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Abstract 

Each fog node interacts with data from multiple end-users in mobile fog computing (MFC) networks. Malicious 
users can use a variety of programmable wireless devices to launch different modes of smart attacks such as 
impersonation attack, jamming attack, and eavesdropping attack between fog servers and legitimate users. The 
existing research in MFC lacks in the contributions of defense of smart attack and also requires in the discussions 
of subjective decision making by participants. Therefore, we propose a smart attack defense scheme for 
authorized users in MFC in this paper. First, we construct a static zero-sum game model between smart attackers 
and legitimate users based on prospect theory. Second, the double Q-learning (DQL) is proposed to restrain the 
attack motive of smart attackers in the dynamic environment. The proposed DQL method generates the optimum 
defense choice of legitimate users against smart attacks so that they can efficiently determine whether to use 
only physical layer security (PLS) to avoid those smart attacks. We use our scheme to contrast with the basic 
schemes, i.e., Q-learning scheme, the Sarsa scheme, and the greedy strategy. Experiment results prove that the 
proposed scheme can enhance the utility of legitimate users, restrain the attack motive of smart attackers, and 
further provide better security protection in the MFC environment. 
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A B S T R A C T

Each fog node interacts with data from multiple end-users in mobile fog computing (MFC) networks. Malicious
users can use a variety of programmable wireless devices to launch different modes of smart attacks such as
impersonation attack, jamming attack, and eavesdropping attack between fog servers and legitimate users.
The existing research in MFC lacks in the contributions of defense of smart attack and also requires in the
discussions of subjective decision making by participants. Therefore, we propose a smart attack defense scheme
for authorized users in MFC in this paper. First, we construct a static zero-sum game model between smart
attackers and legitimate users based on prospect theory. Second, the double Q-learning (DQL) is proposed to
restrain the attack motive of smart attackers in the dynamic environment. The proposed DQL method generates
the optimum defense choice of legitimate users against smart attacks so that they can efficiently determine
whether to use only physical layer security (PLS) to avoid those smart attacks. We use our scheme to contrast
with the basic schemes, i.e., Q-learning scheme, the Sarsa scheme, and the greedy strategy. Experiment results
prove that the proposed scheme can enhance the utility of legitimate users, restrain the attack motive of smart
attackers, and further provide better security protection in the MFC environment.

1. Introduction

Due to recent developments in the internet of things (IoT) and mo-
bile terminals, a large number of generated data need to be processed in
real-time in wireless networks. The traditional cloud computing cannot
adequately meet the network requirements such as heterogeneity and
low latency. Fog computing migrates some computation tasks from the
cloud to the margin of the network, which may improve the system
throughput by using direct transmission links. It solves the problems
of reduced mobility, weak geographic information perception, and
high latency of cloud computing. However, it also brings the issues of
communication and data security [1–8]. In MFC, smart attackers can
use smart attack methods to attack other legitimate users. Unlike other
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attacks, any user launches smart attacks through a smart programmable

wireless device or a wireless network access platform. They destroy

wireless network security between the fog layer and the user layer

by acquiring wireless channel state information and defense strategy

information and choosing appropriate attack modes. The attacker can

launch multiple types of smart attacks, such as impersonation, jam-

ming, replay, and eavesdropping [9–12] towards the IoT devices or

keep silence in MFC networks. To ensure the security of fog computing

networks and prevent threats from smart attackers, game theory is

considered to be a powerful tool. It can show the incentive relationship

between the subjects. As a mathematical method, it calculates the

benefits of the subjects [10–12].
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In MFC security, researchers believe that participants in the game
are rational. They use expected utility theory (EUT) to calculate par-
ticipants’ utility. Participants select each step for maximum expected
utility. However, in dynamic wireless networks, each participant does
not know the overall network state and the accuracy of the received
data packages. Therefore, the decision-making of each participant in
the offensive and the defensive game has an intense subjectivity. There
are differences in benefits with the results of the EUT. To deal with
the above problem, we can use the prospect theory (PT) [13–16] to
generate a subjective decision model and study the zero-sum game be-
tween smart attackers and legitimate users. The probability weighting
function is used by PT to calculate. The Nash equilibrium (NE) of both
sides of the game is analyzed to restrain the intended motive of smart
attackers.

Besides, the actual MFC network is dynamic, legitimate users and
smart attackers can continuously interact. Authorized users can use
two different defense modes, i.e., whether to apply the higher-layer
security mechanism (HLSM) [17] for better protection or only the
physical layer security (PLS) mechanism to reduce system overhead.
Then, the users would obtain optimal defense strategies in a dynamic
environment without realizing the system model’s details by using re-
inforcement learning methods. Reinforcement learning algorithms can
interact with the environment and make dynamic decisions. They have
strong adaptability to various network environments. MFC network is a
dynamic environment with exposure characteristics. After completing
an action, it is vulnerable to attack. And all legitimate end-users in
the network can resist the attack by performing actions. Therefore,
reinforcement learning algorithms can be used to optimize the decision
of legitimate users, enhance the ability to solve security problems in a
wireless network and reduce the attack probability. At the same time,
as one of the reinforcement learning algorithms, the double Q-learning
(DQL) algorithm deals with the problem of the q-learning algorithm:
overestimation of Q value. It is an efficient, reinforcement learning
algorithm [18]. Therefore, in this study, we propose a smart attack
defense scheme for legitimate users in MFC, which uses PT and the
DQL algorithm to obtain the optimal defense strategy and enhance the
detection utility of authorized users. The balance between the MFC
security and the system overhead caused by legitimate users’ choice
of defense strategies is made by reinforcement learning theory in the
scheme.

Fog computing faces many security challenges. To solve the security
problem between fog nodes and legitimate end-users, Hu et al. [19]
studied a method to calculate the inverse of the matrix using fog nodes
and guaranteed the security of user data. This method has an advan-
tage of security and verifiability, but it lacks in what concerns user
authentication before the data is transmitted. Chaudhary et al. [20]
studied a 5G-based network service chain model. They implemented an
end-user authentication method to deal with the distributed denial of
service (DDoS) attacks for cloudlet services in the fog layer. However,
this method uses several verification bills, and the verification steps
are more cumbersome. Besides, Tu et al. [21] applied a Q-learning
method in MFC to detect impersonation attacks. The process based on
EUT can reduce an average error rate of testing impersonation attacks
in MFC. But the attacking modes by the smart attackers need further
study. On the other hand, Xiao et al. [22] provided NE for a mobile
offloading game between smart attackers and end-users utilizing EUT,
where smart attackers can carry out both impersonation attack and
jamming attack at the same time. This scheme also cannot take the
probability of bias brought by smart attackers into account. Besides,
Yang et al. [23] proposed a jamming attack game based on PT. It
describes the influence of jamming attackers and end-users on the
signal to interference plus noise ratio (SINR) in the dynamic scenario
with changeable channel gain. PT is a theory that describes the users’
risk preferences for decision making. The theory holds that people
avoid risks when they are faced with ‘‘gain’’ and prefer risks when they
are faced with ‘‘loss.’’ It calculates the utility of participants in the game

by applying subjective probability. The proposed theory has not been
implemented in the fog computing environment yet, and it may provide
a useful direction towards our new research.

