

On the adequacy of SDN and TSN for Industry
4.0

Conference Paper

CISTER-TR-190402

Luis Silva

Paulo Pedreiras

Pedro Fonseca

Luis Almeida

Conference Paper CISTER-TR-190402 On the adequacy of SDN and TSN for Industry 4.0

© 2019 CISTER Research Center
www.cister-labs.pt

1

On the adequacy of SDN and TSN for Industry 4.0

Luis Silva, Paulo Pedreiras, Pedro Fonseca, Luis Almeida

CISTER Research Centre

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Industry 4.0, Industrial Internet of Things, Cyber-Physical Production Systems and Smart Factories are
closelyrelated emerging concepts expected to drive significant improvementsin industrial production systems, with
gains in efficiency,cost and customer satisfaction. These concepts are intimatelyassociated with highly distributed
and cooperative architecturesthat rely, naturally, on the network infrastructure. However,traditional industrial
communication technologies hardly providethe required level of integration, flexibility and performance.Seeking a
solution to this mismatch, we assess two technologiesthat appeared recently in the industrial realm, namely
IEEE802.1 Time-Sensitive Networking (TSN) and Software-DefinedNetworking (SDN). TSN and SDN are
fundamentally different,thus having distinct strengths and weaknesses. This paper reviewstheir fundamental
operation principles, evaluating themqualitatively against the specific requirements posed by Industry4.0.

On the adequacy of SDN and TSN for Industry 4.0

Luis Silva, Paulo Pedreiras, Pedro Fonseca

IT - Instituto de Telecomunicações

DETI - Universidade de Aveiro

Aveiro, Portugal

{lems,pbrp,pf}@ua.pt

Luis Almeida

CISTER - Research Center in Real-Time Systems

DEEC / FEUP - Universidade do Porto

Porto, Portugal

lda@fe.up.pt

Abstract—Industry 4.0, Industrial Internet of Things, Cyber-
Physical Production Systems and Smart Factories are closely
related emerging concepts expected to drive significant improve-
ments in industrial production systems, with gains in efficiency,
cost and customer satisfaction. These concepts are intimately
associated with highly distributed and cooperative architectures
that rely, naturally, on the network infrastructure. However,
traditional industrial communication technologies hardly provide
the required level of integration, flexibility and performance.
Seeking a solution to this mismatch, we assess two technologies
that appeared recently in the industrial realm, namely IEEE
802.1 Time-Sensitive Networking (TSN) and Software-Defined
Networking (SDN). TSN and SDN are fundamentally different,
thus having distinct strengths and weaknesses. This paper re-
views their fundamental operation principles, evaluating them
qualitatively against the specific requirements posed by Industry
4.0.

Index Terms—Industry 4.0, Time-Sensitive Networking,
Software-Defined Networking, Real-Time Communications

I. INTRODUCTION

INDUSTRY 4.0 aims at the digitization of production sys-

tems, allowing a seamless integration of physical objects,

humans and logical entities. This new paradigm comes with

the promise of significant improvements in industrial produc-

tion systems, such as fewer equipment failures and downtime,

reduced maintenance, higher throughput and higher flexibility,

to name just a few, with gains in efficiency, cost, and customer

satisfaction [1].

This paradigm, inherently distributed and cooperative, relies

on industrial networks to enable data exchanges and, ulti-

mately, the cooperation among assets, from elemental sensors

and actuators, to complex production machinery, maintenance

systems, management and logistics, etc. Data streams re-

flect this diversity, varying in bitrate, criticality and time-

liness. These communication requirements are beyond what

conventional fieldbus protocols, e.g. CAN and PROFIBUS,

can provide due to limitations in bandwidth, physical range,

addressing space, etc. Real-Time Ethernet protocols are in-

creasingly used in new machinery and connection systems,

exploiting Ethernet high bandwidth, low cost and standardized

hardware. However, these protocols still fail in providing the

integration needed in Industry 4.0 due to incompatible options

This work has been supported by the European Regional Development Fund
(FEDER) through a grant of the Operational Programme for Competitivity and
Internationalization of Portugal 2020 Partnership Agreement (PRODUTECH-
SIF, POCI-01-0247-FEDER-024541).

in their stacks. As consequence, integration requires deploying

gateways that increase cost, latency, and management com-

plexity. Moreover, current Real-Time Ethernet protocols were

mostly designed to favor real-time performance over run-time

flexibility, and those that support this flexibility offer limited

real-time performance [2].

Attempting to cater for Industry 4.0 requirements, two

technologies appeared recently in the industrial realm, arriving

from different domains [3] [4]. One is Ethernet IEEE 802.1

Time Sensitive Networking (TSN), which aims at very low

latency and high availability, with origin in audio/video trans-

mission but later enhanced for the automotive and industrial

control domains. The other is Software-Defined Networking

(SDN) that introduced the concept of network programmabil-

ity and with origin in data networks management. SDN offers

an unprecedented level of run-time flexibility, with benefits in

management, configuration efficiency, and performance. While

TSN takes an evolutionary approach, extending the Ethernet

base to fulfill specific requirements, e.g., time-triggered traffic,

reservations and configuration, SDN takes a disruptive ap-

proach, introducing a framework that allows implementing,

programmatically, the communication services.

This paper reviews the concepts of Industry 4.0 and Smart

Factories (Section II), focusing on the communication require-

ments, as well as the operation principles of SDN (Section

III) and TSN (Section IV). Our contribution is a qualitative

comparison of how efficiently TSN and SDN address the

requirements of Industry 4.0 (Section V).

II. INDUSTRY 4.0 COMMUNICATION REQUIREMENTS

Industry 4.0 means the large scale application of Infor-

mation and Communication Technologies (ICT) to industrial

production systems. The expression originated from a strategic

initiative of the German government to exploit Germany’s

leadership in machinery industry, ICT competences and em-

bedded systems [5] but it soon became a global buzz-word

for the digitization of production processes, associated to the

concept of Digital or Smart Factory.

A Smart Factory can reconfigure itself based on instan-

taneous information from the production system through a

myriad of sensors. This requires full horizontal and vertical

integration. The former means interoperability between all

stages of the value chain, from the moment raw materials enter

the premises, through the different steps of the production

process, to the delivery to the customer. The latter means

interoperability through all levels of the production system,

from Enterprise Resource Planning (ERP) systems to the con-

trol of every machine in the plant. The digital horizontal and

vertical coupling allows an unprecedented level of flexibility

and autonomy, such as production batches of size one, where

every product is customized.

