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Abstract 

Mixed-criticality multicore system design must often provide both safety guarantees and high performance. 
Memory bandwidth regulation among different cores can be a useful tool for providing safety guarantees as it 
mitigates the interference when accessing main memory. The use of mode changes and system models such as 
those of Vestal can help provide both safety, for critical functions, and scheduling performance, by efficiently 
utilising the platform. In this work, we therefore combine per-core memory access regulation with the well 
established Vestal model and improve on the state-of-the-art in two respects. 1) we allow the memory access 
budgets of the cores to be dynamically adjusted, when the system undergoes a mode change, reflecting the 
different needs in each mode, for better schedulability. 2) we devise a memory-regulation-aware and stall-aware 
schedulability analysis for such systems, based on the well-known AMC-max technique. By comparison, the state-
of-the-art did not offer the option of dynamic adjustment of core budgets, and only offered regulation-aware 
schedulability analysis based on AMC-rtb, which is inherently more pessimistic. As an additional contribution, 3) 
we consider different task assignment and bandwidth allocation heuristics, in experiments with synthetic task 
sets, to assess the improvement from using dynamic memory budgets and the new analysis. In our results, we 
have observed an improvement in schedulability ratio up to 9.1% over the state-of-the-art algorithm. 
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Abstract—Mixed-criticality multicore system design must often
provide both safety guarantees and high performance. Memory
bandwidth regulation among different cores can be a useful tool
for providing safety guarantees as it mitigates the interference
when accessing main memory. The use of mode changes and
system models such as those of Vestal can help provide both
safety, for critical functions, and scheduling performance, by
efficiently utilising the platform. In this work, we therefore
combine per-core memory access regulation with the well-
established Vestal model and improve on the state-of-the-art in
two respects. 1) we allow the memory access budgets of the
cores to be dynamically adjusted, when the system undergoes
a mode change, reflecting the different needs in each mode, for
better schedulability. 2) we devise a memory-regulation-aware
and stall-aware schedulability analysis for such systems, based on
the well-known AMC-max technique. By comparison, the state-
of-the-art did not offer the option of dynamic adjustment of
core budgets, and only offered regulation-aware schedulability
analysis based on AMC-rtb, which is inherently more pessimistic.
As an additional contribution, 3) we consider different task
assignment and bandwidth allocation heuristics, in experiments
with synthetic task sets, to assess the improvement from using
dynamic memory budgets and the new analysis. In our results,
we have observed an improvement in schedulability ratio up to
9.1% over the state-of-the-art algorithm.

I. INTRODUCTION

Many real-time embedded systems (e.g., in the automotive,

avionics, railway and aerospace domains) are mixed criti-

cality systems (MCSs), meaning that functions of different

criticalities use the same hardware resources, such as cores,

interconnects and memories. A deadline miss by a high-

criticality task may be disastrous, so lower-criticality tasks

must not interfere unpredictably. This is traditionally avoided

through rigid performance isolation [1, Footnote 1], which can

be inefficient in utilising the platform.

However, increasingly often, offering high performance

(within the size, weight, power and cost constraints of the

system) is also important for MCSs. This motivated a move

towards multicore platforms, to obtain that performance. In

parallel, the real-time research community is providing the

scheduling theory, such as Vestal’s model [2] and its variants,

to enable better performance guarantees on a given platform,

without compromising safety. However, the move to multi-

cores, introduces resource sharing between cores, which, if

unaccounted for, can cause unpredicable timing behavior [3].

This is most evident for main memory: Different cores con-

tending for the memory can lead to stalling of execution on

the core. Such stalling must often be kept low and must be

always upper-bounded, on grounds of safety and certifiability.

Memory contention can be mitigated by using regulation,

which is the approach taken under the Single-Core Equiv-

alence (SCE) framework [4]. Each core gets an associated

periodically-replenished memory access budget. When a core

attempts to issue more memory accesses than its budget, it gets

temporarily stalled, until the next replenishment. This allows

the worst-case memory stall per task to be upper-bounded

and incorporated into the schedulability test. Yao et al [5] did

this for single-criticality systems and in recent work [6], we

incorporated their contributions to the schedulability theory of

mixed-criticality systems conforming to the most established

variant [7] of Vestal’s model.

This model views the system operation as different modes

(two or more, ordered from lowest to highest), and the set

of tasks present in each mode is a subset of those present

in the next-lowest mode. Different worst-case task execution

times (WCETs) are assumed for the same task in each mode

it is a part of, with corresponding degrees of confidence.

This allows less rigorous (less costly) WCET estimation for

lower-criticality tasks and higher system utilisation, without

compromising safety.

This work targets memory-regulated multicores conforming

to the same model as [6], but it brings three new contri-

butions. First, it considers a more general scheduling and

memory regulation arrangement, wherein the cores’ memory

access budgets are dynamically adjusted at mode change.

This permits the memory budgets to be better reapportioned

according to the cores’ different requirements in each mode,

in order to improve schedulability. Secondly, the memory-

regulation-aware schedulability test devised as part of this

work is based on AMC-max [8, Section IV.C], whereas in [6],

it was based on AMC-rtb [8, Section IV.B]. AMC-max

is a tighter (i.e., less pessimistic) test than AMC-rtb, but

more complex, conceptually and computationally. Finally, we

explore, in experiments with synthetic tasks sets and different

task assignment and memory budget allocation heuristics, the

schedulability improvement from the two first contributions.

The rest of this paper is structured as follows. Next (in

Section 2), we provide additional background and discuss

related work. In Section 3, we formally define our system



model. In Section 4, we discuss in more detail the relevant

state-of-the-art in Adaptive Mixed Criticality (AMC) schedul-

ing and analysis for memory-bandwidth-regulated systems that

we build upon. Section 5 provides our new stall analysis, for

the class of considered systems. Section 6 discusses our new

mixed-criticality schedulability analysis, and how the worst-

case stall terms derived using our stall analysis are integrated

into it. In Section 7, we propose different heuristics for task-

to-core assignment and memory bandwidth allocation to the

cores. Section 8 evaluates these heuristics and assesses the

schedulability improvement from the use of dynamic memory

access budgets over static ones. Section 9 concludes the paper.