Also, regarding the role of reinforcement learning methods in dy-
namic environments, many researchers used reinforcement learning
algorithms and greedy strategies to solve the optimal solution of income
value, action value, or action sequence. Zhou et al. [24] proposed
a delayed forward algorithm based on a greedy strategy to obtain
the essential k nodes in the model, which improved the convergence
efficiency. Chen et al. [25] combined genetic network planning with the
Sarsa algorithm and applied it to network transaction rules, which im-
proved transaction profits. Tu et al. [21] used the Q-learning algorithm
to fog the environment to enhance the accuracy of impersonation attack
detection. However, the algorithms involved in the above research
works need to be more widely used in MFC networks so that researchers
can comprehensively analyze their performance and effects on MFC
networks.

The research mentioned above only considers the traditional key
security technology and the security protection technology based on
the EUT game. It does not provide any solution for fog computing net-
works concerning smart attackers. Meanwhile, it lacks the application
of reinforcement learning algorithm in the context of fog computing.
Therefore, with the help of the PT and DQL algorithm, this paper
proposes a user-oriented smart attack defense scheme in MFC. The
contributions of this study can be summarized as follows:

• This study proposes a security model in an MFC network. Five
kinds of smart attack modes against legitimate users between the
fog layer and the end-user layer are studied. The attacks include
silence, jamming, eavesdropping, impersonation, and replay at-
tack. Meanwhile, based on a higher-layer security mechanism,
two defense strategies for legitimate users are proposed. One is a
defense mechanism only using physical layer security; the other
is a defense mechanism combining HLSM and PLS.
• Secondly, we propose the zero-sum game between smart attack-
ers and legitimate users. Moreover, we deduct the NE of the
static zero-sum game and study the influence of decision-making
of attackers and authorized users for security purposes in fog
computing networks.
• Finally, a method based on DQL to smart defense attacks in a dy-
namic environment is proposed, which can acquire the optimum
defense choices for legitimate users. In this study, experiment
results show that lower objective probability weight can sup-
press the possibility of an attack from the smart attacker. We
use our scheme to contrast with the basic schemes, i.e., the Q-
learning scheme, the Sarsa scheme, and the greedy strategy to
resist against smart attacks. Experimental results indicate that the
proposed method optimizes the decision-making process for the
optimal defense strategy, improves the utility of legitimate end-
users, and reduces the attack rate by adjusting the Q value. They
show that the proposed method has better security protection
capability.

The rest of the paper is organized as follows. Section 2 provides
details about the system model and static zero-sum game, and the DQL
method to prevent smart attacks is elaborated in Section 3. The sum-
mary of the proposed scheme and performance analysis are discussed
in Section 4. Finally, Section 5 concludes this paper.

2. System model and methodology of static zero-sum game

This Section introduces the security model and the method of a
static zero-sum game between the smart attackers and legitimate users
in MFC.
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Table 1
Five alternative attack modes.

Attack mode Symbol Interpretation

Keep silent 𝑆𝐴𝑡
1
= 0 The attacker does not choose to launch

smart attacks.
Jamming attack 𝑆𝐴𝑡

1
= 1 The attacker sends jamming signals.

Eavesdropping attack 𝑆𝐴𝑡
1
= 2 The attacker intercepts the information

between fog plane and end-user plane.
Impersonation attack 𝑆𝐴𝑡

1
= 3 The attacker impersonates the fog nodes to

send data to make the legitimate users
receive.

Replay attack 𝑆𝐴𝑡
1
= 4 The attacker sends the data packets that the

legitimate users have received.

2.1. System model

In MFC, the fog nodes apply wireless networks to communicate with
the end-users. A Fog node is a device located close to the margin of
IoT and is a data preprocessing unit for IoT devices [8]. Considering
the communication between the fog layer and the end-user layer,
any smart attacker in the MFC network may launch smart attacks
against legitimate users. Thus, we define the set of smart attackers as
𝑀 = {1, 2,… , 𝑚},∀𝑚 ∈ 𝑀 , and their attack patterns at time 𝑡 are
represented as 𝑆𝐴𝑡

𝑚
, with the set of time values expressed as 𝑇 =

{0, 1,… , 𝑡},∀𝑡 ∈ 𝑇 . Moreover, the set of legitimate users is represented
as 𝑁 = {1, 2,… , 𝑛},∀𝑛 ∈ 𝑁 . At time 𝑡, 𝑇 = {1, 2,… , 𝑡},∀𝑡 ∈ 𝑇 , their
defense patterns are represented as 𝐸𝑈 𝑡

𝑛
. Suppose at a time 𝑡, and smart

attacker 1 uses a smart programmable wireless device to launch a smart
attack on a legitimate user when the legitimate user communicates
with a fog node as it in mode 𝑆𝐴𝑡

1
. When 𝑆𝐴𝑡

1
= 0, it indicates

that the attacker keeps silent, and 𝑆𝐴𝑡
1

= 1 indicates the attacker
attacks legitimate users by sending jamming signals, which can reduce
SINR. When 𝑆𝐴𝑡

1
= 2, it indicates that the attacker uses eavesdropping

attack mode to intercept the information between fog plane and end-
user plane. When 𝑆𝐴𝑡

1
= 3, the attacker uses a false media access

control address (MAC-A) to impersonate the true fog nodes to send
data to make the legitimate users receive, i.e., the attacker adopts
an impersonation attack mode. When 𝑆𝐴𝑡

1
= 4, the attacker uses

replay attack mode to send the data packets that the legitimate user
has received, to deceive the legitimate user. Table 1 summarizes five
alternative attack modes.

