
I

i=1 xi

= 1, � I�1
I

+ 1
I

P
I

i=1 xi

= 1
I

> 0. Via
substitution to (47) we then obtain 0 < X  1, which means
that X = 1. Additionally, it holds that ^I

i=1xi

= 1 – there-
fore X = ^I

i=1xi

.

In Case 2, from (49) it follows that
P

I

i=1 xi

< I and con-

sequently 0  1
I

P
I

i=1 xi

< 1, � I�1
I

+ 1
I

P
I

i=1 xi

 0. Via
substitution to (47) we obtain 0  X < 1, which means that
X = 0. Additionally it holds that ^I

i=1xi

= 0 – therefore
X = ^I

i=1xi

.

Therefore, in all cases, X = ^I

i=1xi

.

Lemma 4. 8i 1  i  I such that i, I 2 N; I � 2 and
x

i

, X 2 {0, 1}

If

X = ^I

i=1xi

then inequality (47)

�I � 1
I

+
1
I

IX

i=1

x

i

 X  1
I

IX

i=1

x

i

is valid.

Proof. Let us consider two complementary cases:

Case 1: 8i 1  i  I i 2 N x

i

= 1 (50)



Case 2: 9j 1  j  I j 2 N x

j

= 0 (51)

In Case 1, from (50) it follows thatX = 1, � I�1
I

+ 1
I

P
I

i=1 xi

=
1
I

< 1, and 1
I

P
I

i=1 xi

= 1. Therefore (47) in this case is
valid.

In Case 2, from (51) it follows thatX = 0, � I�1
I

+ 1
I

P
I

i=1 xi


0, and 0  1

I

P
I

i=1 xi

 1. Therefore (47) is valid for this
case as well.

Therefore inequality (47) holds in all cases.

Theorem 2. 8i 1  i  I such that i, I 2 N; I � 2 and
x

i

, X 2 {0, 1}

An inequality (47)

�I � 1
I

+
1
I

IX

i=1

x

i

 X  1
I

IX

i=1

x

i

is equivalent to the equality X = ^I

i=1xi

Proof. Follows from Lemma 3 and Lemma 4.


