IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

Managing contention of software
transactional memory in real-time systems

Antonio Barros
Luis Miguel Pinho

HURRAY-TR-101102
Version:
Date: 11-30-2010

Technical Report HURRAY-TR-101102 Managing contention of software transactional memory in
real-time systems

Managing contention of software transactional memory in real-time systems

Antonio Barros, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail:

http://www.hurray.isep.ipp.pt

Abstract

The foreseen evolution of chip architectures to higher number of, heterogeneous, cores, with non-uniform memory and
non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as an alternative to
lock-based synchronisation. However, STM relies on the possibility of aborting conflicting transactions to maintain data
consistency, which impacts on the responsiveness and timing guarantees required by real-time systems. In these
systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are
upper- bounded and task sets can be feasibly scheduled. In this paper we defend the role of the transaction contention
manager to reduce the number of transaction retries and to help the real-time scheduler assuring schedulability. For such
purpose, the contention management policy should be aware of on-line scheduling information.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Managing contention of software transactional memory in real-time systems

Anténio Barros and Luis Miguel Pinho
CISTER Research Center, Polytechnic Institute of Porto, Portugal
{amb,Imp} @isep.ipp.pt

Abstract—The foreseen evolution of chip architectures to
higher number of, heterogeneous, cores, with non-uniform
memory and non-coherent caches, brings renewed attention
to the use of Software Transactional Memory (STM) as
an alternative to lock-based synchronisation. However, STM
relies on the possibility of aborting conflicting transactions to
maintain data consistency, which impacts on the responsiveness
and timing guarantees required by real-time systems. In these
systems, contention delays must be (efficiently) limited so that
the response times of tasks executing transactions are upper-
bounded and task sets can be feasibly scheduled. In this paper
we defend the role of the transaction contention manager
to reduce the number of transaction retries and to help the
real-time scheduler assuring schedulability. For such purpose,
the contention management policy should be aware of on-line
scheduling information.

I. INTRODUCTION

Multicore processors bring new challenges to real-time
systems (RTS), pushing research for alternative solutions
more suited to the parallel execution capabilities provided
by the new architectures. Although not yet critical, the
tendency for even larger number of cores will further impact
the way systems are developed'. In uniprocessors, lock-
based solutions became commonplace as the means to avoid
race conditions, despite the well-known pitfalls, such as
complexity, lack of composability [2] or (bounded) priority
inversion. In multiprocessor systems these solutions intro-
duce additional drawbacks. Concurrency is impaired as locks
serialise non-conflicting operations (which could actually be
in parallel) on disjoint parts of a shared resource, and may
cause cascading or convoying blocks [3], causing a severe
impact on the system throughput.

An alternative explored in highly-parallel systems is the
non-blocking object. There are no locks, so a task will not
block when accessing resources. Conflicts are managed by
an underlying mechanism that maintains consistency of the
shared object. On multiprocessors, this solution presents
strong conceptual advantages [4] and has been shown in
several cases to perform better than lock-based ones [5],
[6]. Priority inversion and deadlocks are eliminated because
accesses to the object proceed in parallel and concurrent
accesses can be resolved in favour of higher-priority tasks.
The convoy effect is eliminated because no task will block

'E.g., the experimental Intel Single-chip Cloud Computer (SCC) [1]
carries 48 cores, has message-based interconnection and no cache coherency