There are two defense modes for the attacked legitimate user 𝐸𝑈 𝑡
1

when facing impersonation attack, jamming attack, replay attack, an
eavesdropping attack. When 𝐸𝑈 𝑡

1
= 1, the legitimate user only uses

the physical layer to defend against smart attacks. When 𝐸𝑈 𝑡
1

=

2, legitimate users will spend more system overhead. First, physical
layer security technology based on channel parameters is used for
preliminary detection, filtering, and eavesdropping prevention. Then
the higher-layer security mechanism is used to detect data validated
by the physical layer. According to the general model structure of fog
computing network, we construct a security model including smart
attackers, as shown in Fig. 1, where smart attackers can choose the
five attack modes, while legitimate users can choose the two defense
modes.

2.2. Methodology of static zero-sum game

Next, we construct a static zero-sum game between smart attack-
ers and legitimate users, in which 𝑆𝐴𝑚 represents the attack mode;
𝑁𝑢𝑚,𝑁𝑢𝑚 ≥ 1 represents the number of attack modes; and 𝐸𝑈𝑛 denotes
the defense mode. Based on PT, smart attackers and legitimate users
adopt a decision-making game to achieve NE. According to [26], game
participants take subjective probability as the benchmark to participate
in decision-making. In this study, the Prelec probability weight function
is used to calculate the subjective probability, denoted by

𝑊𝑜𝑏𝑗𝑒𝑐𝑡(𝑝) = 𝑒−(− ln 𝑝)
𝜎𝑜𝑏𝑗𝑒𝑐𝑡

, (1)

where

• p is objective probability, 𝑝 ∈ (0, 1];
• 𝜎𝑜𝑏𝑗𝑒𝑐𝑡 represent the objective probability weight, 𝜎𝑜𝑏𝑗𝑒𝑐𝑡 ∈ (0, 1];

• 𝑜𝑏𝑗𝑒𝑐𝑡 is the representation of the player of game, in this study,
𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑎𝑡𝑡𝑎𝑐 or 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑢𝑠𝑒𝑟.

The Prelec probability weight function [26] describes the result
that the objective probability of decision-making is adjusted by the
game object participating in a game because of the influence of the
weight. Enlightened by PT, when faced with high probability events,
decision-makers underestimate the corresponding objective probability.
Conversely, when faced with low probability events, decision-makers
overestimate the similar objective likelihood. Therefore, PT can be
mathematically described by Prelec probability weight function. In a
static zero-sum game, for the legitimate users, the gain from detecting
smart attack 𝑆𝐴𝑚, in defensive mode 𝐸𝑈𝑛, is denoted by 𝐺

𝐸𝑈𝑛

𝑆𝐴𝑚
. If no

smart attack is detected, the security loss suffered is indicated by 𝐿
𝐸𝑈𝑛

𝑆𝐴𝑚
.

In any defense mode, there is the rate of false positives and miss
detection. The rate of false positives refers to the probability that the
legitimate data sent by the legitimate node detected as illegal data.
The rate of miss detection indicates the probability that the illegal
data detected as legitimate data, which is the reason for the security
loss. Therefore, combining these two ratios, the error rate of legitimate
users detecting smart attack 𝑆𝐴𝑚 in defense mode 𝐸𝑈𝑛 is denoted by
𝑅
𝐸𝑈𝑛

𝑆𝐴𝑚
. According to the system model, there are five attack modes of

smart attackers and two defense modes of legitimate users. The utility
of smart attackers and legitimate users are expressed as:

𝑈𝑢𝑠𝑒𝑟(𝑆𝐴𝑚, 𝐸𝑈𝑛) = −𝑈𝑎𝑡𝑡𝑎𝑐 (𝑆𝐴𝑚, 𝐸𝑈𝑛) = 𝐺
𝐸𝑈𝑛

𝑆𝐴𝑚
− 𝑅

𝐸𝑈𝑛

𝑆𝐴𝑚
𝐿
𝐸𝑈𝑛

𝑆𝐴𝑚
, (2)

where 𝑅
𝐸𝑈𝑛

𝑆𝐴𝑚
∈ [0, 1], and is quantified to C non-zero levels. 𝑃

𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 is

the probability of 𝑅
𝐸𝑈𝑛

𝑆𝐴𝑚
= 𝑐∕𝐶, and satisfies the probability distribution

of [𝑃
𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 ]0≤𝑐≤𝐶 , where 𝑃

𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 ≥ 0, 𝑝 =

∑𝐶

𝑐=0
𝑃
𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 = 1.

According to (1), when both sides of the game calculate utility based
on EUT, the formula is

𝑈𝐸𝑈𝑇
𝑢𝑠𝑒𝑟

(𝑆𝐴𝑚, 𝐸𝑈𝑛) = −𝑈𝐸𝑈𝑇
𝑎𝑡𝑡𝑎𝑐

(𝑆𝐴𝑚, 𝐸𝑈𝑛) = 𝐺
𝐸𝑈𝑛

𝑆𝐴𝑚
−

𝐶∑

𝑐=0

𝑐𝑃
𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 𝐿

𝐸𝑈𝑛

𝑆𝐴𝑚
∕𝐶.

(3)

When both game participants use PT to calculate utility, they make
decisions based on probability, but not on objective average detection
error rate. Therefore, according to (1) and (2), the utility of both sides
are as follows.

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(𝑆𝐴𝑚, 𝐸𝑈𝑛) = 𝐺
𝐸𝑈𝑛

𝑆𝐴𝑚
−

𝐶∑

𝑐=0

𝑐𝑊𝑎𝑡𝑡𝑎𝑐 (𝑃
𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 )𝐿

𝐸𝑈𝑛

𝑆𝐴𝑚
∕𝐶, (4)

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(𝑆𝐴𝑚, 𝐸𝑈𝑛) =

𝐶∑

𝑐=0

𝑐𝑊𝑢𝑠𝑒𝑟(𝑃
𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 )𝐿

𝐸𝑈𝑛

𝑆𝐴𝑚
∕𝐶 − 𝐺

𝐸𝑈𝑛

𝑆𝐴𝑚
. (5)

In the process of the game, both sides of the game change their
probability by adjusting the objective weight and pursue the maximum
of their own utility to achieve NE. There are two kinds of NE, one
is pure strategy NE, and the other is mixed strategy NE. The pure
strategy NE is a definite NE point, and the mixed strategy NE makes
the strategy of any participant the best strategy relative to the strategy
of other participants because of the decision probability. When a smart
attacker holds the view that the defender can detect attacks accurately,
the smart attacker will choose to stop attacks. When a legitimate user
subjectively holds that he can use the HLSM mechanism to achieve
more utility, it will let 𝐸𝑈𝑛 = 2 [17]. This paper summarizes the
conditions for the emergence of two NE strategies in the zero-sum
game. The pure strategy NE combination is expressed in this paper as
(𝑆𝐴∗

𝑚
, 𝐸𝑈∗

𝑛
), which is the way to maximize the utility of players in the

game and should satisfy the following conditions.