Supporting this level of digitization is a combination of an

ever increasing computing power at lowering costs, ubiquitous

communication networks, increasing data storage capability

and the emergence of machine learning algorithms. This is

revolutionizing how production systems operate. With infor-

mation on every detail of the production process a virtual

factory replica is created, its digital twin, which, in turn, allows

simulating the production system, testing solutions before

they are implemented in the plant. This implies a complex

exchange of multiple and heterogeneous flows of data visible,

for instance, in ISA-95 [6], the ANSI standard for Entreprise-

Control Systems Integration. ISA-95 defines a function hier-

archy that organizes factory control and supervision systems

in 4 levels, starting in Level 1 (sensing and manipulating

the production process), going through levels 2 (monitoring,

supervisory control and automated control of the production

process) and 3 (work flow / recipe control to produce the

desired end products, maintaining records and optimizing the

production process) up to level 4 (establishing the basic plant

schedule: production, material use, delivery, and shipping and

determining inventory levels). These levels differ significantly

in their time frames and size of transactions, from few bits in

milliseconds scale in level 1 to large files in daily scale in level

4. And all exchanges must co-exist over the network, i.e., the

download of an 800 MB CNC program by the Manufacturing

Execution System to a machine for the next production item

cannot interfere with the sensor and actuator flows involved

in producing the current item.

Currently, a common solution to support such disparate

exchanges is using separated networks. Field-buses handle the

frequent and small transactions of ISA-95 level 1 while large

and less frequent transactions use general purpose IP networks.

However, this becomes an obstacle to integration and run-

time flexibility, requiring gateways to interconnect the multiple

networks, adding complexity, latency and potential faults.

Conversely, virtualizing large bandwidth networks, e.g.,

Ethernet-based, can also support those heterogeneous trans-

actions, providing virtual channels to distinct flows, each with

guaranteed Quality of Service. It simplifies the global com-

munications architecture, facilitating vertical and horizontal

integration and enhancing operational flexibility.

III. BACKGROUND ON SDN

Software Defined Networking (SDN) is a network man-

agement paradigm that emerged to tackle the complexity in

managing large networks, e.g. campus or data center networks,

providing the flexibility to support server virtualization and

cloud computing. SDN can be briefly characterized by the sep-

aration of traffic control (control plane) and traffic forwarding

Data Plane

Control Plane

Application Plane

Cloud Orchestration

Northbound API

Business Application SDN Applications

SDN Control Software
SDN Controller

Control Logic

Southbound API

Network

Infrastructure

Data forwarding

devices

Fig. 1. Architecture of an SDN-enabled network

...

OpenFlow Pipeline

OpenFlow

Channel

OpenFlow

Channel

Control Channel

OpenFlow

Controller

OpenFlow

Controller

Flow Entry 0

...

Action

Set = {}

Flow

Table

n

Execute

Action

Set

Group

Table

Egress

Port y

Drop

Frame

Flow Table 0

OpenFlow

Protocol

Flow Entry N

Ingress

Port x

Fig. 2. Overview of OpenFlow objects

(data plane) (Fig. 1). In SDN, traffic control rules are defined

by an SDN controller that performs admission control of new

traffic flows and instructs network devices, e.g., switches, on

how to forward traffic. Controller and devices interact via the

control southbound interface that abstracts away differences

among data plane technologies. The current de facto standard

southbound interface is the OpenFlow protocol. User applica-

tions run in the application plane and request network services

through the northbound interface [7] [8].

A. OpenFlow Protocol

OpenFlow, maintained by the Open Network Foundation

(ONF), defines a set of objects, procedures and signalling mes-

sages that OpenFlow-enabled forwarding devices must adhere

to [9]. An Openflow switch (Fig.2 [9]) consists of a forwarding

pipeline with one or more flow tables (the OpenFlow Pipeline),

a group table, a control channel comprising one or more

logical OpenFlow channels to external controllers, and a set

of ingress/egress OpenFlow ports. An OpenFlow device must

support three types of OpenFlow ports: (i) physical, i.e., switch

hardware ports, (ii) reserved, i.e., logical ports for specific

predefined processing, such as forwarding packets to a set of

physical ports; (iii) logical, for processing methods defined

outside the protocol. Packet, time and other counters, used for

statistics and bandwidth control, are also mandatory.

OpenFlow switches receive frames at ingress ports and

send them to the first flow table of the OpenFlow pipeline

for processing [9]. Each flow table contains a set of Flow

Entries that comprise: (i) a priority level; (ii) match fields; (iii)

associated instructions; (iv) fields for liveliness and statistics.

Filters can address several frame fields such as Virtual Local

Area Network (VLAN) ID, UDP/TCP ports, and Ethernet

and IPV4 addresses. In a flow table, frames are matched

against flow entries following priority order. When a frame

matches the filters of a flow entry the associated instructions

are performed, possibly changing the list of actions associated

to the frame (Action Set), modifying certain fields of the frame,

or explicitly directing it to a subsequent flow table for further

processing. Once the frame reaches the last table, or is not

directed to a subsequent one by the matched entry, its current

action set is executed. Thus, a frame can be sent to a group

table, forwarded to a given OpenFlow egress port, or dropped.

Frames that do not match a flow entry are either dropped or,

if configured, processed according to a special entry and, for

example, sent to the controller (packet-in transaction). Group

tables contain a subset of instructions similar to those of flow

tables, with similar outcomes, and a set of special actions

(buckets) to facilitate complex operations such as fast fail-over

and link aggregation.

Optionally, devices can provide a Meter Table with traffic

shapers (Meters) that can be configured and targeted by actions

to constrain the traffic rate at egress ports. Each meter mea-

sures rate of traffic flows assigned to it and can be configured

to drop frames or increase the drop precedence of DiffServ

flows upon reaching a programmable rate threshold.

Finally, there are OpenFlow messages for SDN controllers

to configure device capabilities (e.g., number of flow tables),

filters and instructions of entries belonging to flow and group

tables, meters, and to retrieve state information, etc. Com-

munication between controllers and switches uses OpenFlow

channels that provide secure and reliable message delivery.

B. SDN in industry

The unprecedented level of flexibility provided by SDN

soon raised interest on using it in industry as reported in

the scientific literature, including qualitative and quantitative

evaluations, as well as methods to extend its functionality.