waiting for a task that is failing or prevented from executing.
These advantages are impaired by the complexity to main-
tain the consistency of the shared object. This complexity
depends on the progress guarantees provided [7]. Wait-free
assures that every call will finish in a finite number of steps
independently on the pace other tasks execute, so all tasks
are assured to progress. Lock-free relaxes this condition, so
that the system is able to progress, although some tasks may
starve. The most relaxed guarantee of progress is given by
obstruction-free, which assures that one task will eventually
progress if executes isolated from other concurrent tasks.
Still, the consistency of the object may not depend on a
single operation but on a composition of operations, eventu-
ally involving other shared objects, as if executed atomically
in a fransaction in shared memory space: transactional
memory [8]. Shavit and Touitou [9] later on adapted the
concept, implementing all operations totally on software: the
Software Transactional Memory (STM). This first approach
supported static transactions, which required transactions
and memory usage to be defined in advance. More recent
implementations of STM (e.g. [10], [11]) provide dynamical
transactions (a transaction can decide which addresses to
access based on values read at run-time) and dynamical
memory usage, with diverse synchronisation mechanisms.
A transaction is executed sequentially in isolation, re-
gardless of other parallel transactions and it must complete,
either succeeding (commit) or failing (abort). Consistency
is maintained as transactions operate on private copies of
public data. Before completing, all accessed locations are
checked for conflicting updates that may have occurred. If
no conflicts are detected then the data is consistent and
updates become effective. When conflicts are detected, a
contention policy is applied in order to allow, at least,
one transaction to successfully commit. This policy dictates
how contending transactions should behave to provide the
progress guarantees and transaction prioritisation. Typically,
when a transaction detects another transaction accessing
common memory addresses, it may choose to abort the
contender or to give it the opportunity to conclude, depend-
ing on particular criteria. The contention policy must avoid
livelock, so a pair of conflicting transactions should not be
able to indefinitely abort each other. The STM concept is
more relevant in multiprocessors, and it becomes an (non-
exclusive) alternative to lock-based synchronisation when a
high-degree of parallelism with low contention is available.

Nevertheless, in RTS jobs have to execute considering their
deadlines, so the contention manager must be responsible to
bound the delay that any transaction might suffer, to avoid
deadlines being missed. Furthermore, although STM may
improve responsiveness in low-contention situations, we
still need to analise worst-case response times. Contention
management techniques that have shown to improve system
progress (such as adaptive exponential back-off) may not
suit the timing requirements of RTS.

II. RELATED WORK

Although the concept of STM is not new, only a few
works dealt with it in the context of real-time systems. In
[12], a data access mechanism is proposed for uniprocessor
platforms — the Preemptible Atomic Regions — together with
an analysis to bound the response time of jobs. An atomic
region is guaranteed to be free from other tasks’ interference
because any transaction pre-empted by a higher-priority task
is immediately aborted, and its effects undone. This policy
implies that no concurrent transactions are allowed in the
system, and it is impractical in multiprocessor systems.

In [13], and based on previous work on lock-free objects,
scheduling conditions are established for lock-free transac-
tions under EDF and DM; however, this work is only valid
for uniprocessor systems. For the case of multiprocessors, a
different approach to support transactions is provided [14]:
a wait-free mechanism relying on a helping scheme, which
provides an upper bound on the transaction execution time.
This approach is nevertheless pessimistic, since an arriving
transaction must help pending transactions before being able
to proceed, even if no conflicts would occur; additionally,
the upper bound depends on the number of processors so it
will not scale with increasing number of cores.

In [15], an algorithm is described to calculate an upper-
bound on the worst-case response time of tasks on a multi-
processor system using STM. Tasks are scheduled with the
Pfair approach. Each task can have multiple atomic regions,
and concurrent transactions can interfere with each other.
Conflicts are detected and solved during the commit phase.
This analysis is limited to small atomic regions, assuming
that any transaction will execute at most in two quanta.

In [16], real-time scheduling of concurrent transactions is
proposed for soft real-time. In the proposed model, trans-
actions are characterised by scheduling parameters, which
are taken into account whenever solving a detected conflict
between transactions. However, the policy to serialise trans-
actions is based on the absolute deadlines of the contending
transactions, which can lead to missed deadlines.

Finally, [17] proposes hardware transactional memory. It
assumes each task contains one single atomic region, and
conflicts are detected and solved during the commit phase.
The analysis demonstrates that the jobs of a task will meet
their deadlines as long as the transactions of two consecutive
jobs are separated by the resolve time, the worst-case time

a transaction will take to successfully commit. Nevertheless,
the paper does not describe any method to solve transaction
conflicts based on on-line scheduling data.