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(𝑆𝐴∗
𝑚
, 𝐸𝑈∗

𝑛
) ≥ 𝑈𝑃𝑇

𝑢𝑠𝑒𝑟
(𝑆𝐴∗

𝑚
, 𝐸𝑈𝑛), 𝐸𝑈𝑛 = 1, 2, (6)
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Fig. 1. Smart attack security model for fog computing.

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(𝑆𝐴∗
𝑚
, 𝐸𝑈∗

𝑛
) ≥ 𝑈𝑃𝑇

𝑎𝑡𝑡𝑎𝑐
(𝑆𝐴𝑚, 𝐸𝑈∗

𝑛
), 0 ≤ 𝑆𝐴𝑚 ≤ 4. (7)

Therefore, according to (4)–(7), for example, when 𝑆𝐴𝑚 = 0, 1, 2, 3

and smart attackers decide to adopt stop attacking mode or imperson-
ation attack mode, the pure strategy NE conditions for impersonation
attack are summarized.

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(0, 1) ≥ 𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(0, 2), (8)

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(0, 1) ≥ max{𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(1, 1), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(2, 1), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(3, 1)}. (9)

NE condition (1) - when (8) and (9) are satisfied, pure strategy NE is
(0,1).

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(0, 2) ≥ 𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(0, 1), (10)

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(0, 2) ≥ max{𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(1, 2), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(2, 2), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(3, 2)}. (11)

NE condition (2) - when (10) and (11) are satisfied, pure strategy NE
is (0,2).

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(3, 1) ≥ 𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(3, 2), (12)

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(3, 1) ≥ max{𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(0, 1), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(1, 1), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(2, 1)}. (13)

NE condition (3) - when (12) and (13) are satisfied, pure strategy NE
is (3,1).

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(3, 2) ≥ 𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(3, 1), (14)

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(3, 2) ≥ max{𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(0, 2), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(1, 2), 𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(2, 2)}. (15)

NE condition (4) - when (14) and (15) are satisfied, pure strategy NE
is (3,2).

In addition, we use a table to state the conditions for the estab-
lishment of mixed strategy NE when 𝑆𝐴𝑚 = 0, 1, 2, 3. In Table 2,
𝑃𝑟𝑜 represents the probability that the user or attacker selects the
corresponding defense mode or attack mode. 𝑎1, 𝑎2, etc. represent the
utility of both sides. For game players, the mixed strategy NE needs to
make it impossible for both sides to make a targeted decision to gain
the upper hand. Therefore, for the user, when mixed strategy NE occurs,
the probability of selecting defense mode 1 and mode 2 should equal
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Table 2
Mixed strategy NE utility.

User Attacker

𝑃𝑟𝑜𝐶 (0) 𝑃𝑟𝑜𝐷(1) 𝑃𝑟𝑜𝐸 (2) 𝑃𝑟𝑜𝐹 (3)

𝑃𝑟𝑜𝐴(1) 𝑎1, 𝑎2 𝑐1, 𝑐2 𝑒1, 𝑒2 𝑔1, 𝑔2
𝑃𝑟𝑜𝐵(2) 𝑏1, 𝑏2 𝑑1, 𝑑2 𝑓1, 𝑓2 ℎ1, ℎ2

the utility gained by the attacker choosing mode 0, 1, 2 and 3. For the
attacker, it is similar. The mixed strategy NE conditions are as follows.

𝑎2𝑃𝑟𝑜𝐴 + 𝑏2𝑃𝑟𝑜𝐵 = 𝑐2𝑃𝑟𝑜𝐴 + 𝑑2𝑃𝑟𝑜𝐵 = 𝑒2𝑃𝑟𝑜𝐴 + 𝑓2𝑃𝑟𝑜𝐵

= 𝑔2𝑃𝑟𝑜𝐴 + ℎ2𝑃𝑟𝑜𝐵 (16)

𝑎1𝑃𝑟𝑜𝐶+𝑐1𝑃𝑟𝑜𝐷+𝑒1𝑃𝑟𝑜𝐸+𝑔1𝑃𝑟𝑜𝐹 = 𝑏1𝑃𝑟𝑜𝐶+𝑑1𝑃𝑟𝑜𝐷+𝑓1𝑃𝑟𝑜𝐸+ℎ1𝑃𝑟𝑜𝐹

(17)

When considering the zero-sum game of multiple smart attackers
and legitimate users, the principle of NE conditions is the same as
above. The NE strategy must exist, and maybe one of the above two
approaches. Next, taking a smart attacker and a legitimate user as an
example, this paper describes the dynamic approach of resisting smart
attacks in the zero-sum game.

3. Methodology of preventing smart attack in dynamic environ-
ment

In practical MFC networks, the game between smart attackers and
legitimate users is dynamic. The players in the game do not understand
the channel information, attack rate, and the overall network envi-
ronment model. So they can continue to play games to prevent smart
attacks, restrain the motive of smart attackers, and enhance the utility
of legitimate users. The Q-learning algorithm is a kind of reinforcement
learning method. It can acquire an optimal scheme in a dynamically
varying environment with inadequate information [27]. Suppose that
in the Q-learning algorithm, 𝑄(𝑠, 𝑎) = 0, and at any action 𝑎′, 𝑄(𝑠′, 𝑎′) =

0, with estimated error satisfying 𝑁(0, 𝜎2) distribution. Therefore, the
value of 𝑄(𝑠, 𝑎) is an immediate earning value 𝑟, and is updated accord-
ing to 𝑄(𝑠, 𝑎) = 𝜇(𝑟 + 𝛿max𝑎′ 𝑄(𝑠′, 𝑎′)). Since 𝑄(𝑠, 𝑎) = 𝐸[𝑟𝑡+1 + 𝛿𝑟𝑡+2 +

𝛿2𝑟𝑡+3 + ⋯ |𝐴𝑡 = 𝑎, 𝑆𝑡 = 𝑠], 𝐴𝑡 and 𝑆𝑡 are the set of action value and
state value respectively, 𝐸[max𝑎′ 𝑄(𝑠′, 𝑎′)] ≥ max𝑎′ 𝐸[𝑄(𝑠′, 𝑎′)], then
𝑄(𝑠, 𝑎) ≥ 𝑟, i.e., Q-learning algorithm has the problem of an over-
estimation of Q value. To overcome this problem, Hasselt proposed
the DQL method [18]. In this Section, the DQL algorithm is applied to
the game between smart attackers and legitimate users to acquire the
optimum defense scheme for legitimate users, in which 𝑆𝐴𝑡

𝑖
denotes

attack mode, and 𝐸𝑈 𝑡
𝑛
denotes defense mode.

