
Reliable Real-Time Communication
in CAN Networks

Luı́s Miguel Pinho, Member, IEEE, and Francisco Vasques, Member, IEEE

Abstract—Controller Area Network (CAN) is a fieldbus network suitable for small-scale Distributed Computer Controlled Systems

(DCCS), being appropriate for sending and receiving short real-time messages at speeds up to 1 Mbit/sec. Several studies are

available on how to guarantee the real-time requirements of CAN messages, providing preruntime schedulability conditions to

guarantee the real-time communication requirements of DCCS traffic. Usually, it is considered that CAN guarantees atomic multicast

properties by means of its extensive error detection/signaling mechanisms. However, there are some error situations where messages

can be delivered in duplicate or delivered only by a subset of the receivers, leading to inconsistencies in the supported applications. In

order to prevent such inconsistencies, a middleware for reliable communication in CAN is proposed, taking advantage of CAN

synchronous properties to minimize the runtime overhead. Such middleware comprises a set of atomic multicast and consolidation

protocols, upon which the reliable communication properties are guaranteed. The related timing analysis demonstrates that, in spite of

the extra stack of protocols, the real-time properties of CAN are preserved since the predictability of message transfer is guaranteed.

Index Terms—Communication protocols, controller area network, fault-tolerant systems, real-time systems.

�

1 INTRODUCTION

THE Controller Area Network (CAN) protocol [1] was
originally developed to be used within road vehicles to

interconnect microprocessor-based components. More re-
cently, the CAN protocol is also being considered for the
automated manufacturing and distributed process control
environments [2] and is already used as the communication
interface in proprietary architectures such as DeviceNet [3].

The CAN protocol implements a priority-based bus,
with a carrier sense multiple access with collision
avoidance (CSMA/CA) MAC, being appropriate for
sending and receiving short real-time messages at speeds
up to 1 Mbit/sec. Several studies on how to guarantee the
real-time requirements of messages in CAN networks are
available (e.g., [2], [4], [5], [6], [7], [8]), providing the
necessary preruntime schedulability conditions for its
timing analysis.

The CAN protocol has extensive error detection/signal-
ing mechanisms, imposing automatic message retransmis-
sion in case of a detected error. Nevertheless, it is known
that CAN error recovery mechanisms may fail when an
error is detected in the last but one bit of the frame [9]. This
problem may cause messages to be delivered in duplicate to
the application by some of the nodes (inconsistent message
duplicate). Similarly, if the sender fails before retransmitting
the message, it may cause the message to be delivered only
by a subset of the nodes (inconsistent message omission).

This misbehavior may be disastrous if the CAN network is
used to support replicated applications, as these applications

require replicated components providing the same results
when they are correct. The consistency of the delivered
messages must be guaranteed by atomic multicast proto-
cols, which guarantee both that messages are delivered by
all (or none) of the component replicas and that messages
are delivered only once. Furthermore, there is the need to
agree in the delivery order of multicasts and to con-
solidate values from replicated inputs. Hence, it is
necessary to provide a middleware guaranteeing these
properties in spite of the underlying CAN inconsistencies.
Moreover, it is also necessary to guarantee the real-time
behavior of the overall approach (allowing the offline
analysis of the messages’ response time).

This paper proposes a middleware layer intended to
guarantee reliable real-time communication in CAN net-
works in spite of the underlying inconsistency in message
deliveries. The paper is structured as follows: After a brief
description of the CAN protocol, Section 3 presents the
requirements for reliable real-time communication in CAN
networks. The proposed middleware layer is then described
in Section 4, with a special focus on the proposed set of
atomic multicast and consolidation protocols. Afterward, in
Section 5, the related set of preruntime schedulability
conditions is presented, enabling the timing analysis of
the supported reliable real-time communication. For a
better understanding of the proposed protocols, a numer-
ical example is presented in Section 6. Finally, Section 7
presents a comparison with other relevant approaches and
some conclusions are outlined in Section 8.

2 CAN PROTOCOL

The CAN protocol implements a priority-based bus, with a
carrier sense multiple access with collision avoidance
(CSMA/CA) MAC, where bus signals can take two
different states: recessive bits (idle bus) and dominant bits
(which always overwrite recessive bits). The collision
resolution mechanism works as follows: When the bus
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becomes idle, every node with pending messages will start
to transmit. If a node transmitting a recessive bit reads a
dominant one, it means that there was a collision with a
higher-priority message and, consequently, the transmis-
sion is aborted. The highest-priority message (the one with
most leading dominant bits) being transmitted will proceed
without perceiving any collision and, thus, will be success-
fully transmitted. Nodes that lose the arbitration phase will
automatically retry the transmission of requested messages.

There are four types of frames that can be transferred in a
CAN network. Two are used during the normal operation
of the CAN network: the Data Frame, which is used to send
local data, and the Remote Frame, which is used to request
remote data. Besides these two frames, there are also the
Error Frame, which signals the detection of error states in
the CAN network, and the Overload Frame, which is used
by nodes requiring extra delays before the transmission of
Data Frames.

Fig. 1 shows the structure of a Data Frame (specific
fields: SOF, Identifier, Control, DLC, CRC, ACK, and EOF
are described in [1]). A Remote Frame has the same
identifier and structure (without data field) as the remotely
requested Data Frame. The structure of both the Error and
Overload Frames will be presented in Section 2.1.

At the physical layer, frames are transmitted using the
NRZ (Non-Returning to Zero) coding technique, with the
insertion of stuff bits. That is, whenever there are more than
five equal consecutive bits (up to the end of the CRC Field),
there is the insertion of an opposite bit in the frame. This
opposite bit will be detected and removed by the physical
layer at the receiving side. This bit stuffing technique
ensures that, in the normal behavior, there will never be
more than five consecutive equal bits on the bus.

2.1 Error Detection and Recovery Mechanisms

In the CAN protocol, every node continuously monitors the
bus to detect any transmission error. A node detecting an
error will transmit an Error Frame, violating the bit-stuffing
rule. As a consequence, all receiving nodes know that the
frame being transmitted has an error. An Error Frame has
the following structure:

. Six to twelve consecutive dominant bits (Error Flag).
The node that first detects the error transmits the
6-bit Error Flag. If any other node only recognizes
the bit stuffing error induced by the Error Flag, it
will transmit a new Error Frame, thus the Error Flag
will be up to 12 bits long;

. Eight consecutive recessive bits (Error Delimiter)
signaling the end of the Error Frame.

Nodes that are still not ready to receive another frame
may also transmit one or two consecutive Overload Frames
(with the same structure of the Error Frame) in order to
slow down network transmission.

Sending Error Frames is a very interesting mechanism to
ensure that every node acquires the same global state of the
network (state coherence). However, a node failure may
induce the transmission of consecutive Error Frames,
blocking all the ongoing communications. To solve this
problem, CAN controllers have two error counters (for,
respectively, transmitting and receiving errors) to isolate
erratic nodes. The value of these counters, which determine
the operating state of the node, is increased or decreased (at
different rates) as a function of the detected errors. Thus,
these counters act as self-surveillance mechanisms, discon-
necting faulty nodes (fault-confinement techniques) when
their values reach a specified threshold. In the case of
multiple errors, the node goes first into the Error-Passive
state (where it does not interfere with the transmissions of
other nodes) and then into the Bus-Off state (where the node
is disconnected from the network) [1].

