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Abstract 

In Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes 
while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting 
from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on 
deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and 
data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of 
the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, 
while enlarging the buffer size can reduce the packet loss by 47.9%. 
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Onboard Deep Deterministic Policy Gradients for

Online Flight Resource Allocation of UAVs
Kai Li, Senior Member, IEEE, Yousef Emami, Student Member, IEEE, Wei Ni, Senior Member, IEEE,

Eduardo Tovar, Member, IEEE, and Zhu Han Fellow, IEEE

Abstract—In Unmanned Aerial Vehicle (UAV) enabled data
collection, scheduling data transmissions of the ground nodes
while controlling flight of the UAV, e.g., heading and velocity,
is critical to reduce the data packet loss resulting from buffer
overflows and channel fading. In this letter, a new online flight
resource allocation scheme based on deep deterministic policy
gradients (DDPG-FRAS) is studied to jointly optimize the
flight control of the UAV and data collection scheduling along
the trajectory in real time, thereby asymptotically minimizing
the packet loss of the ground sensor networks. Numerical
results confirm that the proposed DDPG-FRAS can gradually
converge, while enlarging the buffer size can reduce the packet
loss by 47.9%.

Index Terms—Unmanned aerial vehicles, Flight control,
Data collection, Deep reinforcement learning

I. INTRODUCTION

For data collection in large sensor networks, Unmanned

Aerial Vehicles (UAVs) can be employed to visit remote

sensor nodes that are airlifted and deployed in remote

areas, as shown in Figure 1. UAVs have also been studied

to help mitigate the impact of COVID-19 outbreak [1].

Thanks to the high mobility and maneuverability, a UAV

can move sufficiently close to each of the sensor nodes

on the ground, to exploit short-distance line-of-sight (LoS)

communications and collect their sensory data [2], [3]. Due

to new materials and technologies, solar-powered UAVs

have been developed to fly over a long distance without

landing, e.g., Hawk 30 by SoftBank [4] and Morning Star

by AVIC [5].

Data packets are generated and buffered at the sensor

nodes, where the buffers have finite sizes. New data packets

have to be dropped when the buffers overflow. The flight

cruise of the UAV is controlled by adapting the headings

and patrol velocities to visit specific ground nodes and

collect their data before the buffers overflow. Moreover, the

UAV’s flight control results in changing channel conditions

between the ground nodes and the UAV. Having a ground

node transmit data when signal-to-noise ratio (SNR) is poor

is likely to lead to packet reception errors at the UAV.

The ground sensor node can progressively harvest energy

from multiple renewable energy sources, e.g., solar panel,

K. Li, Y. Emami, and E. Tovar are with Real-Time and Embedded
Computing Systems Research Centre (CISTER), 4249–015 Porto, Portugal
(E-mail:{kai,emami,emt}@isep.ipp.pt).

W. Ni is with Commonwealth Scientific and Industrial Research Orga-
nization (CSIRO), Sydney, Australia (E-mail: wei.ni@data61.csiro.au).

Z. Han is with Electrical and Computer Engineering Department,
University of Houston, Texas, US (E-mail: zhan2@uh.edu).

electret-based wind turbine, or wireless power transfer, to

charge its battery. Because of time-varying and independent

energy harvesting conditions at the nodes, the battery

energy level of the ground nodes can substantially differ

between each other. Some nodes can be fully charged

while others are running out of energy. Scheduling the

ground nodes with low energy levels to transmit can cause

other fully charged nodes to experience buffer overflow [6].

In practice, the complete up-to-date information of data

queue length, battery energy, and channel SNR of the

ground nodes is not available at the UAV. Therefore, the

scheduling of the ground nodes’ data transmission is critical

for onboard flight control of the UAV to prevent buffer

overflow and packet loss caused by channel fading.