In DQL, there are two Q-value tables. They are used to evaluate the
benefits of adopting an action in a certain state, corresponding to the
game scenario proposed. State refers to the attack mode selected by the
smart attacker in a period before a certain time, and an action refers to
the defense pattern selected by the legitimate user at time 𝑡. The two
Q-value tables can make up for each other’s Q-value calculation errors
and make the calculation results of Q-value updating more accurate.
Besides, according to the methodology of a static zero-sum game,
legitimate users calculate the utility value according to PT. We can use
this value as an immediate earning value in the DQL algorithm. The
calculation formulae of updating two Q-value tables are as follows.

𝑄1(𝑠
𝑡, 𝐸𝑈 𝑡

𝑛
) ← (1 − 𝜇)𝑄1(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
) + 𝜇(𝑈𝑃𝑇

𝑢𝑠𝑒𝑟
(𝑠𝑡, 𝐸𝑈 𝑡

𝑛
) + 𝛿𝑄2(𝑠

𝑡+1, 𝜆∗
1
)), (18)

𝑄2(𝑠
𝑡, 𝐸𝑈 𝑡

𝑛
) ← (1 − 𝜇)𝑄2(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
) + 𝜇(𝑈𝑃𝑇

𝑢𝑠𝑒𝑟
(𝑠𝑡, 𝐸𝑈 𝑡

𝑛
) + 𝛿𝑄1(𝑠

𝑡+1, 𝜆∗
2
)), (19)

where

• 𝑠𝑡 is the system state at time 𝑡;
• 𝜇 is incentive decay coefficient, 𝜇 ∈ (0, 1];

• 𝛿 is learning efficiency, 𝛿 ∈ [0, 1];
• 𝜆∗

1
and 𝜆∗

2
are the defense modes resulting in maximum Q-value

in tables 𝑄1 and 𝑄2 in state 𝑠𝑡+1, with calculation formulae as
follows.

𝜆∗
1
= arg max

𝐸𝑈 𝑡+1
𝑛

𝑄1(𝑠
𝑡+1, 𝐸𝑈 𝑡+1

𝑛
), (20)

𝜆∗
2
= arg max

𝐸𝑈 𝑡+1
𝑛

𝑄2(𝑠
𝑡+1, 𝐸𝑈 𝑡+1

𝑛
), (21)

𝑉 (𝑠𝑡) = max[
𝑄1(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
) +𝑄2(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
)

2
], 𝐸𝑈 𝑡

𝑛
∈ {1, 2}. (22)

𝑉 (𝑠𝑡) represents the maximum mean value of 𝑄1+𝑄2 in current state
corresponding to each defense mode. Therefore, the optimal defense
mode 𝜆∗ is given by:

𝜆∗ = argmax
𝐸𝑈 𝑡

𝑛

[
𝑄1(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
) +𝑄2(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
)

2
], 𝐸𝑈 𝑡

𝑛
∈ {1, 2}. (23)

Legitimate users apply 𝜀− 𝑔𝑟𝑒𝑒𝑑𝑦 strategy to choose defense modes
and update Q-value tables in each state. By using 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy,
we can select the sub-optimal defense mode with probability 𝜀. And
the defense mode satisfying 𝑉 (𝑠𝑡) is selected with probability 1−𝜀 with
𝜀 ∈ (0, 1). The game method based on DQL algorithm to prevent smart
attack is summarized as 1.

Algorithm 1 Defense Strategy Based on DQL

Step ⋆1 Initial value:
𝜇, 𝛿, 𝑆𝐴0

𝑚
, 𝜀, 𝑄1(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
) = 𝑄2(𝑠

𝑡, 𝐸𝑈 𝑡
𝑛
) = 0, 𝑉 (𝑠𝑡) = 0;

Step ⋆2 Algorithm steps:
for 𝑡 = 1, 2, 3, ... do

𝑠𝑡 = 𝑆𝐴𝑡−1
𝑚
;

Use 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy to select defense mode 𝐸𝑈 𝑡
𝑛
;

Discover next state 𝑆𝐴𝑡
𝑚
;

Calculate and obtain 𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(𝑠𝑡, 𝐸𝑈 𝑡
𝑛
);

Update 𝑄1(𝑠
𝑡, 𝐸𝑈 𝑡

𝑛
) by (18) and (20) with probability 0.5;

Otherwise, update 𝑄2(𝑠
𝑡, 𝐸𝑈 𝑡

𝑛
) by (19) and (21) ;

Update 𝑉 (𝑠𝑡) by (22);
end for

4. Performance evaluation

Based on PT, it is assumed that the zero-sum game between le-
gitimate users and smart attackers is carried out by selecting defend
modes and attack modes, respectively. Firstly, we construct four attack
modes in a static zero-sum game: silence, jamming attack, eavesdrop-
ping attack, and impersonation attack, and analyze the influence of
objective probability weight on NE. Secondly, in the dynamic game,
five attack modes are constructed: silence, jamming attack, eavesdrop-
ping attack, impersonation attack, and replay attack. To acquire the
optimum defense strategy and increase the utility of legitimate users,
a DQL game strategy to prevent smart attacks is proposed. And four
different methods are compared in 300 slots [17] under four evaluation
indicators.