1) Qualitative and Performance Evaluations: Both Hen-

neke et al [10] and Ehrlich et al. [11] identify industrial

communication requirements that are not adequately sup-

ported by SDN, yet, e.g., expressing timing and Quality-

of-Service (QoS) guarantees. Thiele et al. [12] performed

a formal analysis of OpenFlow deployed on Time-Sensitive

Networking (TSN) Ethernet considering the communication

with the controller, the network topology and the scalability

limits for real-time usage, showing that latency values below

50ms are possible. Herlich et al. [13] highlight the possible

gains in supporting arbitrary network topologies, dynamic

(re)configurations, and fast fail-over by using SDN on real-

time Ethernet networks.

2) SDN Extension for Industrial Scenarios: In [14], Ter-

non et al. investigate how the Flexible Time-Triggered (FTT)

paradigm can be instantiated on standard OpenFlow hardware

making it suitable for real-time scenarios. The paper presents a

new protocol, FTT-OpenFlow, that enhances the response time

of sporadic real-time traffic, shown in an avionics scenario,

and of non-real-time traffic, too, in single switch scenarios.

In [15], Nayak et al. exploit the logical centralization of SDN

to build a global view of the network and compute routes

and transmission schedules that reduce in-network queuing

of time-triggered traffic. Despite obtaining low latency and

jitter, the proposal does not address coexistence with sporadic

real-time traffic. Ahmed et al. [16] propose SDPROFINET,

an SDN deployment over PROFINET networks. Similarly

to [15], the central controller acquires network information and

configures the data plane PROFINET data channels according

to the desired routes. Despite the gains in network manage-

ment, operational flexibility is constrained by PROFINET.

In [17], Ishimori et al. propose a hierarchical scheduling

approach, similar to that of Linux Traffic Control (TC), to

overcome the limitations of the First-In First-Out (FIFO)

queues in OpenFlow devices. It supports HTB (Hierarchical

Token Bucket), RED (Randomly Early Detection), and SFQ

(Stochastic Fair Queuing) that, however, provide bandwidth-

based traffic shaping, only, with limited latency control. Fi-

nally, Silva et al. [18] propose extending OpenFlow with the

capacity to manage real-time reservations provided by certain

switches in the data-plane , e.g., HaRTES. They also propose

a new controller extended to handle real-time attributes and

provide schedulability analysis for time-triggered traffic.

IV. BACKGROUND ON TSN

TSN is a set of technical standards developed by the IEEE

802.1 time-sensitive networking task group [19], the successor

of the audio/video bridging (AVB) task group, to improve

the real-time behaviour of IEEE 802 network technologies.

TSN focuses on four main aspects: temporal synchronization

among devices, end-to-end bounded latency and high relia-

bility for real-time traffic streams, as well as management

of network resources. An overview of the current set of

standards and amendments is depicted in Fig.3. Greyed out

standards/amendments are currently being under development.

As not all enhancements may be supported by VLAN bridges,

TSN defines a set of profiles (see Fig.3), specifying the

necessary features and performance requirements for a given

application area, that can be used as reference for vendors.

In TSN networks, IEEE 802.1Q VLAN bridges [21], en-

hanced with TSN features, interconnect end stations (appli-

cation nodes) following topologies identical to those found

in standard switched Ethernet networks. End stations and

bridges can be synchronized in time (IEEE 802.1AS and

IEEE P802.1AS-Rev [22]) to ensure jitter and synchronization

requirements of time-sensitive applications such as audio and

video streaming. To provide seamless redundancy and increase

the reliability of real-time communications, source end stations

may transmit duplicated frames (pertaining to a given stream)

Time-Sensitive Networking

Synchronization Reliability

Bounded Low Latency Resource Management

Application Profiles

 Timing and synchronization (802.1AS)

 Includes a IEEE 1588 profile

 Frame replication (802.1CB)

 Path control (802.1Qca
1
)

 Per-stream filtering (802.1Qci
1
)

 Reliability for time sync (P802.1AS-Rev)

 Credit Based Shaper (802.1Qav
3
)

 Preemption (802.3br & 802.1Qbu
1
)

 Scheduled traffic (802.1Qbv
1
)

 Cyclic queing & forwarding (802.1Qch
1
)

 Asynchronous shaping (P802.1Qcr)

 QoS provision (P802.1DC)

 Stream Reservation Protocol (802.1Qat
3
)

 TSN configuration (802.1Qcc
2
)

 Basic YANG (802.1Qcp
2
)

 YANG models (P802.1{Qcx ,Qcw,ABcu,CBcv})

 Link-local Registration (P802.1CS)

 Resource Allocation Protocol (P802.1Qdd)

 Extended stream identification (P802.1CBdb)

1
Amends IEEE 802.1Q-2014 and is now incorporated into IEEE

802.1Q-2018

 Audio-Video Bridging (AVB) Systems (802.1BA)

 Fronthaul (cellular) networks (802.1CM)

 Industrial automation (IEC/IEEE 60802)

 Service provider networks (P802.1DF)

 Automotive in-vehicle networks (P802.1DG)

2
Amends IEEE 802.1Q-2018

3
Incorporated into IEEE 802.1Q-2011 and newer 802.1Q revisions

Fig. 3. Time-Sensitive Networking (TSN) set of standards/amendments [20]

X

c o c c c c c c

Transmission

Selection

 Algorithm

...
Queue #7

Egress Port Z

Transmission

Gate

(Open)

Transmission

Selection

Algorithm

Queue #6

Transmission

Gate

(Closed)

Transmission

Selection

Algorithm

Queue #5

Transmission

Gate

(Closed)

Transmission

Selection

Algorithm

Queue #0

Transmission

Gate

(Closed)

Frames from queue #7 only

Queue # SPT ETS CBS

7
6
...
1
0

...
X

...

X

X

...

Transmission Selection

Algorithm Table

Queue #

T00
T01
T02
...

Gate Control List

7 6 5 4 3 2 1 0Gate Op #

T-- c c c c c o o o

o c c c c c c c

...

c c c c c c c c

GateState

Gate Operation #T01

o c c c c c c c

X [ns]

802.1Qbv

802.1Qat

Express Preemptable Preemptable Preemptable

Transmission Selection802.1Qbu & 802.3br

802.1Qci - Stream Filtering and Policing

Ingress and egress filtering

Ingress Port X

PCP Class (Queue #)

0
1
...
6
7

...
6

Traffic Class Table

0
1

7

Frame with PCP = 7

802.1AS

TimeInterval

After

X ns

Fig. 4. TSN enhancements to the forwarding process of IEEE 802.1Q VLAN
bridges

across different paths in the network (IEEE 802.1CB [23]).