2.2 Response Time Analysis of CAN Networks

In order to guarantee the real-time requirements of
messages transferred by CAN networks, it is necessary to
evaluate the worst-case response time of messages. In [4],
the authors address in detail the response time analysis of
CAN networks. Existing schedulability analysis is adapted
to the case of scheduling messages in a CAN network. The
analysis assumes a network with n message streams
defined as:

Sm ¼ ðCm; Tm;DmÞ; ð1Þ

where Sm defines a message stream characterized by a
unique identifier. A message stream is a temporal sequence
of messages concerning, for instance, the remote reading of
a specific process variable. Cm is the longest message
duration of stream Sm and Tm is the periodicity of its
requests. In order to have the response time analysis
independent of the upper layers model, it is assumed that
this periodicity is the minimum time interval between the
arrival of two consecutive requests to the outgoing queue.
Finally, Dm is the relative deadline of a message, that is, the
maximum time interval between the instant when the
message is placed in the outgoing queue and the instant
when the message must be completely transmitted.

The analysis assumes fixed priorities for message
streams (as the medium access is based on fixed identifiers),
relative deadlines not greater than periods, and a non-
preemptive scheduling model (as lower priority messages
being transmitted cannot be preempted by requested higher
priority messages).

Therefore, the worst-case response time of a queued
message, measured from the arrival of the message request
to its complete transmission, is:

Rm ¼ Im þ Cm: ð2Þ

The schedulability of the message stream set is guaran-
teed if every message has a response time smaller than its
deadline. The term Im represents the worst-case queuing
delay (longest time interval between the arrival of the
message request and the start of its transmission):

Im ¼ Bm þ
X

8j2hp mð Þ

Im þ �bit
Tj

� �
� Cj

� �
ð3Þ
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Bm is the worst-case blocking, which is the duration of the

longest lower priority message:

Bm ¼ max
8k2lp mð Þ

0; Ckf g: ð4Þ

lpðmÞ and hpðmÞ are, respectively, the set of message

streams with lower-priority and higher-priority than Sm. �bit
is the duration of a bit transmission, taking into account the

difference in the arbitration start time at different nodes

(due to propagation delays).
Equation (3) embodies a mutual dependency since Im

appears in both sides of the equation. The easiest way to

solve such an equation is to form a recurrence relation [10].
The computation of the network load is a single

measurement based on the characteristics of the message

streams. Such a network load can be evaluated as follows:

U ¼
Xn
m¼1

Cm

Tm
: ð5Þ

2.3 Inaccessibility Analysis of CAN Networks

The use of CAN networks to support dependable real-time

applications requires not only time-bounded transmission

services, but also a minimum level of confidence on the

continuity of service. Such continuity of service is not fully

guaranteed in CAN networks since it may be disturbed by

temporary periods of network inaccessibility (periods during

which nodes cannot communicate with each other, due to the

existence of on-going error recovery mechanisms).
Considering the existent error recovery mechanisms, it

follows that the longest network inaccessibility [11] results

from a Form Error (incorrect structure of the frame)

detected at the end of the EOF delimiter. Such network

inaccessibility is:

tina ¼ CMAX þ Cerror þ CIFS; ð6Þ

where Cerror and CIFS are the duration of an Error Frame

and the Inter-Frame Spacing (two consecutive frames must

be separated by at least 3 recessive bits), respectively, and

CMAX is the longest duration of a CAN message.
In the presence of multiple bus errors, two different

scenarios can be considered [11]:

. A burst of successive bit errors, where only the first
one corresponds to a bit corruption in the Data
Frame. The others will just disturb Error Frames
being transmitted in response to the first error.

. A longer network inaccessibility can be induced by
errors that are sufficiently apart to interfere with n
consecutive Data Frames being transmitted in the
bus, resulting in n failed attempts to transmit a Data
Frame (also producing n Error Frames).

The network inaccessibility resulting from this second

scenario is:

tn ina ¼ n� CMAX þ Cerror þ CIFSð Þ: ð7Þ

In order to integrate this inaccessibility analysis in the

response time analysis of CAN networks, the maximum

inaccessibility time InaðImÞ must be added to (3) [4], [7]:

Im ¼ Bm þ
X

8j2hpðmÞ

Im þ �bit
Tj

� �
� Cj

� �
þ Ina Imð Þ: ð8Þ

The maximum inaccessibility time interfering with the
transmission of a message of stream Sm can be evaluated
considering that the maximum number of errors (nerrors)
which can interfere with the transmission of message m
(considering n errors in a period T) is:

nerrors ¼ n� Im þ Cm

T

� �
: ð9Þ

Hence, the inaccessibility time due to bus errors is:

InaðImÞ ¼ n� Im þ Cm

T

� �
� tina: ð10Þ

The network load considering periods of temporary
network inaccessibility is:

Uina ¼
n� tina

T
: ð11Þ

Consequently, the overall network load is:

U ¼
X
8m

Cm

Tm

 !
þ Uina: ð12Þ

2.4 Inconsistencies in the Transfer of Messages

In spite of the extensive error detection and recovery
mechanisms in CAN, there are some known reliability
problems [9] that can lead to an inconsistent state of the
supported applications. This misbehavior is a consequence
of different error detection mechanisms at the transmitter
and receiver sides. A message is valid for the transmitter if
there is no error until the end of the transmitted frame. If
the message is corrupted, a retransmission is triggered
according to its priority. For the receiver, a message is valid
if there is no error until the last but one bit of the received
frame, the value of the last bit being treated as “do not
care.” Thus, a dominant value in the last bit does not lead to
an error state, in spite of violating the CAN rule stating that
the last 7 bits of a frame are all recessive.

In Fig. 2, the Sender node transmits a frame to Receivers
A and B. Receiver B detects a bit error in the last but one bit
of the frame. Therefore, it rejects the frame and sends an
Error Frame (requesting the frame retransmission) starting
in the following bit (last bit of the frame). As for a receiver,
the last bit of a frame is a “do not care” bit, Receiver A will
not detect this error, and will accept the frame. However, as
the transmitter schedules the frame for retransmission,
Receiver A will have an inconsistent message duplicate. The
use of sequence numbers in messages can easily solve this
problem, but it does not prevent messages from being
received in different orders, thus not guaranteeing total
order. On the other hand, if the Sender fails before being
able to successfully retransmit the frame, then Receiver B
will never receive the frame, although Receiver A has
delivered it. This causes an inconsistent message omission,
which is a problem with a more difficult solution.

In [9], the probability of message omissions and/or
duplicates is evaluated, in a reference period of one hour,
for a 32-node CAN network, with a network load of
approximately 90 percent. Bit error rates were used ranging
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from 10�4 to 10�6 and node failures per hour of 10�3 and 10�4.
For inconsistent message duplicates, the results obtained
ranged from 2:87� 101 to 2:84� 103 duplicates per hour,
while, for inconsistent message omissions, the results ranged
from 3:98� 10�9 to 2:94� 10�6 omissions per hour.