4.1. NE proof

Taking four attack modes as examples, in Section 2, we evaluate the
formation conditions of pure strategy NE, which is proved as follows:

NE condition (1) - If (8) and (9) are satisfied, the pure strategy NE
combination is (0,1).
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Proof. When (8) is satisfied, according to (4), there exists

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

(0, 1) = 𝐺1
0
−

𝐶∑

𝑐=0

𝑐𝑊𝑢𝑠𝑒𝑟(𝑃
0,1
𝑐

)𝐿1
0
∕𝐶

≥ 𝐺2
0
−

𝐶∑

𝑐=0

𝑐𝑊𝑢𝑠𝑒𝑟(𝑃
0,2
𝑐

)𝐿2
0
∕𝐶 = 𝑈𝑃𝑇

𝑢𝑠𝑒𝑟
(0, 2),

(24)

which indicates that for legitimate users, the utility value of defense
mode 2 is lower than that of defense mode 1. Therefore, legitimate
users will choose the defense mode that maximizes their utility, which
satisfies (6). When (9) is satisfied, according to (5), there exists

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(0, 1) =

𝐶∑

𝑐=0

𝑐𝑊𝑎𝑡𝑡𝑎𝑐 (𝑃
0,1
𝑐

)𝐿1
0
∕𝐶 − 𝐺1

0

≥

𝐶∑

𝑐=0

𝑐𝑊𝑎𝑡𝑡𝑎𝑐 (𝑃
1,1
𝑐

)𝐿1
1
∕𝐶 − 𝐺1

1
= 𝑈𝑃𝑇

𝑎𝑡𝑡𝑎𝑐
(1, 1),

(25)

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(0, 1) =

𝐶∑

𝑐=0

𝑐𝑊𝑎𝑡𝑡𝑎𝑐 (𝑃
0,1
𝑐

)𝐿1
0
∕𝐶 − 𝐺1

0

≥

𝐶∑

𝑐=0

𝑐𝑊𝑎𝑡𝑡𝑎𝑐 (𝑃
2,1
𝑐

)𝐿1
2
∕𝐶 − 𝐺1

2
= 𝑈𝑃𝑇

𝑎𝑡𝑡𝑎𝑐
(2, 1),

(26)

𝑈𝑃𝑇
𝑎𝑡𝑡𝑎𝑐

(0, 1) =

𝐶∑

𝑐=0

𝑐𝑊𝑎𝑡𝑡𝑎𝑐 (𝑃
0,1
𝑐

)𝐿1
0
∕𝐶 − 𝐺1

0

≥

𝐶∑

𝑐=0

𝑐𝑊𝑎𝑡𝑡𝑎𝑐 (𝑃
3,1
𝑐

)𝐿1
3
∕𝐶 − 𝐺1

3
= 𝑈𝑃𝑇

𝑎𝑡𝑡𝑎𝑐
(3, 1).

(27)

The above equations indicate that smart attackers think that legit-
imate users will detect any attack. The utility value of attack mode
0 is higher than that of launching a jamming attack, eavesdropping
attack, or impersonation attack. Therefore, smart attackers will choose
the attack mode that maximizes their utility, which satisfies (7). Since
(6) and (7) are met, for game participants, to maximize their utilities,
they will not change their decision-making if their counterpart does not
change their decision, forming a pure strategy NE combination (0,1).

The proof of the pure strategy NE conditions labeled as NE condition
(2), NE condition (3), and NE condition (4) in Section 2 are similar as
that of NE condition (1). The method in Section 3 is based on Section 2.
And the formula for calculating the legitimate user utility and the
way to obtain NE condition remains unchanged. Therefore, the proof
process of the method in Section 3 is the same as that of NE condition
(1). The mixed strategy NE proof is more complicated. In this paper,
the mathematical proof is not described too much.

4.2. Parameter setup and evaluation index

In this study, based on pulse code modulation (PCM), 300-time
slots are set up in the simulation experiment, with each time slot
representing 12500/32 μs. for the convenience of calculation. The
next time intervals are expressed in microseconds. We use a computer
with an Intel i5 processor and MatLab software for simulation under
the Windows operating system. And we consider the corresponding
fog nodes, smart attackers, and legitimate users in the system model.
For a smart attacker and a legitimate user, from the perspective of
the legitimate user, we generate the objective probability matrix that
follows [𝑃

𝑆𝐴𝑚 ,𝐸𝑈𝑛
𝑐 ]0≤𝑐≤𝐶 distribution about the attack detection error

rate randomly. Table 3 shows the symbols and initial values used in the
experiment. The initial values and the matrix are used as input data for
calculating 𝑈𝑃𝑇

𝑢𝑠𝑒𝑟
(𝑠𝑡, 𝐸𝑈 𝑡

𝑛
)

In the dynamic game of withstanding smart attack, the indices of
evaluating the four methods are as follows.

Indicator (1) - The utility of legitimate users: the average PT-based
utility of authorized users in each time slot.

Indicator (2) - Attack rate: the rate of the number of attack modes
selected by smart attackers in each time slot to all modes.

Table 3
List of symbols and parameters.

Parameter Meaning Value

𝑁𝑢𝑚 Number of attack modes 4 in Figs. 2 and 5 in Figs. 3–6.
𝑆𝐴𝑚 or 𝑆𝐴𝑡

𝑚
Attack mode 0,1, . . . , 𝑁𝑢𝑚 − 1

𝐸𝑈𝑛 or 𝐸𝑈 𝑡
𝑛

Defense mode 1,2
𝜎𝑜𝑏𝑗𝑒𝑐𝑡 Objective probability weight [0,1]
𝜀 Strategy selection rate 0.9
𝜇 The learning efficiency 0.9
𝛿 Incentive decay coefficient 0.6

𝐺
𝐸𝑈𝑛

𝑆𝐴𝑚

Benefits of the legitimate
user in attack mode 𝑆𝐴𝑚

[0.99, 0.81; 1.2, 1.4; 1.5, 1.6;
1.71, 2.19] in Fig. 2. [3.6, 3.1;
1.6, 5.2; 1.5, 5.3; 1.4, 5.5; 1.3,
5.7] in Figs. 3–6.

𝐿
𝐸𝑈𝑛

𝑆𝐴𝑚

Security loss of the
legitimate user in attack
mode 𝑆𝐴𝑚

[0.5, 0.8; 0.7, 0.6; 1.1, 0.5; 1.3,
0.3] in Fig. 2. [0.2, 0.1; 0.6, 0.3;
0.7, 0.4; 0.8, 0.5; 0.9, 0.6] in
Figs. 3–6.