II. RELATED WORK

In its most established variant [7], Vestal’s model assumes

an ordered set of criticality levels. Each task has a period, a

deadline, a (design) criticality level and a set of WCETs –

one for every criticality level not exceeding its own and non-

decreasing with respect to the latter. For this model, Baruah et

al. [8] devised Adaptive Mixed Criticality (AMC) scheduling

and the notion of run-time system criticality level, initialised

to the lowest task criticality at startup. If a task exceeds its

WCET for the system’s current criticality level, the system

stops all tasks with criticality equal to that level and increments

its criticality level. Schedulability analysis relies on fixed-

priority worst-case response time (WCRT) analysis, using the

appropriate task WCETs. Two such schedulability tests are

presented in [8]: AMC-rtb and the tighter, but more complex,

AMC-max. Fleming and Burns [9] extended AMC to an

arbitrary number of criticality levels and showed that AMC-rtb

approximates AMC-max reasonably well. The later AMC-IA

test [10] slightly outperforms AMC-max. Other works improve

on AMC-max via a slightly different preemption model.

Many works exist on mechanisms for mitigating the inter-

ference on shared resources and on integrating the effects of

such interference to the schedulability analysis [4], [5], [11]–

[16]. Yun et al. [16] analysed the response time of critical

tasks scheduled on a single core by regulating the memory

access rates of cores running non-critical tasks only. This idea

was generalised in [5] by regulating all cores and through a

corresponding schedulability analysis that finds the response

time of all tasks. However, unlike Vestal’s model, in [5] critical

and non-critical tasks cannot co-exist on the same core, which

is potentially inefficient in terms of resource usage. In com-

parison, in [6], we ported the regulation scheme from [5] to a

standard Vestal model, which is more general and allows both

critical and non-critical tasks on the same core, for efficient

resource use without compromising the schedulability of the

critical tasks and system safety. In the present work, we go

well beyond that by (i) integrating the regulation-awareness to

a more accurate, but more computationally, intensive schedu-

lability test (AMC-max) and (ii) generalising the model to

allow for the cores’ memory access budgets to be dynamically

adjusted at mode change, in order to better serve their needs

in different modes. This dynamic reallocation of resources at

mode change, for better performance, is something we have

also explored with partitioned cache resources in [17].

III. SYSTEM MODEL

A. Platform and memory regulation model

We assume a multicore platform composed of m identical

physical cores that access the main memory via a single shared

memory controller. Each core can have multiple outstanding

memory requests. The prefetchers and speculative units are

disabled. Most of the assumptions made in this work are

inspired by the Single-core-equivalence framework [4], more

specifically from Yao et al. [5]. The combined policy of both

the memory controller and its interconnect is round-robin [5],

[18]. The last-level cache is either private or partitioned to each

core. Like Yao et al. [5], each memory access is assumed to

take a constant time of L. The accesses to main memory are

regulated by a software mechanism such as MemGuard [18]

or in hardware.

Each core i is assigned a pair of memory access budgets

(QL
i , QH

i ), one for each mode of operation, respectively.

These are the maximum number of memory accesses allowed

in each regulation period of length P . The relation between

QL
i and QH

i is arbitrary, i.e., either QL
i ≤ QH

i or QL
i > QH

i .

This budget pair (QL
i , QH

i ) is set at design time for each core i
and budgets may differ across cores. The budget enforcement

mechanism ensures that a core exceeding its given limit,

in L-mode or H-mode, is stalled until the start of the next

regulation period. The regulation periods are synchronised on

all cores. It is ensured that the sum of the memory budgets

assigned to all cores does not exceed the available memory

bandwidth at any time instant in L-mode (
∑

i

QL
i

P
≤ 1) and

H-mode (
∑

i

QH
i

P
≤ 1). Like Yao at el. [5], we assume CPU

computation and memory accesses do not overlap in time.

B. Task model

We assume a task-set τ composed of n independent mixed

criticality sporadic tasks (τ = {τ1, τ2, · · · , τn}). Each task has

a relative deadline Di, a minimum inter-arrival time Ti and

a criticality level κi. The task-set is partitioned on a given

multicore platform offline and migrations are not allowed at

run-time. Tasks on each core are scheduled with a preemptive

fixed-priority scheduling algorithm. We consider the same

Vestal mixed-criticality model as Baruah and Burns [8], which

views the system operation as different modes, whereby only

tasks of certain criticality or higher execute. For each task, dif-

ferent WCET estimates are assumed with different confidence

in their safety. For simplicity, we assume only two modes of

operation (L-mode and H-mode). The L-mode WCET estimate

(L-WCET) of a task τi is denoted as CL
i and its safe, but

pessimistic, H-mode WCET estimate (H-WCET) is denoted

as CH
i ≥ CL

i . The values are computed in isolation on a

core assuming no interference from other cores on the shared

memory controller and its interconnect. The WCET estimates



(both CL
i and CH

i ) can be further subdivided into two parts:

(a) CPU computation and (b) memory access time. Hence,

CL
i = C

e|L
i + C

m|L
i and CH

i = C
e|H
i + C

m|H
i .

The system boots in L-mode with each core initialised with

its QL
i memory budget and remains in L-mode as long as no

job (on any core) exceeds its C
e|L
i or its C

m|L
i . However, in

case of overrun of either C
e|L
i or C

e|m
i by any task τi, all L-

tasks are stopped and the system switches to H-mode, where

only the H-tasks execute. If the mode switch occurs in the rth

regulation period at time instant s, the resetting of the memory

budget on each core to their QH
i value is delayed till the start

of the subsequent regulation period (r + 1th). This budget-

switch instant is denoted as s′ ≥ s. Hence, H-jobs executing

in rth regulation period after the mode switch time instant s
on any core i, execute with a memory budget of QL

i till the

budget-switch instant s′ (i.e., the start of subsequent (r+1th)

regulation period). The H-WCETs need not be specified for

the L-tasks. The system is schedulable if no task deadline is

missed in L-mode and no H-task deadline is missed in H-mode

(including H-tasks caught in the mode switch). This must be

verifiable offline, via schedulability tests that use the respective

WCET estimates and memory budgets for each mode.