These values demonstrate that, for reliable real-time
communications, CAN built-in error recovery mechanisms
are not sufficient. The use of CAN networks to support
DCCS applications requires not only a time-bounded
transmission service, but also the guarantee of delivery
consistency for the supported applications.

Particularly when a CAN network is used as the
communication infrastructure for a fault-tolerant distribu-
ted system, it must support the communication mechan-
isms required by the replicated applications. In such
applications, replicas must behave as single fault-free
components, that is, they must provide the same results
when they are correct. Thus, all replicas must work with the
same input values in the same order, meaning that the
consistency of message deliveries must be guaranteed.

3 COMMUNICATION REQUIREMENTS

3.1 System Model

A distributed hard real-time application constituted by
several tasks (processing units) is considered. As the target
is reliability through replication, the notion of “component”
is introduced as the replication unit. Applications are
divided into components, each one including tasks and
resources from several nodes or located in just one node.

Fig. 3 illustrates a real-time application with four tasks
(�1, �2, �3, and �4). The application is divided into two
different components (C1 and C2), which are replicated (its
replicas being C0

1 and C0
2). Since replication is at the

component level, it is not necessary to agree on the output
of component internal tasks (for instance, the output of �1 to
�2 does not need to be agreed upon with the output of � 01 to
� 02). Results must only be consolidated when they are made
available to other components.

As this model considers the existence of active replication,
there is the need to guarantee that replicas execute determi-
nistically, that is, replicated tasks execute with the same data
and timing-related decisions are the same in each replica [12].
In order to enforce the deterministic execution of the
replicated components, it must be guaranteed that all
messages sent by correct components are delivered to all its
recipients. For the case of a message sent by an incorrect

component, there must be an all-or-none guarantee: Either all
correct components deliver that message or none of them
deliver it. Furthermore, there is the need to agree upon the
order by which messages are delivered to its recipients and to
consolidate messages from replicated components’ outputs.

Concerning timing-related determinism, it is necessary
to guarantee that timing-related decisions are the same in
each replica. The use of the timed messages [13] concept
allows a restricted model of multitasking to be used and
eliminates the need for agreement between the internal
tasks of each component. With timed messages, agreement
is only needed to guarantee that all replicated components
work with the same input values and that they all vote on
the final output. The use of timed messages implies the use
of appropriate clock synchronization protocols (such as the
one proposed in [14]) since clock deviations must be
bounded.

The presented model is the underlying model of the
Hard Real-Time Subsystem of the DEAR-COTS architecture
[15]. From this model, it is clear that four types of message
exchanges must be supported: 1-to-1, 1-to-many, many-to-1,
and many-to-many.

For 1-to-1 communication (communication from a non-
replicated component to another nonreplicated component
or communication internal to a component), there is only
the need for a reliable multicast service since, as there is no
replication, order issues are not relevant. However, when a
result is to be disseminated to a group of replicated
components (1-to-many communication), atomic multicast
protocols [16] must be used to guarantee that replicated
receivers get the same information in the same order.

When a group of replicated components receives a
message from another group of replicated components
(many-to-many communication), it must agree on the value to
use. Thus, an interactive consistency protocol must be used.
If an underlying atomic multicast mechanism is used to
disseminate each value, then it is guaranteed that every
receiver will have the same input values and by the same
order. The agreement decision can then be performed by a
simple Consolidate protocol, which decides on one of the
received values.

The case of communication from a group of replicated
components to a single component (many-to-1 communication)
is a simplified version of the previous one. The receiving
component only has to decide from the set of received
inputs. The same Consolidate protocol can be used combined
with a reliable data transfer from the replicated transmitters
to the receiver (as there are no order requirements).
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3.2 Reliable Communication Properties

The reliability of the supported hard real-time applications
is highly dependent on the reliability of the underlying
communication mechanisms: atomic multicast and consoli-
dation protocols. Based on [16] and defining a correct node
as a node that does not fail while a multicast is in progress,
an atomic multicast has the following properties:

. Validity: If a correct node multicasts a message m,
then all correct nodes deliver m.

. Agreement: If a correct node delivers a message m,
then all correct nodes deliver m.

. Integrity: For any message m, every correct node
delivers m at most once and only if m was
previously broadcast by senderðmÞ;

. Total Order: If correct node p and q both deliver
message m and m0, then p delivers m before m0 if and
only if q delivers m before m0.

Note that these properties are related to the message
delivery and not to its reception. Nodes may receive
incorrect messages (concerning these properties), but the
proposed protocols will guarantee a correct delivery of
messages to the supported applications.

CAN error detection and recovery mechanisms ensure the
Validity property since, when the sender is correct, all nodes
will receive (and deliver) the message. Note that the network
can be referred as a fail-consistent bus [17] since there is no
possibility for different nodes to receive the same message
with different values. CAN error detection and recovery
mechanisms are not, however, sufficient to guarantee the
Agreement and Integrity properties [9]. In fact, it is possible
for a correct node to receive a message not received by some
other correct node (inconsistent message omission) and it is
also possible that some node receives the same message more
than once (inconsistent message duplicate). Total Order is
also not guaranteed since new messages can be interleaved
with retransmissions of failed messages, inducing nodes to
receive messages in different orders.

The consolidation needs just to guarantee that the decide
function is correctly applied to the full set of proposed
values (as an underlying atomic multicast protocol is
already used to disseminate the proposed values). There-
fore, the Consolidate protocol requires the following proper-
ties (based on the consensus agreement properties [16]):

. Validity: If all components proposing a value,
propose v, then all correct components will decide v;

. Agreement: If a correct component decides v, then
all correct components decide v.

The Integrity property [16] is not considered as it
precludes decisions on values different from those pro-
posed, like average or median functions. For the case where
a single component receives replicated inputs (many-to-1
communication), these properties can be reduced to Validity
as the Agreement property is only relevant for replicated
receivers.

3.3 Failure Assumptions

A synchronous distributed system is considered, where a
fixed number of components exchange information through
a synchronous communication channel. The use of a real-

time network (CAN), together with state-of-the-art schedul-

ability analysis techniques [4], allows the system to be

considered synchronous, even in the presence of temporary

periods of inaccessibility [6], [7], [8].
In the assumed network model, temporary failures are a

consequence of either bus errors or network interface

(transceiver) errors. Such network failures have the follow-

ing semantics:

. Bus error bursts never affect more than n transmis-
sions during the interval of analysis T . This means
that, even for the case of multiple sources of errors,
the time interval during which the network is
inaccessible is upper-bounded.

. Transceivers either behave correctly or crash after a
given number of failures, during the interval of
analysis T . This behavior is guaranteed by the CAN
protocol since, in the case of multiple errors, the
node goes first to the Error-Passive state and then to
the Bus-Off state [1].

. Multicasts may fail either by inconsistent message
omissions or inconsistent message duplicates. All
other errors are detected (and failed messages
retransmitted) by the CAN built-in error detection
and recovery mechanisms, with a sufficiently high
probability [1].