𝑅
𝐸𝑈𝑛

𝑆𝐴𝑚

Rate of detection error –

𝑈𝐸𝑈𝑇
𝑢𝑠𝑒𝑟

Expected utility of the
legitimate user

–

𝑈𝑃𝑇
𝑢𝑠𝑒𝑟

PT-based utility of the
legitimate user

–

𝐶, 0 ≤ 𝑐 ≤ 𝐶 Probability quantization
level

10

𝑃
𝑆𝐴𝑚 ,𝐸𝑈𝑛

𝑐 Detection error rate
distribution

–

Fig. 2. Weight of Influence in the static zero-sum game under uncertain detection
error rate at the NEs, with 𝑁𝑢𝑚 = 4, 𝐺

𝐸𝑈𝑛

𝑆𝐴𝑚

= [0.99, 0.81; 1.2, 1.4; 1.5, 1.6; 1.71, 2.19],

𝐿
𝐸𝑈𝑛

𝑆𝐴𝑚

= [0.5, 0.8; 0.7, 0.6; 1.1, 0.5; 1.3, 0.3], 𝐶 = 10, 10 objective weights and the attacker
launches jamming attacks if 𝑆𝐴𝑡

𝑚
= 1, eavesdropping attacks if 𝑆𝐴𝑡

𝑚
= 2, impersonating

attacks if 𝑆𝐴𝑡
𝑚
= 3, and does not attack if 𝑆𝐴𝑡

𝑚
= 0.

Indicator (3) - Max Q-value: the max Q-value updated in each time
slot during the update process of the Q table.

Indicator (4) - Average action value: average defense mode value
adopted by legitimate users in each time slot during Q table updat-
ing [28].

4.3. Simulation results

Based on the NE conditions of the static zero-sum game described
in Section II, this Section describes the effect of objective probability
weight in (2) of this scheme on the utility of legitimate users and NE
condition. In Fig. 2, the utility of legitimate users remains unchanged
as the objective probability weight of smart attackers increases. This
is because the objective probability weight is low. As long as the
attacker holds the view that the legitimate user will detect the attack,
even if the probability is small, the smart attacker will not launch the
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Table 4
Results and comparison of four methods in terms of four indicators.

Methods Indicators

The utility of the
legitimate users

Attack
rate

Max
Q-value

Average action
value

Proposed
method

3.7352 0.4029 11.4984 1.5971

Q-learning
[21]

3.7181 0.3575 11.9810 1.6382

Greedy
[24]

3.2239 0.5195 – –

Sarsa [25] 3.6422 0.3564 11.8589 1.6436

Fig. 3. Four methods (DQL, Q-learning, Sarsa, Greedy) in different utility
of the legitimate user about dynamic game, with 𝑁𝑢𝑚 = 5, 𝐺

𝐸𝑈𝑛

𝑆𝐴𝑚

=

[3.6, 3.1; 1.6, 5.2; 1.5, 5.3; 1.4, 5.5; 1.3, 5.7], 𝐿
𝐸𝑈𝑛

𝑆𝐴𝑚

= [0.2, 0.1; 0.6, 0.3; 0.7, 0.4; 0.8, 0.5; 0.9, 0.6],
𝐶 = 10, 𝜎𝑢𝑠𝑒𝑟 = 1, 𝜎𝑎𝑡𝑡𝑎𝑐 = 0.7 and 300 time slots.

attack, and the attack motivation is suppressed. When 𝜎𝑎𝑡𝑡𝑎𝑐 = 0.7 and
𝜎𝑢𝑠𝑒𝑟 = 1, the utility of legitimate users begins to decrease, attackers
launch impersonation attack, attack mode changes from 0 to 3, and
there is no pure strategy NE. Likewise, if 𝜎𝑢𝑠𝑒𝑟 = 0.7, when 𝜎𝑎𝑡𝑡𝑎𝑐 = 0.8,
attackers begin to attack, reducing the utility of legitimate users from
0.6869 to 0.5718. The mixed strategy NE is changed. Therefore, the
probability of attack can be reduced by reducing the weight to restrain
the attack motive. Meanwhile, if legitimate users believe that using
HLSM mode can increase utility value, then this large system overhead
defense mode will be adopted.

To better illustrate the advantages of the DQL-based smart attack de-
fense strategy, we apply three representative algorithms to the selection
of defense strategy for the smart attack and analyze them in the four
evaluation aspects as above. The three algorithms are the Q-learning
algorithm [21], Greedy algorithm [24], Sarsa algorithm [25], respec-
tively. Among which, Q-learning algorithms, the Sarsa algorithm, and
the DQL algorithm all belong to the reinforcement learning algorithm.
Since the Greedy algorithm does not involve the Q table, so only indices
(1) and (2) are considered. The results of four methods based on four
indicators are shown in Table 4, which represents the average of 300
time-slots.

As is shown in Fig. 3, it depicts the legitimate user utility results of
four algorithms in 300-time slots. In terms of the utility of authorized
users, the four algorithms have the same trend. The proposed method
converges after the 70th time slot. The utility of legitimate users in our
approach increases by 0.46% on an average compared with the process
based on Q-learning, and by 2.55% on an average compared with the
method based on Sarsa. This indicates that our approach optimizes the
estimation of Q value and enhances the correctness of decision-making.
The three methods based on the reinforcement learning algorithm using

Fig. 4. Four methods (DQL, Q-learning, Sarsa, Greedy) in different attack rate
(four kinds of attack) about dynamic game, with 𝑁𝑢𝑚 = 5, 𝐺

𝐸𝑈𝑛

𝑆𝐴𝑚

=

[3.6, 3.1; 1.6, 5.2; 1.5, 5.3; 1.4, 5.5; 1.3, 5.7], 𝐿
𝐸𝑈𝑛

𝑆𝐴𝑚

= [0.2, 0.1; 0.6, 0.3; 0.7, 0.4; 0.8, 0.5; 0.9, 0.6],
𝐶 = 10, 𝜎𝑢𝑠𝑒𝑟 = 1, 𝜎𝑎𝑡𝑡𝑎𝑐 = 0.7 and 300 time slots.

Q-table have higher legitimate user utility. This is because they con-
tinuously learn the experience of decision-making before choosing the
optimum defense scheme. Each decision determines a more appropriate
defense strategy and realizes the whole process through the Q table.
This makes a trade-off between immediate utility and future utility.
Conversely, the method based Greedy maximizes the quick utility and
quickly leads to locally optimal solutions for legitimate users.

In terms of convergence speed of the proposed method, about the
proposed method, the convergence rate is the slowest because of the
other renewal of two Q tables. However, considering the overall results,
the proposed method has the best performance. It can help legitimate
users to increase the utility of detection attacks, reduce the detection
error rate, and improve the security between the fog layer and user
layer in the MFC network.

