Login

On the Robot Path Planning using Cloud Computing for Large Grid Maps
Ref: CISTER-TR-180411       Publication Date: 25 to 27, Apr, 2018

On the Robot Path Planning using Cloud Computing for Large Grid Maps

Ref: CISTER-TR-180411       Publication Date: 25 to 27, Apr, 2018

Abstract:
Global path planning consists in finding the optimal path for a mobile robot with the lowest cost in the minimum amount of time, without colliding with the obstacles scattered in the workspace. In this paper, we investigate the benefits of offloading path planning algorithms to be executed in the cloud rather than in the robot. The contribution consists in developing a vertex-centric implementation of R A ∗ [1], a version of A ∗ that we developed for grid maps and that was proven to be much faster than A ∗, using the distributed graph processing framework Giraph that rely on Hadoop. We also developed a centralized cloud-based C++ implementation of the algorithm for benchmarking and comparison purposes. Experimental results on a real cloud shows that the distributed graph processing Giraph fails to provide faster execution as compared to centralized C++ implementation for different map sizes and configuration due to non-real time properties of Hadoop.

Authors:
Imen Chaari
,
Anis Koubâa
,
Basit Qureshi
,
Habib Youssef
,
Ricardo Severino
,
Eduardo Tovar


Events:

ICARSC 2018
25, Apr, 2018 >> 27, Apr, 2018
18th IEEE International Conference on Autonomous Robot Systems and Competitions
Torres Vedras, Portugal


Accepted in 18th IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC 2018).
Torres Vedras, Portugal.



Record Date: 19, Apr, 2018