Some works in the literature have developed Markov De-

cision Process (MDP) for collision-free flight trajectory of

the UAV, target tracking, or power allocation, e.g., [7], [8],

and [9]. A resource allocation strategy was studied in [10]

to reduce the packet loss in energy harvesting sensor

networks, given the predetermined transmission probability

and channel statistical information. Based on the statistical

information of the MDP, the resource allocation in [10]

was solved by dynamic programming. In [11] and [12],

the scheduling of power transfer and data transmission was

studied in the small-scale static wireless sensor network,

where Q-learning was developed to extend network life-

time.

In this letter, we study a new onboard flight resource

allocation of a UAV to minimize the overall data loss of

many ground nodes. The flight resource allocation of the

UAV is first formulated as an MDP by jointly considering

the battery energy level, the data queue backlog, and the

SNR state information of the ground nodes. The optimal

flight resource allocation to the formulated MDP problem

can be solved by Q-learning. However, Q-learning is known

to suffer from the curse-of-dimensionality, which is imprac-

tical for the online flight resource allocation of the UAV.

Deep Q-Network (DQN) in [13] is applied to schedule

energy harvesting and data transmission with an enlarged

state and action space of the MDP, given a predetermined

and fixed flight trajectory of the UAV. In contrast to [13],

we jointly optimize the heading and the patrol velocity

of the UAV, as well as the data collection schedule of

the ground nodes. Particularly, the up-to-date knowledge

of battery levels, queue lengths of the ground nodes and

the SNR is not available at the UAV. For online control

of the headings and velocities of the UAV, the onboard
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Fig. 1: Data packets are generated and buffered at the ground
sensors, where the buffers have finite sizes. The ground sensor
can progressively harvest energy from multiple renewable energy
sources, e.g., solar panel, electret-based wind turbine, or wireless
power transfer, to charge its battery. The UAV continuously adapts
the headings and the patrol velocities to visit the ground sensors
and collect their data before the buffers overflow.

flight resource allocation contains high dimensional and

continuous (real valued) action spaces. Therefore, the deep

Q-network based on discrete action spaces, such as [13], is

not applicable to continuous flight control problem.

To minimize the packet loss of the whole system,

we propose a new Deep Deterministic Policy Gradients

based Flight Resource Allocation (DDPG-FRA) frame-

work, where deep Q-learning is carried out in the con-

tinuous action space for the online flight control of the

continuous headings and patrol velocities. DDPG-FRA op-

timally decides the ground node to be interrogated for data

collection along the flight trajectory of the UAV. Moreover,

DDPG-FRA avoids the curse-of-dimensionality, compared

with MDP and Q-learning which requires the discretization

of the state space.

The remaining part of this letter is organized as follows.

System and network models are investigated in Section II.

Section III studies the MDP formulation of the flight

resource allocation problem. In Section IV, onboard flight

resource allocation based on DDPG is proposed for the

UAV-enabled data collection. Section V presents numerical

results and performance evaluation of the proposed DDPG-

FRA framework. Section VI concludes the letter.

II. SYSTEM AND NETWORK MODELS

We consider that N ground sensor nodes are deployed

in a remote area. Node i (i ∈ [1, N ]) can harvest renew-

able energy from the environment to charge its battery

for powering its operations, e.g., sensing, computing and

communication. The UAV that acts as a data mule or

airborne base station patrols along the trajectory [14]. Let

ζ(t) denote the location of the UAV in space at time t. The

instantaneous velocity of the UAV is vζ(t). The complex

coefficient of the reciprocal wireless channel between the

UAV and node i at t is hi(ζ(t)) [15]. In particular, ζ(t)
and hi(ζ(t)) take values in the continuous spaces. More-

over, the modulation-and-coding scheme of ground node

i, denoted by φi(t), can be adapted for data transmission,

where φi(t) ≤ Φ, and Φ is the total number of modulation-

and-coding schemes. Particularly, the typical modulations

BPSK, QPSK, and 8PSK are denoted by φi(t) = 1, 2, and

3, respectively, and 2φi(t) quadrature amplitude modulation

is given as φi(t) ≥ 4. The required transmit power of the

ground node depends on φi(t) and hi(ζ(t)), and is given

by Pi(t) ≈
κ
−1

2
ln

κ1

ε

‖hi(ζ(t))‖2 (2
φi(t) − 1), where κ1 and κ2 are

channel constants, and ε defines the required bit error rate

(BER) of the channel [16].