These works provide already some perspectives on how
to deal with STM in real-time systems. However, it is clear
that there are many issues pending, and further research is
necessary to take advantage of future parallel architectures.
Therefore, this paper proposes new approaches to manage
contention between conflicting transactions, using on-line
information, with the purpose of reducing the overall number
of retries, increasing responsiveness and reducing wasted
processor utilization, while assuring deadlines are met.

III. MANAGING CONTENTION IN THE REAL-TIME
DOMAIN

A. System model

The system model assumes that jobs are released by
a set of periodic tasks 7 = {7y,...,7,} and scheduled
on m identical processors. Each task 7; is characterised
by (T;,C;); T; is the period of job arrivals and C; the
worst-case execution time (tasks have implicit deadlines).
The jth job of task 7;, hence forward denominated .J;;,
is characterised by (7;;,d;;), being r;; the time the job is
released and d;; the absolute deadline of the job, defined as

dij = ri; + T5. (D

In this initial analysis, each job is assumed to perform at
most one transaction, which may be aborted multiple times;
every time it is aborted, it restarts immediately. A transaction
is characterised by W;, its maximum execution time when no
contention occurs. A transaction can fail during the commit
phase, if it finds conflicting data accesses. Also, STM objects
are assumed to be globally accessible to tasks, independently
of the processor in which transactions are executing, and
multiple simultaneous transactions are supported.

In uniprocessor lock-based solutions, the blocking delay
is the time taken since a job requests the lock until the
access is granted; during this time interval, the resource is
granted to lower-priority jobs; once the lock is acquired,
the job is guaranteed to complete the critical section. In
such cases, blocking delays are bounded by the number
of lower-priority jobs that block the execution of a critical
section [18], [19]. When data is shared using STM, delay
has a totally different nature. When a transaction starts,
it may successfully complete if no data access conflicts
occur, finishing with no delay. But if a conflict occurs, the
transaction may be aborted and will have to restart from the
beginning. If the transaction is aborted multiple times, the
delay will grow linearly with the number of unsuccessful
completions. It becomes obvious that bounding the delay of
a transaction is equivalent to limiting the number of times
the transaction may be aborted.

The response time of a job is here defined as the time
elapsed since a job arrives until its execution is completed.

Conflicts detected!

A
Higher-priority job 1
Processor 1 v
I

Lower-priority job

Processor 2 -

Figure 1. Lower-priority task aborted by a higher-priority transaction.

For a job release of task 7; that executes a transaction, the
response time RT; depends on the execution time of the
task, the interference time I;; in which the job was pre-
empted by higher-priority tasks and the overhead due to the
n aborted executions of the transaction. The response time
of a job can be defined by

RTj=Ci+Lij+n-W,; @
and to meet deadlines, the response time must be
RT;; < D; 3

From equations (2) and (3) we can conclude that the amount
of times the transaction can be aborted depends on the slack
time available to the job.

B. Managing contention in fixed-priority scheduling

In this analysis, it is assumed that priorities are the same
across processors, thus the following considerations are valid
for both partitioned fixed-priorities scheduling and global
fixed-priorities scheduling.

Since priorities are used to somehow express the urgency,
even if not necessarily the importance, of a task, it is quite
natural to give higher priority to transactions performed by
higher priority jobs. Therefore, any contention manager in a
real-time system should use task priorities to decide which
transaction should proceed, in case of conflicts. Figure 1
represents two jobs executing on two processors, with trans-
actions that access common data objects; in this example it
is assumed that conflicts are detected during the commit
phase. When the lower-priority transaction commits, it fails
in favour of the higher-priority task, resuming immediately
after; when the higher-priority transaction commits, it suc-
ceeds and the lower-priority transaction is aborted; finally
the lower-priority transaction succeeds on the third try.

Considering the priority as the sole factor in resolving a
conflict is simple and fast, but has inconvenient drawbacks.
In the example, the lower-priority job has its response time
increased, as the transaction is retried. If the transaction is
aborted several times due to incessant conflicting higher
priority transactions, then the job might not be able to
complete within the deadline. Another case is when a
higher-priority transaction becomes unsound, lower-priority
transactions will never succeed until the unsound transaction
is aborted, similar to the convoying effect. Transaction
starvation can be avoided if additional on-line information
is used by the contention manager, which is explored in the
next two algorithms.