We also denote by hpL(i) and hpH(i) the sets of L- and H-

tasks, respectively, with priority higher than task τi. Moreover,

hp(i) = hpL(i)∪ hpH(i). Tasks in hpL(i) can execute in L-

mode only, whereas tasks in hpH(i) may execute in both L-

and H-mode. The response time of a task in L-mode and H-

mode is denoted as RL
i and RH

i , respectively, and it includes

the stall time due to the contention and the memory regulation.

IV. OVERVIEW OF THE STATE-OF-THE-ART

A. Adaptive Mixed Criticality (AMC) Scheduling

The AMC fixed-priority-based mixed-criticality scheduling

algorithm is designed for platforms that can monitor job

execution times. It supports any number of criticality levels,

but here we consider only two, for simplicity. Tasks are

scheduled according to their fixed priority. The system starts

in L-mode, with L-WCET estimates assumed for all tasks.

Any overrun (excedance of L-WCET estimate) triggers a

mode switch that (i) halts L-tasks and (ii) assumes H-WCET

estimates henceforth for the H-tasks. The schedulability anal-

ysis of AMC builds on standard fixed-priority response time

analysis [19], [20]. The schedulability conditions are checked

for both modes, L and H, and also for the mode transition

interval (which starts at the moment of the mode switch and

ends at the earliest idle instant). The schedulability of any task

τi in L-mode is checked by comparing its deadline Di to its

WCRT RL
i (Equation 1), computed using the L-WCETs.

RL
i = CL

i +
∑

τj∈hp(i)

⌈
RL

i

Tj

⌉

CL
j (1)

where hp(i) is the set of higher-priority L- and H-tasks.

Likewise, in the steady H-mode, for each H-task τi, the

WCRT is computed using the H-WCETs of tasks in hpH(i),
the set of H-tasks with higher priority than τi. Nevertheless, the

steady H-mode analysis is subsumed by the transition mode

analysis, meaning that if the system is schedulable during

the transition mode interval, it is also schedulable in steady

H-mode. For the mode transition analysis, Baruah et al. [8]

offer two tractable WCRT estimation techniques based on

solving recurrence relations. The first one, AMC-rtb, avoids

enumeration of the instants at which a mode switch may occur

by bounding the worst-case interference by higher priority

L-tasks separately from that of higher-priority H-tasks. This

analysis is straightforward, but pessimistic, since the worst-

case interference by L-tasks cannot occur simultaneously with

the worst-case interference from H-tasks. The tighter but

more elaborate second recurrence, AMC-max, considers the

key instants when the mode switch may occur and takes the

maximum response time obtained for each of these instants.

For the H-task under analysis τi and any mode switch instant

s, AMC-max has the advantage of upper-bounding: (i) the

number of jobs by higher-priority H-tasks (hpH(i)) that may

execute in H-mode after the mode switch with H-WCET

estimates and (ii) the number of jobs by higher-priority L-

and H-tasks (hp(i)) that may execute before the mode switch

with L-WCET estimates. The WCRT time of an H-task τi is

given by (2) [8]:

RH
i = max(Rs

i ), ∀s ∈ {0, RL
i } (2)

Rs
i = CH

i +
∑

τj∈hpL(i)

(⌊
s

Tj

⌋

+ 1

)

CL
j + (3)

∑

τk∈hpH(i)

{

M(k, s, Rs
i )C

H
k +

(⌈
t

Tk

⌉

−M(k, s, Rs
i )

)

CL
k

}

M(k, s, t) = min

{⌈
t− s− (Tk −Dk)

Tk

⌉

+ 1,

⌈
t

Tk

⌉}

(4)

We use AMC-max in this work due to its property to

differentiate between demand happening before and after the

mode switch, which in turn allows to efficiently quantify the

effect of dynamic memory budgets.

B. Memory Bandwidth Regulation Analysis

Yao et al. [5] provide schedulability analysis with memory

stall analysis for single-criticality systems using partitioned

fixed-priority scheduling with Rate-Monotonic priority assign-

ment. We summarize this work as it is used in our analysis.

a) Stall Analysis: A memory access resulting from a

cache miss can stall its core either (i) because of memory reg-

ulation, e.g., if the core’s memory budget has been exhausted,

referred to as regulation stall, or (ii) because of concurrent

memory accesses by other cores, referred to as contention

stall. Yao et al. [5], in their analysis, initially consider (as

an assumption later relaxed) that the task under analysis is

not preempted – therefore, at any time, it is either executing,

accessing memory or stalled. This analysis leads to three



worst-case memory access patterns, depending on the core’s

bandwidth b = Q
P

and the task’s cache stall ratio r =
Cm

i

Ci
.

Due to space limitations, we just briefly describe the different

cases/patterns; for details, see [5]. Note that we omit the index

of the task under analysis in this subsection for simplicity.

Case 1: b ≤ 1
m

In this case, the worst-case stall occurs

when all the memory accesses are clustered, maximizing the

regulation stall, and the stall can be upper-bounded by:

stall =

{
Cm

Q
(P -Q)+(m-1)Q if Cm%Q=0

⌈
Cm

Q

⌉

(P -Q)+(m-1)(Cm%Q) otherwise
(5)

Case 2: b> 1
m

and r=Cm

C
< 1−b

(m−1)b In this case, the worst-case

stall occurs when all memory accesses suffer the maximum

contention stall and an upper bound of the stall is given by:

stall = (P −Q) + (m− 1) ·Q (6)

Case 3: b > 1
m

and r = Cm

C
≥ 1−b

(m−1)b In this case, the density

of memory accesses is such that some regulation periods must

suffer regulation stalls, and an upper bound of the stall is:

stall =

{

(1 +K1)(P −Q) + r1 if C ≤ (1 +K1)Q(

1 + C
Q

)

(P −Q) + r2 otherwise
(7)

where, K1 =

⌊
Ce

Q−RBS

⌋

, RBS =
P −Q

m− 1

r1 = min{P −Q, (m− 1)(Cm −K1 ·RBS)}

r2 = min{P −Q, (m− 1)(C%Q)}

Note that all 3 cases account for an initial regulation stall,

of duration P −Q, that may occur in the worst case when a

task is scheduled to run, but the core has already exhausted

its memory budget.

b) Schedulability Analysis: The schedulability analysis

in [5] relies on standard fixed-priority response time analy-

sis [20], comparing the response time of each task, in decreas-

ing order of a task’s priority, with its deadline. However, the

above stall analysis assumes that the task is not preempted.