We consider that the UAV moves in low altitude for the

data collection, where the probability of LoS communica-

tion between the UAV and the ground nodes can be

PrLoS(ϕi) =
1

1 + a exp(−b[ϕi − a])
(1)

where a and b are two Sigmoid function parameters. ϕi

is an elevation angle between the UAV and ground node

i. Furthermore, the path loss of the link between the UAV

and node i can be obtained by

γi = PrLoS(ϕi)(ηLoS − ηNLoS) + 20 log(r secϕi)+

20 log(λ) + 20 log(4π/vc) + ηNLoS (2)

where r is the radius of the radio coverage of the UAV,

λ is the carrier frequency, and vc is the speed of light.

ηLoS and ηNLoS represent the excessive path loss of LoS

or non-LoS, e.g., the value of (ηLoS, ηNLoS) pair can be

(0.1, 21), (1.0, 20), (1.6, 23), and (2.3, 34) corresponding to

suburban, urban, dense urban, and highrise urban scenarios,

respectively [17].

Although multi-user beamforming techniques such as

zero forcing and maximal ratio transmission can be used for

air-ground communications to increase SNR of the channel,

they are not considered in this work due to the requirement

of real-time feedback on the channel conditions.

III. MDP FOR FLIGHT RESOURCE ALLOCATION

The flight resource allocation problem is formulated as

an MDP. The network states consist of battery levels ei(t)
and data queue lengths qi(t) of each ground node, SNR

of the channel hi(ζ(t)), and the location of UAV ζ(t). In

particular, the flight altitude of the UAV is maintained. In

other words, the UAV moves on a two-dimensional plane

above the ground. To minimize the packet loss, the UAV

takes actions to adjust the heading ψζ(t) and the patrol

velocity vζ(t) while selecting the ground nodes for data

collection. At each waypoint ζ(t), ψζ(t) takes real numbers

in a continuous action space, i.e., ψζ(t) ∈ (0, 2π]. Similarly,

we have vζ(t) ∈ (0, V ], where V is the highest patrol

velocity of the UAV.

The future energy level and queue length of every ground

node can be affected by the flight resource allocation, which

also leads to a non-negligible impact on the future actions

of the UAV. The actions of the UAV can be optimized in a

long-term stochastic control process, where the optimality

is achieved in regards of a specific metric, e.g., packet loss

stemming from both overflowing buffers and unsuccessful

data transmissions of the ground nodes [18]. Moreover,
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the actions of the UAV are synthetically determined by

the random data arrival or queueing status at the ground

node, the heading and velocity control, and node selection

decisions taken by the UAV. The correlation between the

actions of the UAV in different time slots needs to be

captured, and validate the long-term optimality.

An MDP is defined by the quadruplet 〈S , A,

C
{

Sβ

∣

∣

∣
Sα, k

}

, Pr
{

Sβ

∣

∣

∣
Sα, k

}

〉, where S is the network

state space, collecting ei(t), qi(t), ζ(t), and hi(ζ(t)); and

A is the set of actions to be taken by the UAV, i.e.,

A =
{

ψζ(t), vζ(t),(i, φi(t)) : i = 1, 2, ..., N ;

φi(t) ∈ {1, 2, ...,Φ}
}

. (3)

Let Sβ denote the following network state of Sα when

action k ∈ A is taken by the UAV. The immediate cost

from Sα to Sβ can be given by C
{

Sβ

∣

∣

∣
Sα, k

}

, while the

transition probability is Pr
{

Sβ

∣

∣

∣
Sα, k

}

.