Frame replicas are automatically discarded at convergence

points in the network and/or at sink end stations. Network

engineers may use TSN’s path control services (802.1Qca

[21]) to configure the necessary disjoint network paths.

The key TSN features with focus on QoS provisioning, in

particular on the latency and determinism aspects of traffic

with timeliness requirements, augment the forwarding process

of standard VLAN bridges as shown in Fig.4 (TSN-related

enhancements are colored). Next, we present an overview

of the forwarding process and how these enhancements are

framed in it. In Section IV-B we summarize the operation

of the most relevant QoS services, while in Section IV-C

we introduce the models for the configuration of real-time

reservations in TSN.

A. Forwarding process

In enhanced VLAN bridges, frames received at ingress

ports are first subjected to ingress and egress filtering which

considers distinct types of information, e.g. active topology

and frames’ MAC addresses, to set the potential egress ports

for each frame. Then, the bridge consults a Traffic Class Table

to translate the priority conveyed by the Priority Code Point

(PCP) field of frames’ 802.1Q tag into a certain traffic class.

Frames of a certain traffic class are stored into the respective

FIFO-like queue, e.g. class 7 on queue #7 and class 0 on

queue #0. By default, untagged frames convey the priority

level 0. With IEEE 802.1Qci, enabled bridges can use a set of

meters and time-aware filters to police traffic to, for example,

direct traffic from misbehaving classes to low priority queues

and prevent queue flooding [21]. As the PCP field comprises

3 bits, up to 8 traffic classes with separate queues may be

supported. Moreover, all traffic class tables may be configured

by management or TSN’s reservation services.

Finally, each queue is associated with a Transmission Se-

lection Algorithm that selects frames for transmission if: (i) its

operation determines that there is a frame available for trans-

mission, and (ii), the algorithm of numerically higher traffic

classes, i.e. with higher priority, determines that there are no

frames available. On each port, a configurable Transmission

Selection Algorithm Table assigns to each traffic class one of

the following algorithms [21]:

• Strict priority: a frame is available if the queue contains

one or more frames;

• Credit-Based Shaper (CBS): a frame is available for

transmission if the queue is not empty and the shaper

credit is zero or positive;

• Enhanced Transmission Selection (ETS): a frame is

available if: (i) the queue is not empty, (ii) the class has

not surpassed the allocated bandwidth, (iii) there are no

frames available in queues running strict priority or CBS

algorithms.

The Transmission Selection component verifies the state of

each selection algorithm in descending order of priority, i.e.

from queue #7 down to queue #0, and sends selected frames

through the egress port. If the bridge supports frame preemp-

tion (802.1Qbu and 802.3br [21], [24]), ongoing transmissions

of traffic classes configured as preemptable are deferred in

favor of classes deemed express. Additionally, available frames

from queues whose Transmission Gate (explained bellow) is

on close state are not serviced for transmission.

B. Forwarding QoS services

1) Frame preemption (IEEE 802.1Qbu and IEEE 802.3br):

Frame preemption allows frames from express traffic classes

to suspend the transmission of classes deemed preemptable.

Preempted frames are divided into fragments carrying a mini-

mum of 60 bytes from the original frame, 8 bytes as preamble

and control, and 4 bytes for error detection (Frame Check

Sequence (FCS) from the original frame in the last fragment)

[24]. Therefore, frames sized less than 123 bytes or with less

than 64 bytes left to transmit can’t be preempted. Moreover,

fragmentation is confined to a single link between two hops,

i.e. a frame is reassembled before being sent to the following

link.

2) Credit Based Shaper (IEEE 802.1Qav): The CBS al-

gorithm shapes the transmission of traffic from egress queues

according to the bandwidth negotiated for a stream reservation

while also controlling burstiness. Following the operation of

CBS, a queued frame is selected for transmission if the

medium is free, no higher priority traffic awaits transmission,

and the credit value is zero or positive. Credit decreases or

increases at distinct rates when a frame is being transmitted

or waiting for transmission, respectively. The rate slopes are

proportional to the amount of reserved bandwidth for the

queue. Bounds for the maximum accumulated credit limit

the maximum burst size a class may perform after awaiting

transmission due to interference [21].

3) Traffic Scheduling (IEEE 802.1Qbv): IEEE 802.1Qbv

allows TSN devices to transmit frames according to a time

schedule [21]. All queues are associated with a Transmission

Gate which is able to enable (gate Open) or disable (gate

Closed) the associated transmission selection algorithm, allow-

ing or preventing it from selecting frames from the concerned

queue. Transmission schedules can be built by configuring, on

each port, the respective Gate Control List. This list contains

an ordered set of Gate Operations that dictate, for a given time

interval, the state of each transmission gate. Each control list

can be (re)configured, set to execute at given time instant, and

repeated periodically following a configurable schedule cycle

time. An example of a configuration using transmission gates

is presented in Figure 4.

The aforementioned services can exploit the time synchro-

nization provided by 802.1AS to implement distinct schedul-

ing models, e.g. Time-Division Multiple Access (TDMA).

Cyclic Queuing and Forwarding (CQF) (IEEE 802.1Qch), col-

loquially known as Peristaltic Shaping, combines the special

time-aware stream filters of IEEE 802.1Qci and the scheduling

facilities of IEEE 802.1Qbv to devise a model where frames

progress through the network cyclically while stopping at

each hop for exactly one schedule cycle time [21]. The

Paternoster algorithm [25] and Asynchronous Traffic Shaping

(ATS) (P802.1Qcr [26]) are alternative models to CQF that do

not require global time synchronization and reduce forwarding

latency at the cost of higher jitter and additional resources.

As traffic target by TSN scheduling services is typically

sensitive to jitter, a guard window must be enforced, e.g. using

gates to block non-scheduled queues, at the start of every

schedule cycle to prevent interference from non-scheduled

traffic. If the bridge supports frame preemption, special gate

operations can suspend on-going transmissions before the start

of a new cycle and minimize the length of the guard window.