. A single message can be disturbed by at most
kdup duplicates. As the probability of an inconsistent
message duplicate is approximately 10�4 (the trans-
mission of 2:87� 107 messages per hour results in, at
most, 2:84� 103 duplicate messages [9]), the neces-
sity of kdup being considered greater than 2 is not
foreseen.

. During a time interval T , greater than the worst-case
delivery time of any message, at most one single
inconsistent message omission occurs in the net-
work. Considering the existence of 3:98� 10�9 to
2:94� 10�6 inconsistent message omissions per hour
[9], the occurrence of a second omission error in a
period T of, at most, several seconds has an
extremely low probability.

. There are no permanent medium faults, such as the
partitioning of the network. This type of faults must
be masked by appropriate network redundancy
schemes.

As the target of the proposed middleware is to tolerate

network-related faults, nodes are assumed to be fail-silent

in what concerns communications, that is, it is assumed that

all communication requests performed by any node are

correct. It is also considered that protocol software does not

fail by producing incorrect messages (with either value or

timing faults). These assumptions may be quite restrictive

when considering faults at the software or processor level.

Nevertheless, it is considered that more stringent assump-

tions can only be covered through the use of network

redundancy schemes (such as those proposed in [18], [19]),

with the provision of special-purpose hardware and/or

software with memory protection schemes, in order to

provide a fail-silent behavior to the node.
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4 MIDDLEWARE FOR RELIABLE REAL-TIME

COMMUNICATION IN CAN

The structure of the proposed middleware is presented in
Fig. 4. The Filtering module enforces that nodes not
registered to receive a particular message stream will not
be able to process messages related to that stream,
decreasing the number of messages in error situations.
The Atomic Multicast Layer provides a set of multicast
protocols, ranging from an unreliable one to a protocol that
guarantees an ordered delivery in the presence of incon-
sistent message omissions.

The Interface Layer provides a group abstraction to the
upper layers in order to abstract them from both imple-
mentation details and membership and location issues.
Consolidation of replicated components and fragmentation
and concatenation of messages are also provided by this
layer. The Fragmentation module allocates a range of
CAN identifiers for each message stream requiring frag-
mentation. The resulting fragments are treated as indepen-
dent messages by the atomic multicast protocols.

The Configuration module is responsible for storing all
the information required for the correct functioning of the
protocols. This information concerns which identifiers a
node is registered to receive, which atomic multicast
protocol to use when a multicast request is received, the
fragment information, and the information required to
consolidate replicated messages.

As the target of the presented work is to support reliable
hard real-time applications, the proposed middleware
considers the existence of a fixed set of processing units
and, thus, the full set of message streams and their
characteristics (periodicity, size, and replication) are pre-
viously known. This offline knowledge is required to allow
the use of state-of-the-art response time analysis techniques,
to provide the desired real-time guarantees to the sup-
ported applications.

A group communication approach is not considered for
the communication layer level in order to avoid burdening
the CAN identifier field with source and destination
information, especially as CAN multicast capabilities
already provide location transparency. Nevertheless, a
group communication support is provided to the upper
levels, enabling upper layers to be loosely dependent on the
used communication infrastructure.

As the focus of this paper is on the provided reliable real-
time communication mechanisms, only the Atomic Multi-
cast and Consolidation protocols will be presented. The
Atomic Multicast module provides a set of protocols, with
different failure assumptions and different behaviors in the
case of errors. The IMD (Inconsistent Message Duplicate)
protocol provides an atomic multicast that just addresses

the inconsistent message duplicate problem. The 2M (Two
Messages) protocol provides an atomic multicast addres-
sing both inconsistent message duplicates and omissions,
where messages are not delivered in error situations.
Finally, the 2M-GD (Guaranteed Delivery) protocol is an
improvement of the 2M protocol, which guarantees the
message delivery if at least one node has correctly received
it. The Unreliable protocol is a simple multicast protocol
that does not provide any guarantees.

These atomic multicast protocols provide the system
designer with the possibility of trading efficiency by
reliability since they can be simultaneously used in the
same system. The IMD protocol uses less bandwidth, but it
does not cover the inconsistent omission failure assump-
tion. On the other side, the use of protocols with higher
assumption coverage (e.g., the 2M protocol) introduces
higher overheads. Hence, streams with higher criticality
may use protocols with higher assumption coverage, while
streams with smaller criticality may use lighter protocols.

The less significant bits of the frame identifier are used to
carry protocol information (Fig. 5), identifying the message
type without interfering with the message criticality
(defined by the most significant bits of the frame identifier).

Knowing that CAN frames are simultaneously received
in every node, the atomic multicast properties are guaran-
teed by delaying the delivery of a received frame during a
specific (bounded) time. The proposed approach is similar
to the �-protocols [20], where delivery order is guaranteed
by delaying the message delivery during a specific time
interval (�). The difference is that delivery delays are now
evaluated on a stream by stream basis, increasing the
system throughput, as messages are delayed according to
their specific worst-case response times. It is assumed that
clocks are approximately synchronized by the use of an
appropriate protocol (such as [14]), guaranteeing the correct
evaluation of the delivery delays.

4.1 IMD Protocol

The IMD protocol provides an atomic multicast addressing
just the inconsistent message duplicate problem. As pre-
sented in Section 2.4, the transmitter automatically retrans-
mits a message if at least one node has signaled an error, even
if some nodes have correctly received the message. In order to
correctly manage these duplicates, every node, when receiv-
ing a message marks it as unstable, tagging it with a tdeliver
stamp (current time plus a �deliver delay).

This delay guarantees that if the message is retrans-
mitted, the retransmission will be received before deliver-
ing the message to the application. If a duplicate is received
before tdeliver (Fig. 6), the duplicate is discarded and tdeliver is
updated. This updating is required since other nodes may
have not received the original message, thus their tdeliver

PINHO AND VASQUES: RELIABLE REAL-TIME COMMUNICATION IN CAN NETWORKS 1599

Fig. 4. Middleware structure. Fig. 5. Identifier field and protocol information.



refers to the duplicate. If a node does not receive any
duplicate before tdeliver, it delivers the message to the
application as it knows that all other nodes have correctly
received the message (no retransmission was required).

The transmitter (if it also delivers the message) can itself
deliver the message after �deliver. As the CAN controller will
only acknowledge the transmission when every node has
correctly received it (no more retransmissions), there will be
no duplicates.

4.2 2M Protocol

The 2M protocol addresses both inconsistent message
duplicates and inconsistent message omissions, guarantee-
ing that either all or none of the receivers will deliver the
message. For the latter, not delivering a message is
equivalent to a transmitter crash before sending the
message.

In the 2M protocol, a node wanting to send an atomic
multicast transmits the data message, followed by a
confirmation message, which carries no data. When a
message is received, the node marks it as unstable, tagging
it with tconfirm and tdeliver stamps. A node receiving a
duplicate message discards it, but updates both tconfirm and
tdeliver. As the data message has higher priority than the
related confirmation (Fig. 5), then all message duplicates
will be received before the confirmation. Duplicate con-
firmation messages will just confirm an already confirmed
message.