The optimal policies in MDP can be computed by value

iteration (iteratively improves an estimated action-value

function) or policy iteration (explores a new policy itera-

tively and updates the action-value function under this new

policy). However, C
{

Sβ

∣

∣

∣
Sα, k

}

and Pr
{

Sβ

∣

∣

∣
Sα, k

}

have

to be known a-priori for obtaining the action-value function

in value iteration and policy iteration. In contrast, this letter

focuses on a practical scenario where the prior information

of C
{

Sβ

∣

∣

∣
Sα, k

}

and Pr
{

Sβ

∣

∣

∣
Sα, k

}

is unknown.

IV. ONBOARD DDPG-FRA FRAMEWORK

An action-value function can be defined to minimize

the expected network cost when the UAV takes an ac-

tion following one of the resource allocation strategies

thereafter. Specifically, the action-value function of each

resource allocation strategy can be expressed in the form of

the expected packet loss of the ground nodes at the current

state Sα and the minimum of discounted Q
{

Sβ , k
′
}

over

all future network states, i.e.,

Q∗
{

Sα, k
∗
}

= (1− ̺)Q∗
{

Sα, k
∗
}

+

̺
[

C
{

Sβ

∣

∣

∣
Sα, k

∗
}

+ δmink′∈AQ
{

Sβ , k
′
}] (4)

where k′ is the following action of k, δ ∈ [0, 1] is a discount

factor, and ̺ ∈ (0, 1] is the learning rate.

It is known that Q-learning suffers from the curse-of-

dimensionality, where the state and action spaces have to

be discrete and low dimension, and cannot be applied to

large continuous action spaces, e.g., continuous heading

and patrol velocity control of the UAV. To address this

issue, DDPG-FRA enables the UAV to construct four

neural networks based on an actor-critic framework [19],

i.e., QA
{

Sα, k
∣

∣

∣
θA

}

parameterized by weights θA, a tar-

get Q-network QA′
{

Sα, k
∣

∣

∣
θA′

}

parameterized by weights

θA′, a deterministic policy network QB
{

Sα

∣

∣

∣
θB

}

, and a

target deterministic policy network QB′
{

Sα

∣

∣

∣
θB′

}

which

Algorithm 1 Onboard DDPG-FRA Framework

1: 1. Initialize:

2: Sα ∈ S , k ∈ A in (3), QA
{

Sα, k
∣

∣

∣
θA

}

, QB
{

Sα

∣

∣

∣
θB

}

,

QA′
{

Sα, k
∣

∣

∣
θA′

}

, QB′
{

Sα

∣

∣

∣
θB′

}

, where θA → θA′ and

θB → θB′.

3: Learning time → tlearning. Experience replay capacity

→ Creplay.

4: 2. Learning:

5: for episode 1→ J do

6: The UAV observes Sα. Action exploration noise →
ΓUAV.

7: while t ≤ tlearning do

8: The UAV carries out action kt ∈ A, where kt =

QB
{

Sα

∣

∣

∣
θB

}

+ΓUAV, which sets ψζ(t) and vζ(t)
of the UAV, and selects a ground node.

9: The UAV ← C
{

Sβ

∣

∣

∣
Sα, kt

}

, and obtains a new

observation Sβ .

10: At the UAV: (Sα,Sβ , kt, C
{

Sβ

∣

∣

∣
Sα, kt

}

) →

Creplay.

11: The UAV randomly takes a minibacth of F sam-

ples from the onboard memory Creplay .

12: For each sample f , we have

yf = (C
{

Sβ

∣

∣

∣
Sα, kt

}

,Sβ)f +

δQA′
{

Sf+1, Q
B′
{

Sf+1

∣

∣

∣
θB′

}
∣

∣

∣
θA′

}

.

13: Minimizing a loss function onboard UAV, where

∆loss ←
1
F

∑

f (yf −Q
A
{

Sf , kf

∣

∣

∣
θA

}

)2.