1. if this.priority > contender.priority ~ or
this.can_abort() = FALSE then

2: abort contender
3: else
4: abort this
5. end if
Figure 2. Deciding algorithm that avoids starvation.
1: if this.can_abort() = FALSE then
2: abort contender
3: else
4: if contender.can_abort() = FALSE then
5: abort this
6: else
7: if this.retries < contender.retries and
this.priority < contender.priority then
8: abort this
9: else
10: abort contender
11: end if
12: end if
13: end if
Figure 3. Deciding algorithm aware of number of retries.

1) An algorithm that avoids starvation: The algorithm in
Figure 2 is executed when a transaction is in the commit
phase, and decides the conflict in favour of the higher-
priority transaction, except if the committing transaction has
lower-priority but the analysis of its slack time performed
by can_abort() function reveals that the job will miss the
deadline if the transaction is aborted. The slack time can be
calculated as follows

slack;; = (d;j — clock) — bt)

K2

in which c?* is the remaining execution time required by the
job before initiating the transaction.

Although this algorithm allows one lower-priority trans-
action to be consistently aborted by contending transactions
with higher-priorities, it does impose a limit on the number
of retries, guaranteeing individual job progress.

2) An algorithm aware of retries: Reducing the number
of times a transaction is aborted can be achieved if each
transaction has a counter that is incremented each time the
transaction fails. Knowing the number of failed attempts
allows us to build deciding algorithms that are able to detect
and react on excessively aborted transactions.

The algorithm presented in Figure 3 has three levels of
decision. The first prevents the commiting transaction to be
aborted if it has no slack to repeat. The second does the same
for the contending transaction. The final level combines
priorities and number of retries to decide which transaction
should abort, observing task priorities but simultaneously
favouring a transaction ordering based on the chronological
arrival of commits, allowing lower-priority tasks to abort
higher-priority tasks as long as no deadlines are missed.

1: if this.can_abort() = FALSE or
contender.can_abort() = TRUE then

abort contender
else

abort this

: end if

nhwn

Figure 4. Deciding algorithm that favours committing transaction.

This algorithm distributes the number of transaction aborts
among the tasks, across priorities, avoiding the concentration
of retries in certain tasks and the consequent abnormal
increase of their rates of processor utilisation. An interesting
effect is that short lower-priority transactions will be able
to succeed sooner at the expense of aborting a longer
contending transaction with higher-priority; this approach
eliminates the negative effects of unsound transactions over
lower-priority contenders.

C. Managing contention in EDF-based scheduling

Similar to the previous analysis of STM contention man-
agement on fixed-priorities scheduling, we will consider jobs
are scheduled by the system according to their deadlines, and
the contention manager does not discriminate the processors
in which transactions are being executed. Thus, the job with
the nearest deadline is the most urgent, independently of the
processor it is assigned.

In EDEF, the contention manager can always choose in
favour of the transaction being executed by the job with the
closest deadline. However, under heavy contention, jobs with
relatively far deadlines can have their transactions aborted
several times before succeeding, increasing abnormally their
execution times and, as a consequence, increasing the pro-
cessor utilization. Similar to a job spin-locking, the job ex-
ecuting the repeatedly-failed transaction would not produce
effective work, while not yielding the processor to another
ready job. Additionally, a job with farther deadline but short
slack can miss its deadline if the transaction is aborted
several times.

The algorithm in Figure 4 favours the committing trans-
action, preserving any concluded work, as long as none of
the involved jobs will miss their deadlines.

IV. FUTURE WORK

Software Transactional Memory is the subject of much
research in parallel and distributed systems in recent years.
The concept exploits optimistic operations on data, allowing
disjoint-access parallelism, thus being appealing in mul-
tiprocessor systems. This paper explores the role of the
contention manager to help the real-time scheduler assuring
the schedulability of concurrent task sets. Two algorithms for
fixed-priority scheduling and one for EDF-based scheduling
are presented. We are currently working on the response
time analysis for the proposed contention management ap-
proaches in order to determine upper bounds for the number

of retries. As future work, we intend to explore the trade-
offs between early and late contention and suspension-based
solutions, and analyse the effects of transaction management
in more dynamic systems, considering bandwidth server-
based scheduling.