A receiving node must receive both the message and its
confirmation before delivering the message. If it does not
receive the confirmation before tconfirm (Fig. 7 presents an
example of an inconsistent confirmation message), it multi-
casts the related abort frame. This implies that several
aborts can be simultaneously sent (at most one from each
consumer node). A message is delivered after tdeliver if the
node did not receive any related abort frame (a node
receiving a message but not the confirmation does not know
if the transmitter has failed while sending the message or
while sending the confirmation).

The advantage of the 2M protocol is that, in a fault-free
execution behavior, there is only one extra frame (without
data) transferred in the bus per multicast. The number of
protocol-related messages will be increased only in an error
case (low probability). Note that the transmission of an
abort only occurs in the case of a previous transmitter
failure. Therefore, from the failure assumptions presented
in Section 3.3 (there is no second inconsistent message

omission in the same period T ), this abort will be free of
inconsistent message omissions.

The transmitter can automatically confirm the message
since, if it does not fail, every node will correctly deliver the
message and the confirmation. The situation is the same as
for the IMD protocol since, if the transmitter remains correct
and delivers the message, then it will retransmit any failed
message.

4.3 2M-GD Protocol

The 2M protocol can be modified to guarantee the delivery
of a transmitted message if at least one node has correctly
received it. In the 2M-GD protocol, nodes receiving the
message but not the confirmation (Fig. 8) retransmit the
message (instead of an abort). This protocol is, however,
less efficient than the 2M protocol (in error situations) since
messages are retransmitted with the data field. To guaran-
tee the delivery order, it is necessary to use a tdeliver after error

stamp to solve inconsistent retransmission duplicates.
When a protocol retransmission is received, the node tags
it with tdeliver after error to delay the delivery of the message,
until it can guarantee that no more retransmission dupli-
cates will be received.

4.4 Replica Consolidation

The Consolidate module is built on top of the atomic
multicast protocols. By using atomic multicasts, it is
guaranteed that every replica of a replicated component
receives the same set of messages in the same order. The
Consolidate protocol delays the decide phase until it knows
that it has received the full set of messages (Fig. 9 top) or
until a specific time (�decide) has elapsed (Fig. 9 bottom).

Note that this protocol can be used to implement the
many-to-1 and many-to-many communication exchanges. In
the particular case of many-to-1 communication, there is no
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Fig. 6. IMD protocol in the presence of an inconsistent duplicate.

Fig. 7. 2M protocol in the presence of an inconsistent omission while

sending the confirmation.

Fig. 8. 2M-GD protocol, in the presence of an inconsistent omission

while sending the message.



need to solve the inconsistent message omission problem
since just one node will deliver the message. However, it is
still necessary to address the inconsistent message duplicate
problem as the receiving node may receive duplicate
messages. Thus, it is sufficient to use the IMD protocol.

4.5 Guaranteeing Reliable Communication
Properties

Defining a correct node as a node that does not fail while a
multicast is in progress, the atomic multicast properties
(defined in Section 3.2) are guaranteed by the proposed
multicast protocols since:

. Validity: As the CAN built-in mechanisms guarantee
that any message will be automatically retransmitted
in the case of either a network or a receiving node
failure [1], then the Validity property is guaranteed.

. Agreement: For the case of a correct transmitter, the
Agreement property is guaranteed by the Validity
property since the transmitter will retransmit any
failed message until all the nodes have correctly
received it.

For the case of an incorrect transmitter (leading to
omissions), only the 2M and 2M-GD protocols need
to be examined (note that the IMD protocol is not
relevant as it does not prevent inconsistent message
omissions):

1. For the 2M protocol, a correct node will only
deliver a message after receiving the confirma-
tion and being sure that it will not receive any
abort. Thus, it knows that all other correct nodes
have also received both the message and the
confirmation and will deliver the message. Any
node that does not receive both the message and
the confirmation will send an abort message
that, according to the failure assumptions (no
second message omission during the interval of
analysis), will prevent other nodes from deliver-
ing the message.

2. For the 2M-GD protocol, the behavior is equiva-
lent, except in error situations, where any node
not receiving the confirmation will retransmit
the message. All nodes will receive this retrans-
mission, once again because there is no second
message omission.

. Integrity: As all the correct nodes delay the delivery
of the message, duplicates are discarded and the
Integrity property is guaranteed. On the other side,
the CAN built-in mechanisms guarantee that a

message is from the actual sender since a bit error
in the identifier field is detected with a sufficiently
high probability [1].

. Total Order: Both the cases of message duplicates
and omissions must be examined. Considering the
case of message duplicates, Total Order is guaran-
teed since any correct node will discard any
previous message when receiving a duplicate. This
protocol behavior implies that the delivery of any
message will be referred to the last received
duplicate, which is the one that is simultaneously
received by all nodes (if not, there would be a
retransmission).

In the case of inconsistent message omissions, as
for the Agreement property, only the 2M and 2M-
GD protocols need to be examined:

1. For the 2M protocol, the Agreement property
guarantees that no node will deliver the mes-
sage. Thus, order is preserved.

2. For the 2M-GD protocol, in an inconsistent
omission situation, nodes receiving the message
will retransmit it. Since the occurrence of more
than one retransmission is treated as a duplicate,
the delivery of any message will be referred to
the last received duplicate. Thus, order is also
preserved.

Finally, The Consolidate protocol must guarantee the
Agreement property of consolidation. However, this prop-
erty is only necessary for the case of many-to-many
communication. In this case, by using an atomic multicast
protocol to disseminate the proposed values, it is guaran-
teed that all replicated receiving components will have the
same set of proposed values and by the same order.
Therefore, they will all decide on the same value. As for the
Validity property, it is related to the decide function being
used, not to the Consolidate protocol itself.

5 RESPONSE TIME ANALYSIS

In order to guarantee the timing requirements of the
supported applications, it is necessary to previously analyze
the response time of the proposed protocols. Such response
time analysis is constrained by the imposed delays to the
delivery and consolidation phases, which must therefore be
carefully evaluated.

Also, some (or all) of these message streams may involve
the exchange of extra messages in the network, either from
errors (duplicate messages) or from protocol-related mes-
sages (confirmation, abort, and retransmission messages),
which must also be integrated in the response time analysis.
Extra messages related to a message stream Sm are
respectively referred to as Sdup

m , Sconf
m , Sab

m , and Sretrans
m .

This section provides the preruntime schedulability
conditions necessary to analyze the responsiveness of the
proposed protocols, considering both the related response
and delivery times. The Response Time is comprised of the
time interval between requesting a message transfer up to
its complete reception at the receiver side. The Delivery Time
is comprised of the time interval between requesting a
message transfer until the message is delivered to the upper
layers of the receiver side. If multicast protocols are not
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used, these times are equivalent as messages are delivered
when they are correctly received.

This analysis does not consider execution delays caused
by the protocol execution in each node. However, these can
be easily integrated since they can be bounded through the
use of the same response time analysis [10] as for the
application software.

5.1 Response Time Analysis of the IMD Protocol

The IMD protocol delay (�deliver) guarantees that a message
is only delivered when it is known that there will be no
more duplicates. As the receiving node must evaluate such
delay based on local information, it must take the arrival
instant as its time reference. It then delays the message
delivery during the time interval it takes to completely
retransmit a failed message. In the presence of a duplicate
message (Fig. 10), �deliver is reset.