14: Computing policy update onboard

at the UAV, where ∇θB ≈
1
F

∑

f ∇kQ
A
{

Sα, kf

∣

∣

∣
θA

}

∇θBQB
{

Sα

∣

∣

∣
θB

}∣

∣

∣

Sα=Sf

.

15: The UAV updates the two onboard target neural

networks, where θA′ ← ǫθA + (1 − ǫ)θA′ and

θB′ ← ǫθB + (1− ǫ)θB′.

16: end while

17: end for

specifies the current policy by deterministically mapping

states to a specific action. The use of QA′
{

Sα, k
∣

∣

∣
θA′

}

and

QB′
{

Sα

∣

∣

∣
θB′

}

in DDPG-FRA can reduce the approxima-

tion errors and regularize the actions of the UAV, which

increases learning stability.

Algorithm 1 presents the implementation of DDPG-FRA,

which optimizes the flight resource allocation onboard

at the UAV for minimizing the overall data packet loss

of the ground nodes. Given a total of J episodes and

a learning time of tlearning, the UAV explores the next

flight resource allocation action according to a policy

kt = QB
{

Sα

∣

∣

∣
θB

}

+ ΓUAV, where ΓUAV is an action

exploration noise in the environment. By carrying out the

action kt, the UAV can obtain the next state Sβ as well

as C
{

Sβ

∣

∣

∣
Sα, kt

}

. Moreover, the flight resource allocation

experience sampled from the environment can be stored

in a memory with the capacity of Creplay onboard at the
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Fig. 2: (a) Network packet loss at the episode given data buffer size of 10 or 20 packets. (b) At the episode 1 or 99, headings of the
UAV in regards to each time slot. (c)At the episode 1 or 99, patrol velocities of the UAV in regards to each time slot.

UAV for the experience replay. A large Creplay allows the

DDPG-FRA framework to benefit from learning across a

set of uncorrelated experiences.

To train the onboard neural networks, DDPG-FRA ran-

domly samples a minibatch of (Sα,Sβ , kt, C
{

Sβ

∣

∣

∣
Sα, kt

}

)

from the experience replay memory. The UAV optimizes the

values of θA to minimize the gap between QA and QA′,

which is denoted by ∆loss. Therefore, the optimal actions

of the UAV can be specified according to (4). Furthermore,

a policy can be generated and trained with the updated θA

onboard at the UAV, where

∇θB ≈
1

F

∑

f

∇kf
QA

{

Sα, kf

∣

∣

∣
θA

}

∇θBQB
{

Sα

∣

∣

∣
θB

}
∣

∣

∣

Sα=Sf

.

(5)

Let ǫ (∈ (0, 1)) denote a learning factor that responds the

update of the target networks. Given the updated policy

∇θB , the UAV can accordingly update the two target neural

networks by

θA′ = ǫθA + (1− ǫ)θA′, (6)

θB′ = ǫθB + (1− ǫ)θB′. (7)

By learning ∇θB and minimizing ∆loss, ψζ(t) and vζ(t)
of the UAV are optimized at Sα, while the optimal ground

node is scheduled for data transmission. Given the optimal

actions, the next state Sβ that is determined by the battery

levels and queue lengths of all other unselected ground

nodes can be accordingly updated. Iteratively, the pro-

posed DDPG-FRAS explores all the network states during

tlearning, and determines the optimal action of the UAV at

each state.

V. NUMERICAL RESULTS

DDPG-FRAS is implemented in Python 3.5 on PyTorch

which is an open source machine learning library based

on the Torch library [20]. A laptop with 8GB RAM and

an Intel Core i5-7200U based on 64-bit Ubuntu 16.04 is

used for the PyTorch setup. The area of interest is set

to be a square area with a size of 1,000 m × 1,000 m,

and N ground nodes are distributed in the region, where

N = 40. Each ground node has the maximum discretized

battery capacity of 50 Joules, the highest modulation of Φ

= 5, and the maximum transmit power of 100 milliwatts.