C. Configuration Models (IEEE 802.1Qcc)

The TSN traffic model uses the concept of Stream as a uni-

directional flow of time-sensitive data sent by a single Talker

to one or more Listener end stations. To configure network

bridges with the necessary QoS services, users (Talkers and

Listeners) must first provide a set of information regarding

their capabilities, resources, and characteristics of associated

streams. In summary, frames are associated to streams via

fields such as VLAN ID and MAC/IP addresses, streams are

classified into traffic classes using the PCP code and their

properties expressed via maximum frame size, transmission

period (interval), and the number of frames per interval [27].

To exchange the aforementioned information and enact con-

figurations, TSN provides the following configuration models

[27].

1) Fully distributed model: Following this model, user

requirements are propagated along the network, from talkers

to listeners, without the use of a centralized configuration

entity. As requirements propagate through the network, each

bridge locally verifies whether it has enough resources to

fulfill the requesting stream’s requirements, and configures the

necessary QoS services accordingly. TSN relies on the Stream

Reservation Protocol (SRP) [21], extended by 802.1Qcc [27],

to enable users to setup bandwidth reservations for up to

7 configurable classes (Stream Reservation - SR - A up to

G). Due to its distributed nature and reliance on SRP, this

model only offers the ability to set CBS shapers to queues

and configure their parameters [27].

2) Centralized network - distributed user model: Here, akin

to the distributed model, user requirements are sent by talk-

ers/listeners to the nearest bridge. However, the information is

now relayed to a Centralized Network Configuration (CNC)

entity which configures all bridges using a remote network

management protocol, e.g. NETCONF, and Yet Another Next

Generation (YANG) models (IEEE 802.1Qcw [28]). The en-

hanced SRP can also be used here for the communication

between talkers/listeners and the CNC. As the CNC has a

complete view of the network topology and capabilities of each

bridge, and employs powerful device management protocols,

the following TSN services can now be configured [27]: CBS

shapers, frame preemption and replication, scheduled traffic,

and per-stream filtering and policing.

3) Fully centralized model: Akin to the previous model,

a CNC is responsible for the configuration and management

of the whole network. However, talker/listener information

is now provided directly to the CNC by a Centralized User

Configuration (CUC) entity. TSN does not define a protocol

for the communication between CUC and CNC, however, it

requires that the necessary information is exchanged. YANG

models can be used for both the network management and the

CUC-CNC interface. All TSN services can be managed using

this model.

V. EVALUATION OF SDN AND TSN IN THE CONTEXT OF

INDUSTRY 4.0

This section evaluates SDN, SDN extensions and TSN, with

respect to the requirements of Industry 4.0. The requirements

of Industry 4.0 are very broad, ranging from strict real-time

performance to security and dependability, see e.g. [10], [11].

In this paper we focus on a subset of these requirements

related to real-time performance, QoS and flexibility. More

precisely:

• Real-time performance: compliance with latency and

jitter figures of real-time traffic;

• Overhead: evaluates bandwidth consumed and/or wasted

by the protocols;

• Mutual isolation: support to heterogeneous traffic types

without mutual interference;

• Granularity of QoS control: diversity and parametriza-

tion of allowed QoS policies;

• Traffic management architecture: supported logical

management architectures and how it affects resource

management efficiency;

• Flexibility: applications should be able to create and

modify reservations promptly, in order to adapt to en-

vironment or production changes;

For sake of conciseness, the SDN/OpenFlow exten-

sions reviewed in Section III-B2 are labeled as: FTT-

Openflow [14];TSSDN [15]; SDPROFINET [16]; SDN-

HSF [17]; and OpenFlow-RT [18].

A. Real-time performance

TSN provides services specifically tailored for traffic with

Real-Time (RT) requirements, namely CBS and Transmis-

sion Gates, eventually set to peristaltic mode. The former

service provides a shaping service which allows gross band-

width reservations suitable for real-time Event Triggered (ET)

streams. However, the limited number of traffic classes (up

to 6, as the maximum number is 8 and two are reserved for

background and management), flat server structure and hard to

analyze (at least for real-time purposes) server type, constraint

the response-time and jitter of this kind of traffic. Transmission

Gates are specifically designed for periodic traffic, creating

contention-free time-based transmission slots that suit well

Time-Triggered (TT) communications, allowing low latency

and jitter.

OpenFlow (OF) was not designed for real-time systems, not

distinguishing RT traffic from Non Real-Time (NRT) one, and

there is no explicit support to real-time activation modes (TT,

ET). Time issues are only mentioned to allow the application

of synchronized updates on a given set of OF switches. In

addition, priorities are supported on output queues, which

usually are available in a limited number, thus constraining

the support of scheduling policies for realistic cases. As such,

the real-time performance of OF is poor.

FTT-OpenFlow is an implementation of FTT-SE [29] on

OpenFlow, which preserves the original periodic traffic man-

agement of FTT-SE while improving the handling of sporadic

real-time traffic by modifying the signaling mechanism asso-

ciated to these messages. It thus allows an efficient handling

of both TT and ET RT traffic.

TSSDN and SDPROFINET bring support to TT traffic on

SDN, allowing low figures of jitter and latency. In the former

case this is achieved by synchronizing end nodes to avoid

contention among TT packets. Interference between TT and

other traffic is handled via priorities, eventually combined

with frame preemption mechanisms. In the latter case, SDN is

used to manage PROFINET switches, thus inheriting the real-

time attributes of this protocol. In both cases there is good

support to TT traffic, but there is no explicit handling for

RT ET traffic. Moreover, TSSDN relies solely on controlling

the transmission instants at end nodes, without depending on

bridge-level scheduling services. As such, the schedulability

level for TT traffic is reduced, as the protocol does not allow

any kind of overlapping in flow paths.

In turn, SDN-HSF does not explicitly addresses RT traffic,

but the enhancements on queuing disciplines brings significant

improvements on traffic isolation and bandwidth control, with

a positive impact on ET RT traffic.

Finally, Openflow-RT supports explicitly both ET and TT

traffic by means of dynamic explicit scheduling in the former

case, and hierarchical servers in the second one. This allows

low latency and jitter for both kinds of traffic.

B. Overhead

Attaining low jitter in communication systems supporting

event-triggered traffic is complex and, usually, impacts nega-

tively on bandwidth utilization efficiency. This is particularly

noticeable when there is joint support for TT traffic, as

this kind of traffic is often associated with very strict jitter

requirements.