Thus, �deliver must be greater than or equal to the worst-
case response time of the duplicate message. This response
time is equivalent to the worst-case response time of the
original message (as it has the same priority), considering
that the retransmission does not suffer any blocking (as the
transmitter immediately tries to retransmit the failed
frame). Thus, Rdup

m is evaluated considering that Bdup
m ¼ 0

and then:

�deliver ¼ Rdup
m : ð13Þ

The worst-case delivery time (WdIMD
m ) for a message

stream Sm must consider the delay introduced by the
possible existence of kdup duplicates:

WdIMD
m ¼ Rm þ ðkdup þ 1Þ � �deliver: ð14Þ

The best-case delivery time (BdIMD
m ) considers that the

message is transmitted with its best-case response time, that
is, there is no interference or blocking and no duplicates are
transmitted:

BdIMD
m ¼ Cm þ �deliver: ð15Þ

5.2 Response Time Analysis of the 2M Protocol

For the 2M protocol, it is considered that both the message
and the confirmation are put in the transmission queue
atomically. As the message has higher priority than the
confirmation (Fig. 5), it will be scheduled ahead. Thus, the
confirmation will not suffer any blocking from lower
priority messages and, as the arrival instant of the message

is taken as the time reference, the confirmation will not
suffer any interference from the related message. Thus,
�confirm must be set to, at least:

�confirm ¼ Rconf
m � Cm; ð16Þ

where Rconf
m is evaluated with Bconf

m ¼ 0 (no blocking from
lower priority messages).

The �deliver interval must be determined considering that
every receiver waits until it is known that it will not receive
any abort message (from any node not receiving the
confirmation message before �confirm). Therefore, the �deliver
interval must also consider the response time of the node
(�node) to generate an abort message request:

�deliver ¼ �confirm þ�node þRabort
m : ð17Þ

Note that several abort messages may be transmitted in
the network, related to the same omission error. To
determine the �deliver interval, it is just necessary to consider
the case of the latest abort message (the one sent by the
node with the largest �node). If no abort message has been
received during such �deliver interval, then the message is
stable and can be delivered. The possible existence of
several aborts in the network must be properly considered
for the response-time evaluation of lower priority messages.

The worst-case delivery time (Wd2Mm ) of a message
stream Sm considers that a message is transmitted both
with its worst-case response time and with kdup duplicates,
thus resetting both �confirm and �deliver (Fig. 11). Therefore,
the worst-case delivery time considers an extra �confirm for
each duplicate message:

Wd2Mm ¼ Rm þ kdup � �confirm þ �deliver: ð18Þ

The best-case delivery time (Bd2Mm ) considers that the
message is transmitted with its best-case response time and
that there are no duplicates or omissions:

Bd2Mm ¼ Cm þ �deliver: ð19Þ

5.3 Response Time Analysis of the 2M-GD Protocol

The 2M-GD protocol has a similar behavior to the 2M
protocol. For �confirm and �deliver, it is only necessary to
replace the worst-case response time of the abort message
(Rabort

m ) in (17) with the worst-case response time of the
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retransmitted message (which is equal to the worst-case
response time of the original message). Multiple retransmis-
sions need also to be considered for the response time
evaluation of lower priority messages.

However, an extra delay �deliver after error must also be
determined (Fig. 12) since a receiving node cannot
guarantee that the other nodes have correctly received the
retransmitted message (due to the inconsistent retransmis-
sion duplicates). Thus, a similar approach to the
IMD protocol is followed, delaying the delivery until it is
guaranteed that all duplicates have been correctly received.
Hence, �deliver after error is equal to the worst-case response
time of a duplicated retransmitted message:

�deliver after error ¼ Rretrans
m ; ð20Þ

where Rretrans
m is evaluated with Bretrans

m ¼ 0 (no blocking
from lower priority messages).

The worst-case delivery time (Wd2M-GD
m ) of a message

stream Sm considers that both an inconsistent message
omission and duplicate retransmissions occur (once again,
the response time of duplicate retransmissions is deter-
mined without blocking since duplicates are immediately
rescheduled). The existence of multiple retransmissions
must also be considered (Fig. 12), where a node receiving a
second retransmission will consider it as a duplicate
retransmission and will reset �deliver after error. Therefore,
the worst-case delivery time considers the maximum
number of retransmissions (where nrec

m is the number of
receivers of stream Sm):

Wd2M�GD
m ¼ Rm þ kdup � �confirm þ �deliver

þ ðnrec
m þ kdupÞ � �deliver after error:

ð21Þ

The best-case delivery time (Bd2M-GD
m ) of a message

stream Sm is similar to the case of the 2M protocol:

Bd2M�GD
m ¼ Cm þ �deliver: ð22Þ

5.4 Response Time Analysis of the Consolidate
Protocol

The Consolidate protocol has to delay the decide phase
(�decide) until it knows that it will not receive any further
messages (Fig. 9). This delay depends on the worst-case
delivery time of the related messages, referring to an initial
time reference common to all sending nodes. This common
time reference must be the release time of the sending tasks.
Therefore, the worst-case delivery time of the messages

must consider the worst-case response time of the repli-

cated sending tasks.
If the replicated sending tasks are periodic, then their

release time is common in all the nodes (with a small jitter

as clocks are just approximately synchronized). If these

tasks are sporadically released by external events, then

their release time must also be agreed upon between the

different replicas (to guarantee a deterministic execution).

Thus, this agreed time instant must be considered as the

time reference for the worst-case response time of the

related messages. If the replicated tasks are sporadically

released by other tasks, then their release time may vary

between replicated components. In this case, it is

necessary to consider the release time of the initial

replicated tasks with common release time and determine

the worst-case response time of the replicated sending

tasks related to that initial time reference.
Knowing the worst-case delivery time for each related

message, an upper bound for �decide may be determined

assuming the best-case delivery time for the first message to

arrive and the worst-case delivery time for the last message

to arrive. Therefore:

�decide ¼ max
8i2repðmÞ

Wcom
i

� �
� min

8i2repðmÞ
Bcom

i

� �
þ "; ð23Þ

where Wcom
i is the worst-case delivery time of message

stream i and Bcom
i is the best-case delivery time of message

stream i, both considering a common time reference, and

repðmÞ is the set of replicated message streams. " is the

maximum clock deviation.
The best-case delivery time (Bddecidem ) of the consolidated

message can be determined, considering that all messages

are received with their best-case delivery time. Therefore:

Bddecidem ¼ max
8i2repðmÞ

Bcom
i

� �
þ ": ð24Þ

The worst-case delivery time (Wddecidem ) depends on the

assumed set of failure assumptions. If some of the

replicated messages are not delivered (due to inconsistent

message omissions or failed sending tasks), the protocol

must wait during a �decide interval from the arrival of the

first message (Fig. 9 bottom). Therefore, considering that

f related messages are not delivered, the worst-case

delivery time of the consolidated message is:

Wddecidem ¼ min
8i2rep0ðmÞ

Wcom
i

� �
þ �decide; ð25Þ

where rep0ðmÞ is the set of replicated message streams,

excluding the f streams with smaller worst-case delivery

time.