For calculating Pi(t) of the ground node, the two channel

constants, κ1 and κ2 are set to 0.2 and 3, respectively. The

required BER is ε = 0.05%, and the carrier frequency λ
is 2000 MHz. The UAV has the highest patrol velocity

V = 15 m/s. The heading ψζ(t) defines the angle with

the north direction, which can be adjusted between 0◦ and

360◦.

Figure 2(a) shows the network packet loss at each

training episode of the proposed DDPG-FRAS, given the

buffer length of 10 or 20 packets per device. Generally,

DDPG-FRAS with L = 20 achieves a lower packet loss

than the one with L = 10 for around 25 packets. This is

because DDPG-FRAS significantly reduces buffer overflow

for all the ground nodes when enlarging their data buffer

size. Moreover, DDPG-FRAS has a large network packet

loss at the beginning of training the onboard DDPG. With

an increasing number of episodes, the network packet loss

drops significantly until it reaches a relatively stable value.

It confirms that the onboard DDPG can gradually converge

after the flight resource allocation is sufficiently trained.

Figures 2(b) and 2(c) plot the headings and patrol velocities

of the UAV at the first and the 99th episode, respectively,

where each episode consists of 100 training time slots. As

observed, the flight of the UAV is adapted to the training

process of DDPG-FRAS. In particular, the flight is hardly

optimized at the first episode since the experience in the

replay memory is not sufficient for a small number of

learning iterations. At the 99th episode, QA
{

Sα, k
∣

∣

∣
θA

}

,

QA′
{

Sα, k
∣

∣

∣
θA′

}

, QB
{

Sα

∣

∣

∣
θB

}

, and QB′
{

Sα

∣

∣

∣
θB′

}

are

adequately trained by Algorithm 1 to minimize the loss

functions by taking advantage of the experience replay, as

can also be observed in Figure 2(a).

Figure 3 studies the packet loss achieved by the proposed

DDPG-FRAS scheme with an increasing number of ground

nodes. In particular, the buffer size of the ground node is

set to 10, 15, or 20 given the average SNR of 0 dB or

18 dB. Generally, the packet loss grows with the network

size since more ground nodes have to buffer their data

while one node is selected by the UAV to transmit data.

DDPG-FRAS slightly improves the performance at a higher

SNR. For example, for 20 ground nodes, the packet loss
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Fig. 3: Packet loss achieved by DDPG-FRAS with regards to
number of ground nodes.

of (SNR = 18 dB, queue length = 20, episodes = 100) is

lower than (SNR = 0 dB, queue length = 20, episodes =

100) for 12 packets. Extending the learning episodes barely

reduces the packet loss. This confirms that the packet loss

in the online flight resource allocation maintains stable once

DDPG-FRAS converges, as observed in Figure 2(a).

Given the same number of learning episodes and average

SNR, enlarging the buffer size can significantly reduce

the packet loss for DDPG-FRAS. For example, when the

number of ground nodes is 100, SNR = 0 dB and episodes

= 100, the packet loss of DDPG-FRAS with queue length

= 20 is lower than the one with queue length = 15 and

queue length = 10 for 50 and 115 packets, respectively.

This implies that the buffer size of the ground node has a

dominating effect on DDPG-FRAS.

VI. CONCLUSION

This letter studies an online flight resource alloca-

tion problem for jointly controlling the UAV’s flight and

scheduling data transmissions of the ground sensor nodes,

to prevent buffer overflow and unsuccessful data transmis-

sions. The flight resource allocation problem can be for-

mulated as an MDP. We propose the DDPG-FRA strategy

to optimize the flight resource allocation, where the up-to-

date knowledge of battery levels, data queue lengths, and

channel conditions of the ground nodes is not available at

the UAV. Continuous action spaces of headings and patrol

velocities of the UAV are implemented. Numerical results

demonstrate that headings and velocities of the UAV can

be efficiently trained by DDPG-FRA to minimize the data

packet loss of the ground nodes, by taking advantage of

onboard experience replay.
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