Therefore, to analyse the response time of each task, Yao

et al. [5] construct a synthetic task, equivalent to all the

activations that occur in the response time window of the task

under analysis, using the following recurrence:

R
(k+1)
i = Ci +

∑

τj∈hp(i)

⌈

R
(k)
i

Tj

⌉

Cj + stall
(
R

(k)
i

)
(8)

where the stall term, stall
(
R

(k)
i

)
, is computed using Yao’s

algorithm with these parameters for the equivalent syn-

thetic/composite task:






C
m(k)
Comp = Cm

i +
∑

τj∈hp(i)

⌈

R
(k)
i

Tj

⌉

Cm
j

C
e(k)
Comp = Ce

i +
∑

τj∈hp(i)

⌈

R
(k)
i

Tj

⌉

Ce
j

(9)

The initial estimate of τi’s response time R
(0)
i is computed

with a standard response time recurrence, without a stall term.

TABLE I: Symbols used in the analysis

QL, QH L- and H-mode memory budgets, respectively

Cm|L, Cm|H L- and H-mode maximum memory access time (equal
to the number of memory accesses) respectively

Ce|L, Ce|H L- and H-mode maximum CPU execution, respectively

Cm|ℓ, Cm|h memory access time (equal to the number of accesses)
before and after mode switch, respectively

Ce|ℓ, Ce|h CPU execution before and after mode switch, respec-
tively

Stallℓ, Stallh total stall before and after mode switch, respectively
Stall total stall
P regulation period
m number of cores
s mode-switch instant
s′ budget-switch instant
single() worst-case single criticality stall according to Yao et

al. analysis [5], ignoring the regulation stall at the
beginning of the execution

lb(X) lower bound of parameter X
ub(X) upper bound of parameter X

V. STALL ANALYSIS

In this section we analyse the stall incurred by a H-task

upon mode-switch, assuming that there are no other tasks

running on the same core, therefore we drop the task index.

The stall expression developed in this section will be used for

response time analysis, as done by Yao et al. [5]. Because we

build on Yao’s stall analysis, we use L, the memory access

latency, as the unit of time for all times, including P and Q.

Therefore, sometimes, we refer to memory access time, Cm,

as the number of memory accesses. Table I summarizes the

symbols used in this analysis.

Let s be the mode switch instant. To simplify the mathe-

matical expressions, in our analysis, s is measured relative to

the beginning of the first regulation period after the release of

the H-task under analysis, i.e. after the initial regulation stall,

rather than relative to the task release, as done in [8]. Our goal

is to upper bound the total stall, independently of the value

of s. Our approach is to upper bound the stall in each of the

following two phases: 1) before the mode switch, i.e. before

s, and 2) after the mode switch, i.e. after s, for all possible

values of s.

Let Stallℓ and Stallh be the stall in each of these phases,

ignoring the initial regulation stall, which is added later. We

bound independently the values of the stall in each of these

phases, i.e. we compute ub(Stallℓ) and ub(Stallh), where

ub(X) denotes an upper-bound of parameter X . To compute

these bounds we use single-criticality stall analysis by Yao et

al. [5] with the appropriate parameter values. For conciseness,

in this section and the next, we refer it as Yao’s analysis.

In this section, we assume that s occurs at a regulation

period boundary. Therefore, s is a multiple of P . In Subsec-

tion VI-C, we drop this assumption.

Let Cm|ℓ (resp. Cm|h) be the memory access time in L-

mode (resp. H-mode), i.e. before (resp. after) mode switch,

and Ce|ℓ (resp. Ce|h) be the memory access time in L-mode



(resp. H-mode), i.e. before (resp. after) mode switch. Then, it

must be:

Cm|H = Cm|ℓ + Cm|h (10)

Ce|H = Ce|ℓ + Ce|h (11)

To upper bound the stall after the mode switch, we use:

ub(Stallh) = single(Cm = ub(Cm|h), (12)

Ce = ub(Ce|h), Q = QH)

where single() is the worst-case stall according to Yao

analysis, ignoring the regulation stall at the beginning of the

execution and

ub(Cm|h) = Cm|H − lb(Cm|ℓ)

ub(Ce|h) = Ce|H − lb(Ce|ℓ)

where lb(X) denotes a lower-bound for parameter X . I.e., in

(12) we use upper-bounds for Cm|h and Ce|h estimated using

lower bounds for Cm|ℓ and Ce|ℓ, respectively. This is because

of (10) and (11), and Yao’s analysis shows that the stall is

non-decreasing with both Cm and Ce.

So, the challenge is to compute the expressions for the lower

bounds. Since when a task is not stalled it must be either

computing or accessing memory, we use the following lower

bounds:

lb(Ce|ℓ) = max(0, s− ub(Cm|ℓ)− ub(Stallℓ)) (13)

lb(Cm|ℓ) = max(0, s− ub(Ce|ℓ)− ub(Stallℓ)) (14)

These expressions are safe but pessimistic, especially for

lb(Cm|ℓ), because it is unlikely that Stallℓ be maximum when

Ce|ℓ is also maximum.

Tight independent upper bounds for Ce|ℓ and Cm|ℓ are:

ub(Ce|ℓ) = min(s, Ce|L) (15)

ub(Cm|ℓ) = min
( s

P
·QL, Cm|L

)

(16)

Note that s
P
·QL is the value imposed by memory regulation:

in L-mode the memory budget is QL. Although taken inde-

pendently these bounds are tight, it may be the case that they

cannot both occur simultaneously.