ACKNOWLEDGMENT

The authors would like to thank Bjorn Andersson for
comments on a previous version of this work.

This work was supported by FCT through the
CooperatES (PTDC/EIA/71624/2006) and RESCUE
(PTDC/EIA/65862/2006) projects, and by the European
Commission through the ARTIST2 NoE (IST-2001-34820).

REFERENCES
[

—

“The SCC Platform Overview,” Intel Labs, Santa Clara, CA, USA,
Tech. Rep., May 2010. [Online]. Available: http://techresearch.intel.
com/spaw2/uploads/files/SCC_Platform_Overview.pdf

[2] H. Sutter and J. Larus, “Software and the concurrency revolution,”
Queue, vol. 3, no. 7, pp. 54-62, Sep. 2005.

[3] B. N. Bershad, “Practical considerations for non-blocking concurrent

objects,” in ICDCS 1993., May 1993, pp. 264-273.

P. Tsigas and Y. Zhang, “Non-blocking data sharing in multiprocessor

real-time systems,” in RTCSA’99, Dec. 1999, pp. 247-254.

[5] B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, and
J. H. Anderson, “Real-Time Synchronization on Multiprocessors: To
Block or Not to Block, to Suspend or Spin?” in RTAS '0S., Apr.
2008, pp. 342-353.

[6] A. Dragojevic, P. Felber, V. Gramoli, and R. Guerraoui, “Why STM

can be more than a Research Toy,” accepted for publication, CACM,

2010.

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.

Morgan Kaufmann, 2008.

M. Herlihy and J. E. B. Moss, “Transactional memory: architectural

support for lock-free data structures,” in ISCA ’93, vol. 21, no. 2,

May 1993, pp. 289-300.

N. Shavit and D. Touitou, “Software transactional memory,” in PODC

’95, vol. 22, no. 3, Aug. 1995, pp. 204-213.

[10] K. Fraser, “Practical lock-freedom,” Ph.D. dissertation, University of
Cambridge, Sep. 2003. [Online]. Available: http://www-test.cl.cam.
ac.uk/techreports/UCAM-CL-TR-579.pdf

[11] R. Ennals, “Efficient Software Transactional Memory,” Intel Research
Cambridge, Cambridge, UK, Tech. Rep., 2005. [Online]. Available:
http://berkeley.intel-research.net/rennals/pubs/05 1RobEnnals.pdf

[12] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin,
and J. Vitek, “Preemptible Atomic Regions for Real-Time Java,” in
RTSS’05, Dec. 2005, pp. 62-71.

[13] J. H. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay, “Lock-free
transactions for real-time systems,” in Real-Time Database Systems:
Issues and Applications. Kluwer Academic Publishers, May 1997,
pp. 215-234.

[14] J. H. Anderson, R. Jain, and S. Ramamurthy, “Implementing hard
real-time transactions on multiprocessors,” in Real-Time Database
and Information Systems: Research Advances. Kluwer Academic
Publishers, Sep. 1997, pp. 247-260.

[15] S. F. Fahmy, B. Ravindran, and E. D. Jensen, “On Bounding
Response Times under Software Transactional Memory in Distributed
Multiprocessor Real-Time Systems,” in DATE ’09, pp. 688—693.

[16] T. Sarni, A. Queudet, and P. Valduriez, “Real-Time Support for
Software Transactional Memory,” in RTCSA’ 2009, pp. 477-485.

[17] M. Schoeberl, F. Brandner, and J. Vitek, “RTTM: Real-Time Trans-
actional Memory,” in SAC ’10, Mar. 2010, pp. 326-333.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance
protocols: an approach to real-time synchronization,” IEEE Trans.
Comput., vol. 39, no. 9, pp. 1175-1185, Sep. 1990.

[19] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-

Time Systems, vol. 3, no. 1, pp. 67-99, Mar. 1991.

[4

=

[7

—

[8

=

[9

—