5.5 Integrating Communication Overheads in the
Response Time Analysis

The response time analysis of CAN networks must now be
updated to integrate the overheads concerning confirmation
messages and possible aborts or retransmissions. Therefore,
the worst-case queuing delay (8) must be updated to
consider periods of interference from higher priority
message streams using atomic multicast protocols:
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Im ¼ Bm þ
X

8j2hp mð Þ

Im þ �bit
Tj

� �
� ðCj þ Cextra

j Þ
� �

þ InaðImÞ

þ max
8j2hpðmÞ

extra msgj
� �

;

ð26Þ

where Cextra
j is the interference caused by the confirmation

message, which is:

Cextra
j ¼ Cconf

j 2M or 2M-GD protocol
0 otherwise:

�
ð27Þ

Additionally, maxfextra msgjg accounts for the aborts

or retransmissions in the network due to inconsistent

message omissions. As a single inconsistent message

omission is assumed during the period of analysis T

(greater than the largest worst-case delivery time), each

receiver of message stream Sj will transmit, at most, one

abort/retransmission due to inconsistent message omis-

sions, that is:

extra msgj ¼
nrec
j � Cabort

j 2M protocol

nrec
j � Cretrans

j 2M-GD protocol
0 otherwise;

8<
: ð28Þ

where nrec
j is the number of receivers for the message

stream Sj.
The InaðImÞ term (26) integrates the periods of network

inaccessibility caused by errors in frame transmission,

therefore it already includes the retransmissions of incon-

sistently failed messages (that is, duplicates).
Considering the network utilization, (12) must also be

updated. For each message stream transmitted with the 2M

or 2M-GD protocol, an extra confirmation message must be

considered (Cextra
m , (27)). Also, the maximum number of

extra messages (related to inconsistent message omissions)

per period of analysis T must be considered:

U ¼
X
8m

Cm þ Cextra
m

Tm

 !
þ Uina þ

max
8m

fextra msgmg

T
: ð29Þ

6 NUMERICAL EXAMPLE

In order to clarify the use of the proposed protocols,
consider a system where a distributed hard real-time
application executes (Fig. 13). The system is constituted by

four nodes, connected by a CAN network at a rate of
1 Mbit/sec.

The application is constituted by four tasks ð�1 . . . �4Þ,
which are spread over the nodes. As component replication
is also used, then some of these tasks are also replicated. In
this simple application, each task outputs its results to the
following task. The application is divided into three
components: component C1 encompasses task �1, compo-
nent C2 encompasses �2 and �3, and, finally, component C3

is just �4. Components C2 and C3 are replicated in three
replicas, while component C1 is not replicated (Fig. 13).

Table 1 presents each task’s characteristics, while Table 2
presents the characteristics of the necessary message
streams (all values are in milliseconds).

Note that messages from �2 to �3 and � 02 to � 03 are internal
to the node since both tasks are in the same node. As
message stream S1 is a 1-to-many communication, the 2M-GD
protocol is used in order to guarantee that every replica of
task �2 delivers the message. Therefore, there will be an
extra confirmation message with the same period of
message stream S1, but without data. Since it is considered
that an inconsistent message omission may occur, then it is
also necessary to account for three possible retransmissions
(one from each receiving node).

Message stream S2 is internal to a component (although
the component being spread between nodes 3 and 4) and it
is a 1-to-1 communication. Therefore, it is sufficient to use the
IMD protocol since only duplicates are of concern. Message
streams S3 to S5 are messages from replicated �3 to
replicated �4, therefore they need consolidation in every
replica of �4. As this consolidation will mask node failures
of the senders, then it is sufficient to use the 2M protocol for
the transmission of messages. Therefore, there will be an
extra confirmation message for each message sent (and
possible abort messages).

The following assumptions are considered:

. a maximum of two message faults in each 10 ms
time interval, resulting from a bit error rate of
approximately 10�4, which is an expectable range for
bit error rates in aggressive environments [9];
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TABLE 1
Tasks’ Characteristics

TABLE 2
Messages Streams’ Characteristics



. one inconsistent message omission during the
period of analysis;

. one duplicate in the transmission of a message
(kdup ¼ 1);

. a �node equal to 100 �s and a maximum deviation
between clocks (") of 100 �s.

Table 3 presents the response time for each message
stream and the network load when multicast protocols are
not used (the Unreliable protocol is used instead of the
IMD/2M/2M-GD protocols). RNP

m represents the worst-case
response time (NP: no protocols), P is the periodicity, and
Cm is the actual time taken to transmit a message. An
inaccessibility time of 0.3 ms (2 � tina, where tina is evaluated
using (6)) during a time interval of 10 ms is a consequence
of the assumption of two faulty messages in the network.
The network utilization (U) is determined using (12), thus
accounting for both the network utilization of the message
streams and the inaccessibility periods.

As can be seen, the worst-case response time of messages
is considerably greater than its actual transmission time.
Although the interference from higher priority messages is
one of the factors leading to such a difference, the main
factor is the bit error rate. For instance, a message of stream
S1 in an error-free environment would have a worst-case
response time of 0.219 ms (instead of 0.519 ms as in Table 3).
The possible existence of errors in the network more than
duplicates its worst-case response time [7], even not using
multicast protocols.

Tables 4 and 5 present the messages’ delays and delivery
times, considering the use of the proposed multicast
protocols. RMP

m represents the worst-case response time of
a message stream when multicast protocols (MP) are
considered. Wdm and Bdm are, respectively, the worst and
best-case delivery time for message stream Sm.

As can be seen in Table 5, the worst-case delivery time is
greater than the related worst-case response time because,
apart from the multicast-related delays, it is assumed that
each message may be disturbed by, at most, one duplicate.
For instance, the worst-case delivery time for message
stream S5 is not only given by the message stream response
time plus its �deliver, but also by summing an extra �confirm
due to a message duplicate.

The last column of Table 5 presents the ratio worst-case
delivery time/worst-case response time when considering
the use of multicast protocols. It is obvious that the IMD
protocol is the one that introduces smaller delays (message
stream S2), while the 2M-GD protocol is the one with the
higher delays (message stream S1). Therefore, the system

designer can use this reasoning to balance reliability versus
efficiency in the system.

Also presented in Table 5 is the network utilization
considering the use of the proposed protocols (29). As can
be seen, these protocols increase network utilization less
than 30 percent since multicast-related retransmissions only
occur in inconsistent message omission situations.
Although this network load increase is still large, it is
much smaller than in other software-based approaches and
it is strictly necessary to cope with inconsistent message
omission using a software-based approach.

Since messages from replicated tasks �3 to replicated
tasks �4 need to be consolidated, it is still necessary to
determine the �decide parameter of the Consolidate protocol.
As stated, it is necessary to find the worst-case and best-case
delivery times for each one of the message streams (S3 to
S5). However, these delivery times must refer to a common
time base. Thus, it is necessary to determine the best-case
and worst-case response time of replicated tasks �3. This
task is a sporadic task released by �2. Hence, its response
time is dependent of the response time of �2. These response
times can be easily determined using the analysis presented
in [10]. However, replicated component C00

2 is spread over
nodes 3 and 4. Thus, to determine the worst and best-case
response times of � 003 , it is necessary to consider the delivery
time of message stream S2.