These upper bounds can be used as Ce and Cm, respec-

tively, in Yao’s stall analysis to upper bound Stallℓ. Further-

more, we know that the maximum stall in each regulation

period is P −Q, therefore:

ub(Stallℓ) = min
( s

P
· (P −QL), (17)

single(Ce = ub(Ce|ℓ), Cm = ub(Cm|ℓ), Q = QL)
)

where ub(Ce|ℓ) and ub(Cm|ℓ) are given by (15) and (16),

respectively.

Thus, an upper bound of the stall of a non-preemptable H-

task upon mode switch is given by:

(P −Q) + ub(Stallℓ) + ub(Stallh)

where ub(Stallell) and ub(Stallh) are given by (17) and (12),

respectively.

VI. SCHEDULABILITY ANALYSIS

In this section, we integrate the memory regulation re-

lated stalls in the AMC-max scheme. Like in AMC-max, we

consider 3 cases: L-mode steady operation, H-mode steady

operation and mode-switch operation.

Schedulability in steady L-mode is determined by applying

Yao et al. [5] analysis, as summarized in Section IV, more

specifically in (8) and (9). I.e., we apply standard response

time analysis to a synthetic/composite task that comprises all

the jobs that run within the response time window of the task

under analysis, τi, in L-mode:

R
L(k+1)
i = CL

i +
∑

j∈hp(i)

⌈

R
L(k)
i

Tj

⌉

CL
j + Stall(R

L(k)
i ) (18)

Cm|L
comp = C

m|L
i +

∑

j∈hp(i)

⌈

R
L(k)
i

Tj

⌉

C
m|L
j (19)

Ce|L
comp = C

e|L
i +

∑

j∈hp(i)

⌈

R
L(k)
i

Tj

⌉

C
e|L
j (20)

where R
L(k)
i denotes the response time value after k iterations,

Cm = C
m|L
comp and Ce = C

e|L
comp are the parameters of the

composite task in L-mode, and Stall(R
L(k)
i ) is the memory

stall and is computed using Yao et al. stall analysis [5] for

the composite task with Q = QL (omitting core index). In the

first iteration (k = 0), R
L(k)
i is initialized with the solution of

Recurrence (18) without the stall term.

The worst-case response time in steady H-mode can be

computed using similar equations. The differences being that

the composite task models the interference of only H-tasks

whose priority is equal or higher than τi, and the stall term is

computed using QH rather than QL.

To upper-bound the response time of a H-task τi when there

is a mode switch at time s relative to τi’s job release, we extend

Recurrence (4) for AMC-max from [8] to take into account

the effect of the stalls induced by memory regulation. Indeed,

this recurrence considers the interference of higher priority L-

jobs before the mode switch and the interference of higher

priority H-jobs throughout τi’s response time window, but [8]

does not assume memory regulation. To take into account the

effect of memory regulation in the response time, we add a

stall term Stall(s,R
s(k)
i ), obtaining Recurrence (21). Like in

[8], we take the maximum of the response times for all values

of s. Also like in [8], there is no need to compute Rs
i for

all values of s < RL
i ; it is enough to compute it only at the



release time of jobs of L-tasks in hpL(i).

R
s(k+1)
i = CH

i +
∑

j∈hpL(i)

(⌊
s

Tj

⌋

+ 1

)

CL
j (21)

+
∑

j∈hpH(i)

{

M(j, s, R
s(k)
i )CH

j

+

(⌈

R
s(k)
i

Tj

⌉

−M(j, s, R
s(k)
i )

)

CL
j

}

+ Stall(s,R
s(k)
i )

RH
i = max(Rs

i ), ∀s ∈ {0, 1, . . . , RL
i } (22)

where M(j, s, t) is an upper-bound on the number of active

jobs of task j in the (s, t) time interval and is given by (4).

The additional stall term Stall(s,R
s(k)
i ) considers the effect

of the memory regulation mechanism in the WCRT of a H-

task τi and may differ for fixed (QL = QH ) and dynamic

(QL 6= QH ) memory bandwidth allocation policies.

In the following, we derive the stall term using the concept

of equivalent composite/synthetic task both for static, i.e.

when Q does not change upon mode switch, and for dynamic

memory bandwidth policies.

A. Stall(s,Rs
i ) with static memory bandwidth allocation

In this case, the mode switch affects only the tasks that can

execute, not the core’s memory bandwidth, i.e. QL = QH .

Therefore, we use the AMC-max analysis, more specifically

(3), to derive the Cm = C
m|H
comp, Ce = C

e|H
comp parameters of

the composite task:

C
m|H
comp = C

m|H
i +

∑

j∈hpL(i)

(⌊
s

Tj

⌋

+ 1

)

C
m|L
j (23)

+
∑

k∈hpH(i)

{

M(k, s, Rs
i )C

m|H
k

+
(⌈

Rs
i

Tk

⌉

−M(k, s, Rs
i )
)

C
m|L
k

}

C
e|H
comp = C

e|H
i +

∑

j∈hpL(i)

(⌊
s

Tj

⌋

+ 1

)

C
e|L
j (24)

+
∑

k∈hpH(i)

{

M(k, s, Rs
i )C

e|H
k

+
(⌈

Rs
i

Tk

⌉

−M(k, s, Rs
i )
)

C
e|L
k

}

Because Q = QL = QH , single criticality stall expression of

Yao et al. [5] is applicable and therefore we use:

(P −Q) + single(Ce = C
e|H
Comp, C

m = C
m|H
Comp, Q = QL)

(25)

to compute the stall, which is then used in Recurrence (21).

B. Stall(s,Rs
i ) with dynamic memory bandwidth allocation

In this case, we use the stall analysis for mode switch

presented in Section V. However, that analysis can be applied

directly only to a task that does not suffer interference from

other tasks, i.e. only to the highest priority H-task, if its priority

is also higher than that of all the L-tasks. Otherwise we need

to use the concept of composite task.

The stall analysis of Section V essentially upper bounds

the stalls before and after the budget change of a single non-

preemptive H-task, by upper bounding the CPU execution and

the memory access times in both phases, i.e. before and after

the mode switch. The use of a synthetic task composed of

task τi and all the tasks with priority higher than τi ensures

that the synthetic task is non-preemptive. To upper bound the

CPU execution and the memory accesses in each phase of the

composite task we rely on AMC-max [8].