TSN introduces a frame preemption mechanism that allows

to interrupt the transmission of less important and/or jitter

tolerant messages (classified as preemptable) in favor of other

messages more jitter sensitive (classified as express). There is

a minimum size before preemption can occur, which implies

wasted bandwidth in each transmission slot for the case TT

traffic is managed by Transmission Gates. Moreover, preemp-

tion also adds overhead, as control bytes must be added to the

packet segments. TSSDN behaves similarly to TSN, as the use

of frame preemption is allowed and it comprises the notion of

slots for TT messages.

On the other hand, SDPROFINET, FTT-OpenFlow and

OpenFlow RT use dedicated windows for TT traffic, blocking

eventual ET transmissions that could otherwise overrun TT

transmission windows. This represents network idle-time that

translates to overhead. In general the impact of the inserted

idle-time is moderate, as it is inserted once per window, not

once per message.

Control messages are another potentially relevant source of

overhead. In this regard, FTT-OpenFlow and OpenFlow RT are

penalized by the need to disseminate periodically elementary

cycle’s transmission schedule. The impact is inversely propor-

tional to the elementary cycle duration, starting to be relevant

for cycles below 1ms.

OF and SDN-HSF don’t have relevant overheads as they

don’t implement the functionalities above described.

C. Mutual isolation

TSN provides a set of mechanisms that allow some degree

of traffic isolation. There are distinct traffic classes that can

be associated with different forwarding mechanisms, which

include the selection algorithms (prioritized transmissions,

shapers) and the Transmission Gates. Moreover, the avail-

ability of filtering and policing also impacts positively on

isolation by allowing to bound the interference of misbehaving

streams. Although this set of features is interesting from the

traffic isolation point of view, the performance of TSN in

this regard is impaired by the limited number of priorities,

which are associated with traffic classes. As mentioned above,

in practical terms only 6 classes can be used, so per-stream

confinement and isolation is far from reach.

SDPROFINET is based on PROFINET and, as such, seg-

regates traffic in NRT, RT and IRT. The IRT traffic comprises

exclusive transmission slots for isochronous traffic streams.

Therefore, IRT streams are completely isolated form each

other and from the other classes. However, for RT traffic, the

isolation is not so strong, as the mechanisms are based only on

communication stack adaptations (IP partially abandoned and

direct use of Layer 2/OSI services). Moreover, RT ET traffic

is not explicitly supported.

TSSDN only segregates RT TT traffic from the remaining

one. No other mechanisms, except references to the use of

traffic prioritization, are provided. So, this protocol is quite

limited in this respect.

FTT-OpenFlow and OpenFlow RT are based on the FTT

paradigm. As such, they isolate the transmission of TT, ET

and NRT traffic, which have exclusive transmission windows.

Moreover, in both these protocols RT ET traffic is managed

by hierarchical servers, which allows a fine grain stream com-

position (from individual streams to subsystems and systems)

with bounded and predictable interference. In the particular

case of OpenFlow RT, the HaRTES-based bridges implement

traffic policing and have separated memory areas for the

different traffic types, assuring the robustness of the isolation

mechanisms.

Support of isolation on OF and SDN-HSF is poor, as there

is no notion of traffic types. The simple use of priorities and

improved queuing management policies are not enough to

attain an acceptable level of performance in this regard.

D. Granularity of QoS control

In what concerns QoS granularity for real-time systems,

TSN performance is modest. On the one hand, the TSN set of

standards lacks support to some attributes commonly used in

real-time systems (e.g. activation paradigm, precedence con-

straints, offsets), and the existing QoS attributes are of limited

usefulness in what regards real-time applications. For example,

CBS parameters are specified as bandwidth, and reservations

are issued based on number of frames per time interval and

maximum latency, only. Moreover, QoS is in practice specified

per class, not per stream because, as mentioned above, the

number of priorities/classes is low (up to 6, in practice).

OF also does not support the set of attributes commonly

used in real-time systems. QoS specification is limited to

bandwidth limitations and priorities. As such, its performance

in this regard is poor.

TSSDN is also rather limited. The only specific reference

to QoS parameterization of real-time traffic is the specifica-

tion of the periodicity for TT streams, which is assumed to

be expressed as an integral multiple of a base-period that

corresponds to a minimum system-wide transmission period

that can be supported. No other attributes or traffic types are

explicitly supported. There are references also to the use of

priorities to favor the transmission of TT traffic when a time

slot cannot be found.

SDPROFINET uses formal specifications based on the be-

havioral type concept, to identify interdependencies between

different devices. The authors propose using regular expression

based specification mechanisms to capture a sequence chart of

communication messages. Reference [16] is does not go deep

enough to allow a well supported evaluation of the protocol

in this regard, but the approach should allow capturing the

essential attributes.

FTT-OpenFlow and OpenFlow RT are based on the FTT

paradigm and support the full set of attributes commonly used

in real-time systems. Streams are individually associated with

attributes such as period, deadline,offsets and activation mode

(TT/ET). These attributes as, in practical terms, unconstrained,

e.g. there are no limits to the number of priorities. Moreover,

for the RT ET it is possible to specify QoS at diverse levels,

thanks to the presence of hierarchical servers. As such, these

protocols excel in this aspect.

SDN-HSF is quite limited in what concerns QoS granu-

larity. The improvements over SDN are restricted to queue

management and the implemented disciplines (HTB, RED and

SFQ) only provide bandwidth-based traffic shaping. As such,

despite improving performance, explicit support to real-time

traffic QoS is still poor.

E. Traffic Management Architecture

TSN inherited AVBs fully distributed model based on the

Stream Reservation Protocol. Traffic reservation requests are

propagated along the network and each device (end nodes and

bridges) decide on the admissibility of each request. It should

be noted, however, that SRP only permits to manage stream

reservations associated with CBS. Centralized architectures

are known to enable more efficient and responsive resource

management, supported by a broader knowledge on existing

resources and requirements. TSN traffic management was

recently augmented with a centralized management option,

where reservations are directed to a Centralized Network

Configuration entity that decides about the admissibility of

reservations and then, when appropriate, uses remote manage-

ment protocols (e.g., SNMP, NETCONF) to configure bridges

in accordance with the requirements. As such, TSN excels

in this aspect, by allowing both distributed (with limitations)

and centralized management architectures, that have distinct

advantages and disadvantages.

SDN prescribes a logically centralized architecture, where

the controller is the sole entity responsible for configuring the

data-plane switches. As mentioned above, this architecture is

arguably more efficient in what concerns the management of

network resources, but detractors also point weaknesses, e.g.

in what concerns scalability. The enhancements brought by

SDN-HSF and TSSDN to SDN do not impact significantly

on the traffic management architecture of SDN, thus sharing

essentially the same properties.