Table 6 presents the best-case and worst-case response
time of replicated tasks �3 and the associated worst-case and
best-case delivery time of messages streams S3 to S5 (all
referring to the common release time of task �2). Therefore,
(from (23)):

�decide ¼ 13:64� 7:121þ 0:1 ¼ 6:619 ms: ð30Þ

The worst-case delivery time of the consolidation (refer-
ring to the time instant where the first message is scheduled
for transmission) is determined assuming that all messages
but one are delivered at their worst-case delivery time and the
other is not delivered. In this case (assuming that the message
not delivered is the one with the lower worst-case response
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time (S3)), the message from stream S4 will arrive with its

worst-case delivery time of 4.640, which, summed to the

�decide, gives a worst-case consolidation time of:

Wddecide ¼ WdM4 þ �decide ¼ 11:259 ms: ð31Þ

Although delays are induced by this consolidation, the
advantage is that no extra overhead is introduced in the

network, preserving the predictability of the system. As one

of the main targets of the proposed multicast protocols is to
provide reliable CAN communication, preserving CAN

real-time characteristics (allowing the offline analysis of
messages’ response times), such a target is achieved as the

predictability of message transfers is guaranteed.

7 COMPARISON WITH OTHER APPROACHES

The problem of inconsistent message delivery in CAN
networks has been given some research in the last years. In
[9], a set of fault-tolerant broadcast protocols is proposed
which solve the message omission and duplicate problems.
The RELCAN protocol is similar to the 2M-GD protocol,
being based in the transmission of a second data-free
message (CONFIRM message) to signal that the sender is
still correct. If this confirm message does not arrive before a
specific timeout, the message is retransmitted. This retrans-
mission is performed using a lower layer protocol
(EDCAN), which is based on the retransmission of
messages by every node in the system (that has correctly
received the message).

In the RELCAN protocol, the transmission request of the
CONFIRM message is made after receiving information from
the CAN controller that the data message has already been
sent. This two-phase approach is necessary to guarantee that
there is no order inversion between protocol messages, that is,
the CONFIRM message is only sent after the related data
message. In the 2M (and 2M-GD) protocol, this noninversion
guarantee is provided by giving a lower priority to the
confirmation message than to its related data message.
Therefore, the request for transmission of both the data and
confirmation messages can be atomically performed, drasti-
cally reducing the worst-case response time of the related
message stream, especially for lower priority streams.

As the RELCAN protocol delivers a message as soon as it
is received, it is not able to provide the total order guarantee
as the 2M-GD protocol (thus, it cannot be used for atomic
multicasts). In [9], total order is addressed by the TOTCAN
protocol. This protocol is also based on a two-phase
approach, where transmission of an ACCEPT message
(similar to the CONFIRM message) is performed using the
EDCAN protocol. Therefore, multiple retransmissions will
occur in normal operation, even if no error occurs. In case of
sender failure, the protocol does not deliver the message (it

just guarantees that the message is delivered by all or none
of the recipients, as in the case of the 2M protocol).

The protocols presented in [9] are targeted to tolerate a
generic number j of inconsistent message omissions.
Therefore, the lower-layer EDCAN protocol performs at
least jþ 1 retransmissions in order to guarantee that every
node receives at least one copy of the message, meaning
that there will be a significant number of retransmissions in
the bus in normal behavior. The possibility of several
identical retransmissions being clustered (all transmitted at
the same time) allows the protocol overhead to be reduced,
particularly for larger values of j (increasing the probability
of messages being clustered [9]). However, for a smaller j
(and particularly for j equal to 1), this possibility cannot be
assumed, particularly for worst-case scenarios. It is ex-
pected that some of these messages will not be simulta-
neously transmitted since sender nodes have distinct
processing delays.

Hence, in order to provide total order, the TOTCAN
protocol will incur in higher overheads. For instance, when
transmitting a fault-free message in a network with four
nodes, in addition to the data message there will be the
ACCEPT message plus the possible existence of three
ACCEPT retransmissions. For a data message with 8 bytes,
the overhead is approximately 150 percent, compared to the
40 percent of the 2M protocol. If it is assumed that, in the
lower-layer EDCAN protocol, all retransmissions are clus-
tered, there will be still an 80 percent overhead (the
message, the ACCEPT message, and only one clustered
retransmission).

Another approach presented in the literature is to use a
hardware-based solution [21] to prevent message incon-
sistencies. This approach is based on a hardware error
detector which automatically retransmits messages that
could potentially be omitted in some nodes. This detector
(SHARE) detects the bit pattern that occurs in an incon-
sistent message failure and automatically retransmits the
received frame, even if the transmitter handles this failure.

Although solving the inconsistent message omission
problem of CAN, this hardware-based approach does not
provide a solution to the total order problem as duplicates
may occur (furthermore, inconsistent message omissions
are transformed in inconsistent message duplicates). In
order to achieve total order, it is necessary to complement
this mechanism with an offline analysis approach [5], where
hard real-time messages are offline adjusted to never
compete for the bus (using fixed time slots). This approach
induces smaller delivery times for hard real-time messages,
at the cost of an increased burden in the system analysis.

The approaches presented in [9] and [21] always
consider the existence of both inconsistent message omis-
sions and duplicates. The work presented in this paper also
provides an atomic multicast protocol (the IMD protocol),
which, addressing only inconsistent message duplicates,
does not introduce any extra overhead. This type of
inconsistent message is the most probable one to appear,
thus the IMD protocol provides a significant advantage for
message streams with less critical requirements.

8 CONCLUSION

The use of CAN networks to support Distributed Compu-
ter Controlled Systems requires not only time-bounded
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transmission services, but also the guarantee of consistency
for the supported applications. In spite of its built-in error
detection/signaling mechanisms, the CAN protocol may
cause inconsistencies in the supported applications as
messages can be delivered in duplicate or delivered only
by a subset of the receivers.

This paper proposes a set of atomic multicast and
consolidation protocols upon which the CAN reliable real-
time communication is guaranteed. In the proposed
approach, atomic multicasts are guaranteed through the
transmission of just one extra message (without data) per
transferred message while in error-free situations. More
protocol-related retransmissions will only be necessary in
the case of inconsistent message omissions, which are low
probability situations. Inconsistent message duplicates can
be solved by a simpler protocol that guarantees total order
without requiring any extra message transfer. Moreover,
atomic multicast properties are achieved without more
overhead than strictly needed for a reliable multicast.
Consolidation of replicated inputs is also provided through
the use of a consolidate protocol, built on top of the
multicast protocols.

These protocols explore the CAN synchronous proper-
ties to minimize their runtime overhead and, thus, provide
a reliable and timely service to the supported applications.
In this paper, the model and assumptions for the evaluation
of the message streams’ response time of these protocols are
also presented, demonstrating that the real-time capabilities
of CAN are preserved since predictability of message
transfers is guaranteed.
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