However, we cannot use that analysis directly, because it

does not compute the number of interfering H-jobs in L-mode

independently of the number of interfering H-jobs in H-mode.

Instead, it uses (4) to upper bound the number of interfering

H-jobs in H-mode, which it then subtracts from the upper

bound of the number of interfering H-jobs in the response

time window. As a result, the number of interfering H-jobs in

L-mode estimated may be smaller than the actual number of

L-jobs and, therefore, lead to an unsafe estimate of the stall

term in Recurrence (21). This is shown below with example.

Example: Assume that QH < QL and that QL/P <
1/m. This means that both in L-mode and in H-mode, Case

1 of Yao’s stall analysis apply. I.e., that in both modes the

worst case stall occurs when the number of regulation stalls is

maximum. Consider moving a job, with Cm memory accesses,

from H-mode to L-mode, thus increasing the number of

memory accesses in L-mode and decreasing the number of

memory accesses in H-mode by the same amount. Assume

that these Cm memory accesses suffered a contention stall

in H-mode, but they lead to one additional regulation stall in

L-mode. Thus the reduction in stall in H-mode is, according

to Yao’s stall analysis, Cm · (m − 1), because the maximum

contention stall is m−1 (L time units). On the other hand the

increase in stall in L-mode is (P−QL)−(QL−Cm)·(m−1),
i.e. there is an additional regulation stall but some of the

memory accesses that before the move suffered maximum

contention stall, now occur in a period with a regulation stall,

and therefore there will be a reduction of Q−Cm contention

stalls in L-mode. Thus the move of one job from one mode

to another will lead to a higher contention if:

Cm · (m− 1) < (P −QL)− (QL − Cm) · (m− 1)

QL

P
<

1

m

which holds by assumption. Thus, it is possible that moving

some job from one mode to another, even with a larger

memory budget, will lead to a larger total stall.

Because of this, to ensure safety, we compute the bound

of interfering H-jobs in L-mode independently of bound of

interfering H-jobs in H-mode, and therefore use the same

expression to compute the number of interfering jobs in L-
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Fig. 1: Transition mode: mode switch may not coincide with

a regulation period boundary, i.e. with memory budget change.

mode, independently of their criticality:

ub(Cm|ℓ) = C
m|L
i +

∑

j∈hp(i)

(⌊
s

Tj

⌋

+ 1

)

C
m|L
j (26)

ub(Ce|ℓ) = C
e|L
i +

∑

j∈hp(i)

(⌊
s

Tj

⌋

+ 1

)

C
e|L
j (27)

Applying single criticality stall analysis [5] to a composite task

with these parameters and Q = QL, yields an upper-bound of

the stall in L-mode of task τi, ignoring initial regulation stall.

To upper bound the stall in H-mode, we use (4) from AMC-

max analysis to upper bound the number of interfering H-

jobs in H-mode. Therefore, the parameters of the equivalent

synthetic task are:

ub(Cm|h) = C
m|H
i − lb(C

m|ℓ
i ) (28)

+
∑

j∈hpH(i)

M(k, s, Rs
i )C

m|H
j

ub(Ce|h) = C
e|H
i − lb(C

e|ℓ
i ) (29)

+
∑

j∈hpH(i)

M(k, s, Rs
i )C

e|H
j

Applying single criticality stall analysis [5] to a composite

task with the parameters given by (28) and (29) and Q = QH ,

yields an upper-bound of the stall in H-mode of task τi.

C. Dropping the s = s′ assumption

So far, including Section V, we assumed that the mode

switch instant, s, occurs at regulation period boundaries, i.e.

that it coincides with budget change instant, s′, and therefore

the stall analysis assumes that, upon mode switch, all H-

jobs execute with QH in H-mode. However, if, as shown in

Fig. 1, this is not the case, with dynamic memory bandwidth

allocation, upon mode switch, some H-jobs may execute with

QL during the (s, s′) interval, even though they are already in

in H-mode. However, Stallℓ includes only the stall generated

by H-jobs that are released up to s, whereas Stallh includes

the stall of H-jobs that are released after s, but assuming that

the memory bandwidth allocated is QH . As a result, the total

stall computed may be lower than the actual stall. Thus, to

ensure that our analysis is safe, we assume that upon mode

switch there is a regulation stall of s′−s, similar to the initial

regulation stall upon job release in Yao’s analysis. Clearly this

is safe: the stall in that interval cannot be larger.

VII. MEMORY BANDWIDTH ALLOCATION AND

TASK-TO-CORE ASSIGNMENT HEURISTICS

We devised the following task-to-core assignment and mem-

ory bandwidth allocation heuristics to explore the benefit from

our analysis and the use dynamic memory budgets. We used

Audsley’s task priority assignment algorithm [21], even if it

is no longer necessarily optimal with an additional stall.

A. AMC-max Dominant

We call this heuristic “Dominant” because it initially at-

tempts to assign tasks using static memory budgets across

the mode switch and only attempts dynamic budgets if the

previous strategy does not succeed. This heuristic has 3 stages:

1) In the first stage, it considers static memory budgets

across the mode switch and uses stall-conscious AMC-

max analysis for feasibility. The task-to-core assignment

is performed via Memory-Fit [17]. That is, the core i that

needs the least increase in its Qi to accommodate a task,

is chosen for its assignment. The memory bandwidth

requirement of a core is determined using binary search

over the available memory bandwidth range. This heuris-

tic allows for uneven memory bandwidth assignment

across cores. If a task cannot be assigned on any core, it

is set aside for later stages and the next task is considered

for allocation. Once no more tasks can be assigned, we

enter a second stage:

2) Using sensitivity analysis, we “trim off” from each core,

any memory bandwidth which was over-committed, in

one of the modes, due to the static memory bandwidth

allocation across the mode switch. This binary-search-

based sensitivity analysis, mimimises the memory band-

width in each mode of operation using the stall-aware

AMC-max schedulability analysis, with QL
i and QH

i not

necessarily equal. Let Qstage−1
i be the static budget (i.e.,

same for both modes) for core i after the first stage.