SDPROFINET allows the existence of diverse domain con-

trollers, but prescribes that copies of controllers shall reside on

a remote control center to allow topology changes and other

modifications to be carried out centrally. The objective is to

allow network stabilization and instantiate modifications con-

sistently, eliminating the possibility of instability and transients

during updates.

FTT-OpenFlow and OpenFlow RT also have strongly cen-

tralized architecture, inherited both from the base FTT ar-

chitecture and SDN, which are both centralized. In fact, the

more elemental functionalities of these protocols depend on

the presence of a (logically) centralized entity, which performs

activities that go well beyond handling reconfigurations, e.g.

periodic traffic scheduling. Thus, these protocols depend al-

most entirely on the permanent availability of the controller.

F. Flexibility

TSN provides mechanisms to configure all the services

directly and indirectly related with stream forwarding, e.g. set

CBS parameters, configure the Transmission Gates schedule,

issue or remove a stream reservation, etc. Despite that, there

are some limitations. For example, modifications to stream

attributes are not directly supported, and must be instantiated

as a tear down followed by a creation. This procedure requires

multiple message exchanges and involves several timeout

mechanisms, limiting the responsiveness to system adapta-

tions, particularly for the case of distributed architectures,

as messages have to be propagated through the entire path.

More importantly, TSN only provides the basic mechanisms to

parametrize the configuration of network devices, not assisting

the applications in managing the allocated QoS. As such, QoS

management is entirely left to the application side, which

is a severe limitation in terms of flexibility and adaptability.

Finally, TSN does not allow the creation of application-specific

protocols. The application can only choose which protocols to

use (from a predefined set) and configure them.

SDN is, in some sense, in the opposite side of TSN. Due

to its programmatic approach, the set of protocols that can be

deployed is virtually unlimited, being possible to design ap-

plications taking standard protocols eventually complemented

with custom ones, specifically tailored for individual appli-

cations. The centralized architecture also potentiates quick

modifications to the system configuration, so the manipulation

of stream attributes and system configuration changes can be

carried with low delay. As TSN, SDN but does not assist

applications in QoS management.

TSSDN, SDPROFINET, and SDN-HSF are SDN-based and

thus, share the characteristics of OF in what regards flexibility

and adaptability. TSSDN and SDPROFINET may impose

a penalization in latency upon system changes due to the

computational complexity of the methdos used to derive the

schedules and routes. As TSN and OF, these protocols do not

provide QoS management, which must also be performed by

applications.

As for the case of TSN and OF, the centralized architecture

of FTT-OpenFlow and OpenFlow RT enables fast reconfigu-

rations. These protocols allow to create, delete, and modify

message streams without service disruption. A unique feature

of FTT-OpenFlow and OpenFlow RT that stems from its FTT

roots is the native QoS management provided by the network.

These protocols provide admission control capabilities along

with a QoS manager to which applications may send requests

specifying acceptable levels of QoS, e.g. in the form of

acceptable ranges or bounds for periodicity or deadline. When

resources are insufficient, the QoS manager interacts with

the admission control to try to find feasible configurations.

Therefore, these protocols provide a much better support to

flexibility and adaptability than the other ones.

G. Overall evaluation

Table I summarizes the results of the above discussion,

mapping the performance of the protocols in each criteria in

a qualitative scale that ranges from 1 (Worse) to 5 (Better).

There are some interesting conclusions that can be withdrawn.

TSN performs well or very well in all criteria. The limitations

it exhibits result essentially from backward compatibility is-

sues. The limited number of priorities is particularly relevant

as it constrains, in a fundamental way, several aspects of

the protocol performance (e.g. traffic isolation, event-based

messages). The overall complexity that results from the com-

bination of an huge number of protocols, several of them not

designed for real-time applications, turns the resulting system

hard to analyze and to prove correct.

SDN takes a radically different approach, promising an

unprecedented degree of flexibility thanks to its programma-

bility. However, it was designed for data centers and lacks

expressiveness to handle real-time scenarios, therefore its

overall real-time performance is very poor.

The potentialities of SDN have been recognized and thus

several contributions eventually appeared, having all in com-

mon the objective of enriching SDN with real-time services,

while preserving its essential attributes. Some of the ap-

proaches are simpler but still very limited in terms of real-time

performance (SDN-HSF). Others go one step ahead, using

dedicated hardware and/or modifications to the communication

stack and global management, improving significantly the real-

time performance of SDN (TSSDN and SDPROFINET). Fi-

nally, FTT-OpenFlow and OpenFlow RT exploit the QoS man-

agement and flexibility, characteristic of the FTT paradigm,

to enhance OF with efficient real-time and QoS management

services.

Summarizing, the qualitative evaluation herein presented

clearly shows that TSN performs well, but it is far from

perfect, having inherent performance limitations. On the other

hand, it also shows that SDN can be augmented, in different

ways, to support effective and efficiently applications with

real-time requirements, thus being a promising alternative to

TSN.

VI. CONCLUSIONS

Industry 4.0 poses new requirements that traditional indus-

trial communication protocols cannot cope with, in particular

TABLE I
EVALUATION OF SDN, SDN EXTENSIONS, AND TSN WITH RESPECT TO PERFORMANCE, QOS, AND FLEXIBILITY

Criteria TSN OpenFlow FTT-OpenFlow TSSDN SDPROFINET SDN-HSF OpenFlow RT

RT Performance TT 5 1 5 4 5 1 5

ET 3 1 5 1 3 3 5

Overhead 4 5 3 4 4 5 3

Mut. Isolation 4 1 5 2 3 1 5

QoS Granularity 3 1 5 2 4 2 5

Management Arch. 5 3 3 3 4 3 3

Flexibility 3 4 5 4 4 4 5

From 1 (Worse) to 5 (Better)

the need for integrating large sets of heterogeneous real-

time traffic with strict demands in terms of flexibility and

reconfiguration. Two innovative network technologies, TSN

and SDN, are emerging as candidate solutions to fill in this

gap. In this paper we evaluate qualitatively TSN, OpenFlow

and a set of SDN/OF-based protocols. The comparison shows

clearly that TSN performs well, but has intrinsic limitations

that arise form its evolutionary nature. While SDN, due to

its roots, is unsuitable for industrial scenarios, its inherent

flexibility allows the development of extensions that bring

real-time and predictable services. As such, SDN proves to

be an effective base to develop communication frameworks

competitive with TSN in Industry 4.0 scenarios.