In Fig. 4, the total attack rates of four different methods are com-
pared. With the time, the total attack rate decreases and then fluctuates
around a certain value due to the convergence. The total attack rate
of the proposed method is reduced from 0.95 to 0.35 in the 100th
time slot. Our method increases the total attack rate by an average
of 12.7% compared with the method based on Q-learning. This is
because the DQL algorithm contributes to the solution of an over-
estimation of Q value. Firstly, when the Q table is updated, the Q-value
is smaller than the method based on Q-learning, thus correcting the
legitimate user’s choice of defense mode at each moment, increasing the
immediate utility of the legitimate users. Secondly, compared with the
method based on Q-learning, the smart attacker in the proposed method
will pursue risk-benefit and will consider the mode of increasing its
utility when choosing to attack. Therefore, the total attack rate of
the proposed method is higher compared with the method based on
Q-learning. The three methods based on the reinforcement learning
algorithm have lower the total attack rate than the Greedy method.
Therefore, the three methods based on the reinforcement learning
algorithm can better restrain the aggressive motive of attackers. Still,
the total attack rate of the proposed method is higher than that of the
other two methods.

As is shown in Fig. 5, it depicts the change of the maximum Q in
three defense strategies based on the reinforcement learning algorithm
in 1–300 time slots. Max Q-value increases with time. After conver-
gence, the max Q-value of the proposed method is the smallest. The
max Q-value decreases by 4.2% compared with the method based on
Q-learning. The reason is that the DQL compensates for the estimation
error of Q-value with two Q tables, which makes the estimated gain
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Fig. 5. Three methods (DQL, Q-learning, Sarsa) in different maximum Q values about
dynamic game, with 𝑁𝑢𝑚 = 5, 𝐺𝐸𝑈𝑛

𝑆𝐴𝑚

= [3.6, 3.1; 1.6, 5.2; 1.5, 5.3; 1.4, 5.5; 1.3, 5.7], 𝐿𝐸𝑈𝑛

𝑆𝐴𝑚

=

[0.2, 0.1; 0.6, 0.3; 0.7, 0.4; 0.8, 0.5; 0.9, 0.6], 𝐶 = 10, 𝜎𝑢𝑠𝑒𝑟 = 1, 𝜎𝑎𝑡𝑡𝑎𝑐 = 0.7 and 300 time slots.

Fig. 6. Three methods (DQL, Q-learning, Sarsa) in different average action values about
dynamic subjective game, with 𝑁𝑢𝑚 = 5, 𝐺𝐸𝑈𝑛

𝑆𝐴𝑚

= [3.6, 3.1; 1.6, 5.2; 1.5, 5.3; 1.4, 5.5; 1.3, 5.7],

𝐿
𝐸𝑈𝑛

𝑆𝐴𝑚

= [0.2, 0.1; 0.6, 0.3; 0.7, 0.4; 0.8, 0.5; 0.9, 0.6], 𝐶 = 10, 𝜎𝑢𝑠𝑒𝑟 = 1, 𝜎𝑎𝑡𝑡𝑎𝑐 = 0.7 and 300
time slots.

value in each state more accurate. Also, since the actual value of the
current state and the next state are taken into account in the calculation
of Q-value by Sarsa algorithm, the average max Q-value in 300-time
slots is reduced by about 1.19%.

Fig. 6 depicts average action values in three defense strategies based
on the reinforcement learning algorithm in 1–300 time slots. Legitimate
users can use defense mode value as an action value. The action value
of the three methods has the same trend, and the convergence speed is
similar. It converges after the 80th slot. After convergence, the average
action value of the proposed method is about 1.60. It is reduced by
about 2.51% compared with the process based on Q-learning. Since
the action value can only be 1 or 2, the smaller the action value, the
more likely the legitimate user is to use the PLS mechanism. Likewise,
compared with the Sarsa-based method, the DQL-based process reduces
the action value selected in each time slot by an average of 2.83%.
After correcting the estimation error of Q-value and enhancing the cor-
rectness of decision-making, our proposed method is more inclined to
choose the defense mode using the PLS mechanism compared with the
other two techniques. The defense mode with action value-1 can cost
less system overhead. Therefore, the proposed method for preventing

smart attacks can optimize the decision-making of defense mode. It has
excellent performance and enhances the security of the MFC network.

4.4. Discussions

In summary, in the DQL method that prevents smart attacks, the
key is to (1) restrain the motivation of smart attackers, (2) reduce the
attack rate, (3) optimize the decision-making process of the legitimate
user to obtain the optimal defense strategy, (4) improve the utility of
the authorized user. The reinforcement learning algorithm can explore
the environment and benefit through executing actions until reaching
goals. The simulation results show that the method based on rein-
forcement learning has better performance than the greedy strategy
in increasing the utility of legitimate users and reducing the attack
rate. Meanwhile, the proposed method makes authorized users have
an excellent utility compared with the method based on Q-learning
and the technique based on Sarsa. Moreover, as can be seen from
Fig. 5, and Fig. 6, the proposed method can solve three problems
(1) overcomes the problem of over-estimation of Q value in the Q-
learning-based method, (2) optimizes the decision-making process of
obtaining the optimal defense strategy, (3) reduces the detection error
rate of legitimate users. Therefore, in MFC, the proposed method is
more appropriate for the dynamic environment of the game between
smart attackers and authorized users.

5. Conclusions

This paper presented a model on the smart attacks for end-users in
MFC. It proposed a DQL defense scheme that can restrain the attack
motive of smart attackers in the dynamic environment and generate
the optimum defense choice of legitimate users against smart attacks.
The scheme first addressed a static zero-sum game between the smart
attacker and the authorized user. The utility of players in the game and
NE conditions was calculated. Then, the DQL algorithm was used to
defend against smart attacks, and the optimal defense strategy based
on a zero-sum game in a dynamic environment was achieved. The
experiment results indicate that our method can effectively enhance
the utility of legitimate users and reduce the attack rate. The proposed
method improves the utility of the authorized user by an average of
6.29% and decreases the average action value about reinforcement
learning methods by an average of 2.69% compared with the methods
based on Q-learning algorithm, Sarsa algorithm and greedy strategy
to prevent smart attacks. It restrains the total attack rate by 22.44%
compared with the method based on the greedy approach. Therefore,
the proposed method has better security protection capability. In future
work, with the help of other reinforcement learning algorithms, the
specific techniques to detect attacks about various security threats will
be continuously investigated in a fog computing environment.
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