The objective of this trimming stage is end up a pair

of budgets (QL
i , QH

i ) for that core, such that it remains

schedulable and the following expression is maximised:

(Qstage−1
i −QL

i )
︸ ︷︷ ︸

L−budget trimming

+ (Qstage−1
i −QH

i )
︸ ︷︷ ︸

H−budget trimming

(30)

Since Qstage−1
i is the minimum static budget for which

core i is schedulable, there can exist no feasible pair

(QL
i , QH

i ) such that (QL
i < Qstage−1

i ) ∧ (QH
i <

Qstage−1
i ). To maintain schedulability, we can either

(i) decrease at most of one of the two budgets in the

initial pair (Qstage−1
i , Qstage−1

i ) while the other one

stays fixed or (ii) even increase one of them, if that

allows decreasing the other budget by more than the

same amount, given the interdependence of L-mode and

H-mode memory budgets (Pareto principle). In any case,

we have to consider multiple pairs and pick the one that

minimises expression (30).

3) In the third stage, the heuristic tries to assign any

remaining tasks using Memory-Fit. When trying out a

task assigment, the target core’s QL
i and QH

i are provi-

sionally increased by the overall amounts reclaimed, for

each mode respectively, from the preceding trimming.



Upon a successful assignment, the additional memory is

trimmed off again and used for other unassigned tasks

in a similar manner.

B. AMC-max Gradient

We call this heuristic “Gradient” because it tends to assign

H-tasks to smaller-indexed cores and L-tasks to higher-indexed

cores, creating a gradient of sorts. This heuristic also has

three stages. In the first stage, the memory bandwidth is

evenly divided among cores and kept static across the mode

switch. The task-to-core assignment is performed via First-Fit.

When assigning H-tasks, the cores are considered in the order

1..m; for L-tasks, the order is inversed. A task that cannot

be assigned is set aside. The second and third stages of this

approach are the same as those of AMC-max-dynamic.

C. Single-Step

This heuristic is similar to the third stage of previous two

heuristics. It performs task-to-core assignment with Memory-

Fit heuristic using the schedulability analysis that allows

dynamic memory bandwidth allocation across mode switch.

After each assignment, the memory bandwidth is trimmed

off from each mode of operation to be used by the next

task. In the trimming process, there may be more than one

feasible pair of budgets but the final pair is selected based on

the criterion mentioned in Equation 30. More details on the

trimming process are presented in the Appendix.

VIII. EVALUATION

A. Experimental Setup

We used a Java tool [22] to implement our analysis and

allocation heuristics. We performed experiments with synthetic

workloads generated by the same tool and controlled by the

following parameters.

• Task periods are log-uniform distributed in the 10−100
msec range. We assume implicit deadlines (Di=Ti), even

if our analysis holds for constrained deadlines (Di ≤ Ti).

• Uunifast-discard [23], [24] is used to generate the L-mode

task utilisations in an unbiased way. Then, the L-WCET

of a task (CL
i ) is the product of its period and its L-mode

utilisation.

• For each task, we randomly select the cache stall ratio

r =
Cm

i

Ci
from the SPEC2006 suite [5]. In turn, C

m|L
i =

r · CL
i and C

e|L
i = CL

i − C
m|L
i .

• The fraction of H-tasks in the task set is user-defined.

• An H-task’s CH
i is a linearly scaled up value of its L-

WCET with a user-defined factor k [25].

• For each H-task, C
e|H
i is uniformly distributed over

[C
e|L
i , k ·C

e|L
i ] and, in turn, C

m|H
i = CH

i −C
e|H
i . This

reflects an assumption that most of the pessimism in the

H-WCET estimates typically comes from reasoning about

memory accesses, rather than arithmetic.

TABLE II: Overview of Parameters

Parameters Values Default

H-WCET scaling up factor {2 : 0.5 : 6} 2
Number of cores (m) {2, 4, 8} 4

Task-set size (n) {8 : 4 : 24} 16
Fraction of H-tasks in τ {0.2 : 0.05 : 0.8} 0.4

Cache stall ratio limit {SPEC2006, 0.1 : 0.1 : 1} SPEC2006

Inter-arrival time Ti 10000us to 100000us N/A

Nominal L-mode utilisation {0.1 : 0.1 : 1} N/A

Memory access time L {0.02us : 0.01us : 0.06us} 0.04us

• The memory bandwidth is equal to P
L

.

We generate a task-set for a given target utilisation of

U = y × m : y ∈ (0, 1]. We used different random class

objects to generate random periods, utilisations and r. Each

random class object is seeded with different odd number and

reused in successive replications [26]. For each set of input

parameters, we generate 1000 random task-sets. The ordering

of the task set also has an impact on the schedulability ratio.

By default, each task set is indexed in descending order of UL
i .

In our experiments, this performs better than descending order

of (κi, Di), (κi, U
L
i ), Di or C

m|κi

i /Ti. The aforementioned

parameters for different variables are summarised in Table II.

B. Results

We compare the following heuristics.

• AMC-max-dynamic-dominant: This is the first heuristic

from Section VII.

• AMC-max-static: This corresponds to the output of the

first-stage of AMC-max-dynamic-dominant. Therefore, it

benefits from the new analysis, but not from the benefits

of dynamic memory budgets across the mode switch.

• AMC-max-dynamic-gradient: This is the second heuris-

tic from Section VII.

• AMC-max-static-gradient: This is a static version of

AMC-max-dynamic-gradient that stops after its first

stage, i.e., it does not benefit from dynamic bandwidth

budgets across the mode switch.

• Dynamic-single-step: This is the third heuristic from

Section VII.

• AMC-rtb-static: This heuristic (taken from state-of-

the-art [6]) distributes the memory bandwidth unevenly

among cores and the memory budgets remain static

across the mode switch. It performs the task-to-core

allocation via Memory-Fit and it tests the feasibility of

the allocations on each core via stall-aware AMC-rtb [17]

analysis. It is faster in terms of computation time but more

pessimistic in schedulability analysis.