REFERENCES

[1] V. Koch, S. Kuge, R. Geissbauer, and S. Schrauf, “Industry 4.0:
Opportunities and challenges of the industrial internet,” Strategy & PwC,
2014.

[2] M. Ashjaei et al., “Improved message forwarding for multi-hop hartes
real-time ethernet networks,” Journal of Signal Processing Systems,
vol. 84, no. 1, pp. 47–67, Jul 2016.

[3] S. Hoppe, “Opc foundation extends opc ua in-
cluding tsn down to field level.” [Online]. Avail-
able: https://opcfoundation.org/news/press-releases/opc-foundation-
extends-opc-ua-including-tsn-down-to-field-level/

[4] K. Ahmed, N. S. Nafi, J. O. Blech, M. A. Gregory, and H. Schmidt,
“Software defined industry automation networks,” in 2017 27th In-

ternational Telecommunication Networks and Applications Conference

(ITNAC), Nov 2017, pp. 1–3.
[5] Henning Kagermann, Wolfgang Wahlster, and Johannes Helbig, “Rec-

ommendations for implementing the strategic initiative INDUSTRIE 4.0
- Final report of the Industrie 4.0 Working Group,” Federal Ministry of
Education and Research - Germany, Tech. Rep., Apr. 2013.

[6] H. M. Hashemian, “ANSI/ISA-95.00.01-2010 (IEC 62264-1 Mod)
Enterprise-Control System Integration - Part 1: Models and Terminol-
ogy,” 2010.

[7] T. N. D. and K. Gray, SDN: Software Defined Networks, 1st ed. O’Reilly
Media, Inc., 2013.

[8] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[9] “Openflow switch specification version 1.5.0 (protocol version 0x06),”
Open Networking Foundation, pp. 1–277, Dec. 2014.

[10] D. Henneke, L. Wisniewski, and J. Jasperneite, “Analysis of realizing
a future industrial network by means of Software-Defined Networking
(SDN),” in 2016 IEEE World Conference on Factory Communication

Systems (WFCS), May 2016, pp. 1–4.
[11] M. Ehrlich et al., “Software-Defined Networking as an Enabler for Fu-

ture Industrial Network Management,” in 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, Sep. 2018, pp. 1109–1112.

[12] D. Thiele and R. Ernst, “Formal analysis based evaluation of software
defined networking for time-sensitive Ethernet,” in 2016 Design, Au-

tomation Test in Europe Conf. (DATE), March 2016, pp. 31–36.

[13] M. Herlich, J. L. Du, F. Schrghofer, and P. Dorfinger, “Proof-of-concept
for a software-defined real-time Ethernet,” in 2016 IEEE 21st Interna-

tional Conference on Emerging Technologies and Factory Automation

(ETFA), Sep. 2016, pp. 1–4.
[14] C. Ternon, J. Goossens, and J.-M. Dricot, “FTT-OpenFlow, on the Way

Towards Real-time SDN,” SIGBED Rev., vol. 13, no. 4, pp. 49–54, Nov.
2016.

[15] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive Software-
defined Network (TSSDN) for Real-time Applications,” in Proceedings

of the 24th International Conference on Real-Time Networks and Sys-

tems, ser. RTNS ’16. New York, NY, USA: ACM, 2016, pp. 193–202.
[16] K. Ahmed, J. O. Blech, M. A. Gregory, and H. Schmidt, “Software

defined networking for communication and control of cyber-physical
systems,” in 2015 IEEE 21st International Conference on Parallel and

Distributed Systems (ICPADS), Dec 2015, pp. 803–808.
[17] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of

Multiple Packet Schedulers for Improving QoS on OpenFlow/SDN
Networking,” in 2013 Second European Workshop on Software Defined

Networks, Oct 2013, pp. 81–86.
[18] L. Silva, P. Gonçalves, R. Marau, P. Pedreiras, and L. Almeida, “Ex-

tending OpenFlow with flexible time-triggered real-time communication
services,” in 2017 22nd IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), Sep. 2017, pp. 1–8.
[19] IEEE 802.1 Working Group, “Time-sensitive networking task group.”

[Online]. Available: http://www.ieee802.org/1/pages/tsn.html
[20] J. Farkas, “Overview of ieee 802.1 tsn and ietf detnet.”

[Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-2027-
00-0000-overview-of-ieee-802-1-tsn-and-ietf-detnet.pdf

[21] “IEEE Standard for Local and Metropolitan Area Network–Bridges
and Bridged Networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std

802.1Q-2014), pp. 1–1993, July 2018.
[22] “IEEE Draft Standard for Local and Metropolitan Area Networks -

Timing and Synchronization for Time-Sensitive Applications,” IEEE

P802.1AS-Rev/D8.0 January, 2019, pp. 1–446, Jan 2019.
[23] “IEEE Standard for Local and metropolitan area networks – Frame

Replication and Elimination for Reliability,” IEEE Std 802.1CB-2017,
pp. 1–102, Oct 2017.

[24] “IEEE Standard for Ethernet Amendment 5: Specification and Manage-
ment Parameters for Interspersing Express Traffic,” IEEE Std 802.3br-

2016, pp. 1–58, Oct 2016.
[25] M. Seaman, “Paternoster policing and scheduling.” [Online].

Available: http://www.ieee802.org/1/files/public/docs2017/cr-seaman-
paternoster-policing-scheduling-0317-v03.pdf

[26] “IEEE Draft Standard for Local and Metropolitan Area Networks-
Bridges and Bridged Networks Asynchronous Traffic Shaping,” IEEE

P802.1Qcr/D0.5, June 2018, pp. 1–112, Jan 2018.
[27] “IEEE Standard for Local and Metropolitan Area Networks – Bridges

and Bridged Networks - Amendment 31: Stream Reservation Proto-
col (SRP) Enhancements and Performance Improvements,” IEEE Std

802.1Qcc-2018, pp. 1–208, Oct 2018.
[28] “P802.1Qcw YANG Data Models for Scheduled Traffic, Frame Pre-

emption, and Per-Stream Filtering and Policing.”
[29] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time com-

munication over cots ethernet switches,” in 2006 IEEE International

Workshop on Factory Communication Systems, June 2006, pp. 295–302.