Due to space constraints, in each plot, we vary only

single parameter while the rest are set to the defaults from

Table II. For space-efficient presentation, we condense the

results into plots of weighted schedulability (WS). This per-

formance metric [27], [28], condenses what would have been

three-dimensional plots into two dimensions. It is a weighted

average that gives more weight to task-sets with higher
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utilisation (i.e., supposedly harder to schedule). Let Sy(τ, p)
represent the binary result (0 or 1) of the schedulability test

y for a task-set τ with an input parameter p. Then Wy(p),
the weighted schedulability for that schedulability test y as a

function p, is given by (31), where, ŪL(τ) = UL(τ)
m

is the

nominal L-mode utilisation.

Wy(p) =

∑

∀τ

(
ŪL(τ) · Sy(τ, p)

)

∑

∀τ Ū
L(τ)

(31)

Figures 2-7 present all the results. In general, there are two

important observations.

1) The performance in terms of schedulability depends on

three factors: (a) tightness of the analysis, (b) task-to-

core allocation and (c) memory bandwidth allocation

heuristics. A right selection of any of these factors can

considerably improve the system’s schedulability.

2) All heuristics exploiting dynamic memory bandwidth

budgets across the mode switch always outperform their

corresponding static counterparts.

Surprisingly, AMC-rtb-static and AMC-max-static perform

quite well when compared to some heuristics that exploit dy-

namic memory bandwidth across mode switch. Their superior

performance stems from better task-to-core allocation heuris-

tics (Memory-Fit). AMC-max-dynamic-dominant, which uses

Memory-Fit along with dynamic memory bandwidth budgets

across the mode switch dominates AMC-max-static, which

in turn outperforms AMC-rtb-static. We observed an absolute

difference of 9% in pure schedulability ratios of AMC-max-

dynamic-dominant and MC-max-static and 1.2% in weighted

schedulability ratio. Similarly, maximum achieved absolute

difference in schedulability ratios of AMC-max-dynamic-

dominant and MC-rtb is approximately 9.1%, and 1.3% in

terms of weighted schedulability ratio. AMC-max-dynamic-

gradient, however, despite using better schedulability analysis,

performs worse than AMC-rtb-static and AMC-max-static,

due to worse task-to-core allocation heuristics. AMC-max-

dynamic-gradient, which dominates AMC-max-static-gradient

by design, outperforms the latter by a a big margin due to supe-

rior schedulability analysis. Dynamic-single-step outperforms

AMC-rtb-static and AMC-max-static in the majority of the

cases. However, it loses out to AMC-max-dynamic-dominant,

because of the inefficiency of the greedy budget trimming.

The effect of variations in different parameters is discussed

below. The increase in the share of H-tasks increases the

system demand in H-mode, and hence, decreases the overall

schedulability of the system as shown in Figure 2. Similarly,

the system demand in H-mode also increases with a higher

scaling-up factor for the task H-WCETs and this leads to

decreased schedulability of the system (Figure 3). The increase

in the number of cores increases the stall factor in the analysis

and hence, the schedualability decreases as the number of

cores increases (Figure 4). A larger task set size, for the same

target utilisation, reduces any fragmentation issues and results

in better schedulability (Figure 5). The increase in memory

intensity reduces the schedulability due to higher stall values

(Figure 6). In Figure 7, values of 0, 1, 2, 3 and 4 represent a

sorting of the task sets in descending order of (κi, Di), (κi,

UL
i ), (Di), (UL

i ) and (
C

κi
i

Ti
), respectively. In our experiments,

(UL
i ) outperforms other sorting orders.

IX. CONCLUSIONS

In this work, we improved on the state-of-the-art for

memory-regulation-aware mixed-criticality multicore schedul-

ing theory by coming up with tighter AMC-max-based schedu-

lability analysis and the possibility of dynamic adjustment of



core memory budgets to the state. We consider this as one

more step towards predictable mixed-criticality systems with

good scheduling performance. Our experiments with different

heuristics using synthetic task sets, showed an improvement

of up to 9.1% in terms of pure scheduling ratio over state-

of-the-art heuristic. In the future, we also want to experiment

with per-task (rather than per-core) memory access budgets,

dynamically adjustable at mode change, and compare the

performance of the two scheduling arrangements.

APPENDIX

Here we describe in more detail how the memory bandwidth

trimming is performed at each core.

A. In stage 2 of the Dominant and Gradient heuristics

After stage 1, each core i has a pair of equal memory

access budgets for both modes, i.e., (Cstage−1
i , Cstage−1

i ).
For each core, the trimming process tries out all possible

pairs (CL
i , CH

i ) with CL
i ∈ [CL−min

i , Cstage−1
i + QL

free]

and CH
i ∈ [CH−min

i , Cstage−1
i +QH

free] to pick the one that

minimises Expression 30, restated below:

(Qstage−1
i −QL

i )
︸ ︷︷ ︸

L−budget trimming

+ (Qstage−1
i −QH

i )
︸ ︷︷ ︸

H−budget trimming

The above terms correspond to the following quantities:

• CL−min
i is the least value for the L-mode memory

access budget (determined through binary-search-based

sensitivity analysis) such that the core is schedulable in

steady L-mode.

• CH−min
i , respectively, for the steady H-mode.

• QL
free is the amount of unallocated memory budget for

the L-mode; it maybe initially 0 at the end of stage 1

(i.e., at the start of the trimming stage 2) and after

each additional core trimming it is updated to QL
free :=

QL
free + Qstage−1

i − QL
i . This way, we ensure that we

never overcommit the bandwidth in L-mode, at any point.

• Similarly for QH
free.

Under the Gradient heuristic, trimming performs better if

cores are considered in descending index order. For simplicity,

we use that same order also for the Dominant Heuristic.

B. Under the Single-stage heuristic

This heuristic performs trimming after every task assign-

ment, on the assignment target core i. For trimming, it simply

considers all pairs (CL
i , C

H
i ) with CL

i ∈ [CL−min
i , Cstage−1

i ]
and CH

i ∈ [CH−min
i , Cstage−1

i ] (otherwise the solution space

would be enormous).
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